Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths

Daan Martens, Ananth Z. Subramanian, Shibnath Pathak, Michael Vanslembrouck, Peter Bienstman, Wim Bogaerts, and Roel G. Baets

Abstract—In this letter, we report a novel high-index-contrast silicon nitride arrayed waveguide grating (AWG) for very near-infrared wavelengths. This device is fabricated through a process compatible with a complementary metal–oxide–semiconductor fabrication line and is therefore suitable for mass fabrication. The large phase errors that usually accompany high-index-platform AWGs are partly mitigated through design and fabrication adaptations, in particular the implementation of a two-level etch scheme. Multiple devices are reported, among which a 0.3-mm² device which, after the subtraction of waveguides loss, has a −1.2 dB on-chip insertion loss at the peak of the central channel and 20-dB crosstalk for operation >900 nm with a channel spacing of 2 nm. These AWGs pave the way for numerous large-scale on-chip applications pertaining to spectroscopy and sensing.

Index Terms—Near-infrared, arrayed waveguide grating, silicon nitride, high-index-contrast.

I. INTRODUCTION

ARRAYED waveguide gratings (AWGs) are an essential building block for integrated photonic systems due to their compactness and excellent performance [1]. Their main field of application is wavelength-division multiplexing for optical communications [2]. Additionally, they are increasingly being used in lab-on-a-chip based systems for photonic sensing like spectroscopy [3] and refractive index sensing [4]. Due to this versatility, designs have been made for various material platforms and wavelength ranges [5]–[7]. AWGs for the near-infrared and visible range have also been developed [8]–[12]. This very near-infrared (VNIR) wavelength region (700-1000 nm) is of particular interest due to its negligible water absorption, low fluorescence, the availability of high-quality low-cost sources and detectors as well as the presence of the therapeutic window for minimal photo damage to the tissues, making it ideal for sensing applications. The current devices in this wavelength region are however restricted to large footprints due to their low-index-contrast materials. In a high-index-contrast (HIC) material platform on the other hand, very sharp bends are possible and devices can therefore be made more compact. This footprint reduction allows integrating much more components on a single chip. The most mature high-index-contrast system is silicon-on-insulator, for example a 16-channel 0.41-mm² AWG with −1.6 dB insertion loss and conventional crosstalk of 22.5 dB has been reported at 1550 nm [13]. Unfortunately, silicon-on-insulator lacks transparency below 1.1 μm and can therefore not be used in the VNIR wavelength region. Silicon nitride (Si₃N₄) is a transparent alternative, conserving compatibility with a complementary metal–oxide–semiconductor (CMOS) fabrication line and possessing a relatively high refractive index of around 1.9 in the VNIR wavelength regime. In this platform, AWGs have already been demonstrated operating in the telecom wavelength region [14]–[16], but in this letter devices for shorter wavelengths are described. Recently, we reported single-mode low-loss Si₃N₄ waveguides for visible VNIR wavelengths with losses <1 dB/cm at 900 nm [17]. HIC AWGs typically are more sensitive to sidewall roughness, causing high phase errors. This sensitivity reduces the margin of error on design and fabrication [13]. Including a shallow etch allows decreasing the index contrast locally at critical parts and thereby improving the device performance [2]. This letter presents the results of a novel Si₃N₄ AWG, operating in the 900 nm wavelength range. These devices combine a very small footprint with low insertion losses, making them suitable for diverse on-chip applications.

II. AWG THEORY

AWGs are feed-forward spectral filters, combining a multipath delay with two free-space focusing regions, referred to as star couplers, as illustrated in Fig. 1(a). Light entering the input star coupler diverges and gets coupled into an array of waveguides. Their length difference ΔL is such that their optical path length difference equals an integral multiple of the central wavelength, ΔL = mλc/neff. When diverging from λc, the outgoing beam will be shifted along the image plane. The receiver waveguides are placed along this image plane, each capturing a different section of the spatially separated spectrum. More information on AWG theory can be found in [1].
Fig. 1. (a) Top view of silicon nitride AWG. (b) Detail of waveguide array. (c) Shallow etch aperture of star coupler.

Typical parameters to characterize such a device are peak loss of the central channel (referred to as insertion loss), its difference with the peak loss of the lowest, usually outer channels (known as insertion loss non-uniformity) and the crosstalk. For describing this crosstalk, two figures of merit will be applied: First, the conventional crosstalk, defined per channel as the difference between the power at peak wavelength and the peak power of any other channel within its 10-dB bandwidth. Second, for the cumulative crosstalk, within the 10-dB bandwidth of a channel, the power of all other channels is added up. The cumulative crosstalk is the difference of the maximum of this added crosstalk with the peak of the channel [13]. The 10-dB bandwidth is picked as we consider this the relevant operating range of each channel. The conventional and cumulative crosstalk of a device are taken as the maximum of that type of crosstalk of any channel. Both types of crosstalk are illustrated in Fig. 2.

III. FABRICATION AND DESIGN

The fabrication of the structures was done by first depositing a 220 nm Si3N4 layer on a Si wafer coated with 2.6 μm oxide. Structures were etched into the substrate by means of 193 nm optical lithography. No top cladding was added. This process is back-end CMOS compatible. More information on the fabrication process can be found in [17]. A microscopy image of an AWG is shown in Fig. 3.

This Si3N4 material platform has a relatively high-index-contrast, allowing tight bends and therefore smaller-footprint devices. This HIC unfortunately also brings a high sensitivity to fabrication errors, like sidewall roughness and waveguide width variation. The former predominantly results in high phase errors, increasing crosstalk. A few fabrication and design adaptations were made to alleviate these problems, based on successful results for similar devices in silicon-on-insulator [2], [18].

First, a double etch step is used: in the access waveguides and the bends in the array, a full 220 nm etch is applied in the cladding region, whereas for the apertures of the star coupler a 70 nm etch is used in the cladding region to lower the index contrast. Second, straight waveguide sections have a width of 0.9 μm to reduce the effect of sidewall roughness, a major contributor to phase errors. In these regions the waveguides can become multimode. This is counteracted, as in bends the waveguide is tapered down to 0.7 μm, ensuring single-mode behavior. This is shown in Fig. 1(b). Third, upon entering the star coupler, the width of the (shallow etched) aperture is gradually increased to 1.5 μm-2 μm, reducing reflections upon transition to the slab region [18]. An AWG aperture is shown in Fig. 1(c) illustrating the shallow etch cladding region as well as the expanding waveguide width.

IV. MEASUREMENT PROCEDURE

The devices were measured in a fully automated fiber-to-fiber setup, where the in- and out-put fibers are aligned to their respective grating couplers with an alignment precision of 0.01 μm. A tunable laser was used as a light source, and the output was measured with a power meter. For each measurement of an output channel of each AWG, a reference measurement was carried out immediately after, with the fiber position optimized for the peak wavelength of the channel. The reference structure comprised two grating couplers connected by a short straight waveguide. These reference measurements were included to eliminate the effect of the grating couplers. For the data analysis, after normalization by means of the reference measurement, a Gaussian was fitted to each channel and this Gaussian was used for further characterization of the spectrum in order to reduce the effect of noise.
we were unable to measure a full free spectral range due to the tunable laser, which was limited in wavelength range to 890–910 nm. The obtained data did suffice to perform an analysis and obtain the parameters of interest. The results of the analysis of the measured data are given in Table I.

For all devices, the experimental channel spacing is in very good agreement with its design value. The most noteworthy feature of these devices is their low insertion loss, especially considering their small footprint. Comparing the structures, those with a smaller channel spacing have a larger crosstalk, and to a lesser extent a larger insertion loss. This is presumably because devices with smaller channel spacing require a larger ΔL, and hence have a larger footprint and therefore suffer more from phase errors, reducing their performance, particularly in terms of crosstalk.

Due to this trend, the device with 2 nm channel spacing, for which the spectrum is plotted in Fig. 4, has the lowest insertion loss, only $−1.21$ dB. It exhibits conventional and cumulative crosstalk of 20 dB and 16.9 dB, respectively. The footprint of the device is only 0.45×0.75 mm2. The insertion loss non-uniformity of the device is $−1.3$ dB and its 3-dB bandwidth is 0.59 nm.

In Table II a comparison of this device with the state-of-the-art AWGs in the 600–900 nm wavelength range is given. When multiple devices were available, the one with central wavelength and channel spacing closest to our own was preferred. Our device shows great performance in terms of insertion loss and crosstalk but especially excels due its small footprint, two orders of magnitude smaller than the other devices.

VI. CONCLUSION

We report state-of-the-art arrayed waveguide gratings in the high-index silicon nitride material platform for the 900 nm wavelength range. Due to design adaptions, a low insertion loss and low crosstalk are achieved, despite the HIC platform. The footprint of these devices is much smaller than that of the other AWGs reported so far for VNIR wavelength. The reported devices are furthermore fully CMOS-compatible, and therefore suited for cheap large-scale production. Due to the combination of these merits, these AWGs pave the way for a wide range of applications, in particular on-chip photonic sensing.
ACKNOWLEDGMENT
The authors acknowledge imec Leuven for Si$_3$N$_4$ processing.

REFERENCES