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This review is devoted to pharmacological applications of

principles of release from capsules to overcome the membrane

barrier. Many of these principles were developed in the context of

polymeric multilayer capsule membrane modulation, but they

are also pertinent to liposomes, polymersomes, capsosomes,

particles, emulsion-based carriers and other carriers. We look at

these methods from the physical, chemical or biological driving

mechanisms point of view. In addition to applicability for carriers

in drug delivery, these release methods are significant for another

area directly related to pharmacology — modulation of the

permeability of the membranes and thus promoting the action

of drugs. Emerging technologies, including ionic current

monitoring through a lipid membrane on a nanopore, are also

highlighted.

Addresses
1 Photonics Research Group, Department of Information Technology,

Ghent University — imec, B-9000 Ghent, Belgium
2 Department of Molecular Biotechnology, Ghent University, Coupure

Links 653, B-9000 Ghent, Belgium
3 Center for Nano- and Biophotonics (NB-Photonics), Ghent University,

Belgium
4 A.V. Shubnikov Institute of Crystallography RAS, 119333 Moscow,

Russia
5 Institute of Nanostructures and Biosystems, Saratov State University,

410012 Saratov, Russia
6 Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam,

Germany
7 Biophysics, School of Engineering and Sciences, Jacobs University of

Bremen, 28759 Bremen, Germany

Corresponding author: Skirtach, Andre (Andre.Skirtach@UGent.be)

Current Opinion in Pharmacology 2014, 18:129–140

This review comes from a themed issue on New technologies

Edited by Gleb B Sukhorukov

For a complete overview see the Issue and the Editorial

Available online 14th October 2014

http://dx.doi.org/10.1016/j.coph.2014.09.016

1471-4892/# 2014 Elsevier Ltd. All rights reserved.

Introduction
Successful delivery of pharmaceuticals [1], medicine and

action of drugs — hinge upon two interconnected sub-

fields: First, delivery of drugs by carriers [2] and second,
www.sciencedirect.com 
assuring the transport to the target [3]. We provide a

generalized view of release mechanisms which, on one

hand, are acting on delivery carriers, while on the other

hand can be used for inducing permeability of the mem-

branes for drug targeting. Polyelectrolyte multilayer cap-

sules not only represent and an excellent model system,

but they are directly relevant to biomedical [4] and drug

delivery applications [5�,6�,7]. Flexibility of LbL assembly

building [8,9] permits for incorporation of various entities,

which permit triggering of release, both of organic and

inorganic nature into the polymeric shell of capsules.

This review analyzes mechanisms of release from poly-

electrolyte multilayer capsules identifying their advan-

tages and disadvantages. Some examples in which

application of release methods led to significant develop-

ments are highlighted. At the end, we draw a parallel

between applicability of the release methods described in

this review with their suitability for affecting such alternative

carriers as liposomes, polymersomes, particles, emulsion

based carriers, films. Applicability of remote release methods

is also considered for studying fundamental properties of

biomolecules (i.e. application of nanopores to study lipid

properties) from which these carriers are made.

Polyelectrolyte multilayer capsules
Only very brief description of capsules is provided here.

Mechanisms of formation and polymer interaction

Although such new methods of polymer assembly as

hydrogen bonding [10,11�,12] and non-electrostatic

assembly mechanisms [13�] were considered, electro-

statics still remains a popular option.

Particles as templates on which capsules are assembled

and polymers for assembly

For preparation of polyelectrolyte multilayer capsules

different particles (namely silica, melamine formal-

dehyde (MF), polystyrene (PS), gold nanoparticles, poly(-

lactic acid) (PLA) particles, calcium carbonate, calcium

phosphate), serving the role of removable templates, are

used [14]. Advantages of carbonate based templates [15]

include inexpensiveness and porosity. Resent research

revealed a way to produce calcium carbonate particles

with a defined size from hundreds of nanometer [14] to

micrometers [16]. The presence of pores in carbonate

particles is used for direct encapsulation of molecules by
Current Opinion in Pharmacology 2014, 18:129–140
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adsorption [16–18]. Development of microcapsules of

different shapes may be important for bio-applications

[19], anisotropicity [20–24] plays a significant role: ellip-

tical particles [25] with controllable loading [26]. Micro-

capsules have been originally designed on micrometer

sized templates, but nanometer scale carriers have been

also pursued. Aggregation of capsules is a potential hur-

dle.

Very different polymers [27] and molecules including

those containing charged groups, a variety of proteins,

small molecules (under 1 kDa) and dyes, nanoparticles,

various nanotubes [28,29], and even nanoplates [30] have

been used for formation of polymeric layers and their

subsequent functionalization.

Methods of release
Three main types of stimuli: those based on manipulating

physical principles, affecting chemical composition or

influencing biological reactions [31�] can be used for

release [27]. Figure 1 depicts all these stimuli, which

in fact provide complementary measures not only for

simply inducing release, but also for achieving desired

release profiles [32–34].

Release by chemical methods

Locality of the action is essential. All of chemical stimuli

carry non-local character: the effects are transferred

through a solution and act on the whole network of

polymers, thus affecting the state of polymers of the

whole capsules as a whole entity.

pH

Among other stimuli, pH [35] of the solution is used to

control the interaction between the charges on the oppo-

sitely charged polyelectrolytes. Manipulation of the charges

takes place through the so-called weak polyelectrolytes,
Figure 1
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that is those whose charge or degree of protonation changes

depending on pH. Bringing in or removing protons around

the charged groups results in the build-up of the excess of

either positive or negative charges (such a process can be

conducted, e.g. by changing pH [36,37] of the surrounding

solution [38]). That leads to repulsion of the prevailing

charged groups and tends to increase the spacing between

polymers. This elegant approach is applied either for

encapsulation (by closing the pores of capsules filled-in

with encapsulated materials) or for release (by permitting

encapsulated materials to leave the interior of capsules at a

desired site) [39].

Applications of a pH-responsive release system are attrac-

tive in vivo. Here, inherent pH values of different organs

[1]: stomach (pH varies from 1 to 3), duodenum (pH 5–8),

colon (pH � 8), blood (pH � 7.8), oral cavity (pH 6–7) or

subcompartments of cells act as a trigger for releasing the

cargo. The permeability of polyelectrolyte capsules con-

taining tannic acid and different polyelectrolytes (most

notably PNIPAM (poly(N-isopropylacrylamide))) can be

adjusted by pH [40].

Pros and cons: although reversible permeability change is

possible, application of these capsules in biological appli-

cations, wherein pH cannot be changed, is questionable.

Weak mechanical properties might be another concern for

such capsules.

Salts, ionic strength of the solution and sensitivity to

reduction

Salt has been generally used for preparation of micro-

capsules. A small amount of salt, added to solutions with

polymers, somewhat screens the charges on polymers

transforming the polymers from the spread to a somewhat

smudged state. The effect of salt on polyelectrolyte

multilayer capsules takes place on the whole surface of
Current Opinion in Pharmacology
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microcapsules. The same principle described above in

regard with the state of polymers applies here in case if

salt is added to a solution containing microcapsules. Salt

ions would screen the charges, also increasing the osmo-

tic pressure, thus providing means for loosening the

interaction of the polymers forming the polyelectrolyte

multilayers shells. That in turn would lead to disinteg-

ration of microcapsules and release of encapsulated

materials. Permeability regulation based on reduction

is an attractive chemical stimuli based method with

potential to be also applied to other carriers. Microcap-

sule expansion and the permeability change has been

demonstrated for poly(ferrocenylsilane) containing

microcapsules with redox-active ferrocine in the poly-

meric chain [41].

Interestingly, decrease of the interaction of polymers

upon addition of a high (3 M) of salt can be used for

fusion [42] of capsules (or releasing the contents of two

capsules into a jointly formed capsule). The fusion can be

also achieved by salt or pH [43]. The thickness change of

polyelectrolyte multilayers due to extreme pH differ-

ences [44] supports the influence of salt on the structure

of multilayers.

Pros and cons: advantages of ionic strength-based methods

include possibilities to affect a large number of capsules,

versatility of affecting the layers, while disadvantages

concern biological applications, where salt concentration

needs to be kept constant.

Solvents

Solvents along with salts are some of the most frequently

used methods to affect the permeability of polyelectro-

lyte multilayer capsules [45]. Solvent-exchange methods

have been frequently used for manipulating, forcing and

encapsulating molecules [46].

Pros and cons: water has been traditionally used as an

universal solvent for assembling capsules and films;

although organic solvents have been often used, particu-

larly for incorporation of water-insoluble molecules. It can

be noted that solvent-exchange may affect the activity of

encapsulated materials.

Electrochemical methods of release

Research in the area of electrochemical release methods

is directed toward understanding of the effects of elec-

trochemistry on polyelectrolytes and their interactions,

and toward applying them to control loading and release.

Polypyrrole, which possesses interesting electrical prop-

erties, has been reported as a good agent for reducing the

permeability of microcapsules [47]. A film of polypyrrole

was deposited on an electrode, which acted to induce the

fields increasing the influx of counterions/solvent mol-

ecules increasing the osmotic pressure in the film [48].

The expanded film promotes release of molecules, while
www.sciencedirect.com 
its reversibility provides means for encapsulation. Elec-

trochemical potential change has been also recently used

for releasing plasmid DNA from coated surfaces [49].

Pros and cons: the biggest advantages of such a method

include high potential for sensing applications, a possib-

ility of using electrical field pulses to induce the release,

while disadvantages concern a limited volume of appli-

cability, that is in vicinity of an electrode.

Biological methods for release

Affecting microcapsules by proteins, peptides or other

biologically relevant molecules is attractive in regard with

actions of such molecules when capsules are placed into

cells or in vivo. Enzymatic degradation is another route

for inducing release by biological stimuli. Substantial

research activity was devoted to encapsulation of

enzymes, for example enzyme [50] incorporation into

polyelectrolyte multilayers [51]. Alginate particles com-

bined with polyelectrolyte coatings have been also

shown as an effective container for enzymes [52]. pARG

(polyarginine) and DEXS (dextrane sulfate) were used

as polyelectrolyte multilayers [53] and intracellular

release by degradation has been shown. Controllability

of release is essential: by increasing the number of layers

in the polyelectrolyte coating [54] or controllable cross-

linking [55] may be used for slowing down the release.

‘Click’-chemistry [56] induced release as well as disul-

fide-bond disintegration [57] represent yet another class

of biological stimuli, which can be effectively applied for

release from microcapsules. Disulfide bond disintegration

serves as an interesting example of inducing release from

microcapsules. It is interesting to note that the release

took place upon changing pH [35], but importantly pH

was not adjusted externally. The response here is trig-

gered upon pH change when microcapsules enter a sub-

compartment of cells (or tissue) possessing different pH

values. A combination of redox-responsive capsules as

well as the degree of cross-linking has been reported to

lead to controlled degradation [55], Figure 2.

Glucose sensitive microcapsules are yet another method

of using biological stimuli to generate release. In this case

release is facilitated by incorporating phenylboronic acid,

which exists in a charged and uncharged form. The latter

is hydrophobic, while the former is hydrophobic one. The

principle of inducing release from such type of capsules is

based on inducing increased solubility of by shifting the

equilibrium toward charged phenylborate upon forming a

complex with glucose. Assembly of polyelectrolyte multi-

layers was accomplished by using PSS and 3-Acrylami-

dophenylboronic acid [58]. Glucose initiated release from

such type of capsules was seen to be quite fast.

Suitability of polyelectrolyte multilayer capsules respon-

sive to biological stimuli to biomedical applications, work
Current Opinion in Pharmacology 2014, 18:129–140
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Redox-responsive bisazide cross-linked microcapsules (left-hand side), and their intracellular uptake (right-hand side) for subsequent degradation.

Adapted with permission from [55].
with cells and in vivo are their biggest advantages, the

disadvantages include difficulty of locally modulation of

properties of polyelectrolytes.

Pros and cons: applicability of this class of stimuli in

biology is its important asset, however, it is difficult to

attain the same degree of control as that induced by

physical methods.

Release by physical methods

Laser-light effects, nanoparticles and their assembly

As outlined before temperature is an important parameter

to control the stability and permeability of polyelectro-

lytes. Subsequently infrared laser pulses in the absorption

window of nanoparticles convert laser energy into a

localized temperature rise [59]. This laser-nanoparticle

interaction has been used to create specific release-suit-

able interaction [60–63], which takes place also due to

temperature. The temperature increase, measured

around microcapsules [62], in this case can take place

either through the interaction of laser with absorbing

centers: nanoparticles or absorbing dyes [60], which are

located in the shell of capsules.

Exposure of [PAH/PAzo(poly[[(carboxy-4-hydroxyphe-

nylazo)benzenesulfoamido]-ethanediy)l](PAzo)3/PAH/

poly(vinylsulfonate) (PVS)] microcapsules to UV (ultra-

violet) light resulted in pore closure of capsules [64].

This process was interpreted as rearrangement  of PAzo

polymers in the polymeric network; similar processes
Current Opinion in Pharmacology 2014, 18:129–140 
were also observed for microgels [65]. Photocleavable

polyurea can be another candidate for UV based release

[66]. For non-biological applications the use of UV-light

[67] represents an interesting alternative.

Distribution of nanoparticles (and intensity of incident

laser light) regulates the temperature rise around absorb-

ing centers. Polymers can be used for controlling the

distribution of nanoparticles on capsules, both aggregated

and non-aggregated distributions can be obtained [68]. In

an alternative case, which is applicable to non-localized

release of encapsulated materials with explosion of a

capsule a direct reduction of nanoparticles at the surface

of microcapsules is possible [69]. Laser exposure of such

capsules literally leads to explosion of capsules [60].

Nanoparticle reduction under temperature controlled

environment can be also used for controlling the distri-

bution of nanoparticles. Such methods of nanoparticle

growth control can be also used to control the size of

reduced nanoparticles. Although this method is facile and

relatively fast, true control over the nanoparticle distri-

bution is rather complicated. In addition to these

materials, release can be achieved with carbon nanotubes

[29], graphene [70], and organic molecules [60,64].

Polymeric microcapsules and release from them are

broadly studied [71]; as a result, new approaches have

been identified: release using photodynamic therapy

(PDT) [72], time-specific release [73], and remotely

controllable bioreactors [74].
www.sciencedirect.com
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Figure 3
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Top row: schematics of the reversible ‘on’-and-‘off’ switching of the

polymeric membrane of capsules. Bottom row: transiently opening and

closing, and opening again the permeability of a top-right microcapsule.

Reproduced with permission [34].
A lucrative application of release has been shown for

reversible switching of the polyelectrolyte membrane of

microcapsules, Figure 3. Release was shown taken place

when the capsule is exposed to laser, but was arrested and

temporarily stopped when the laser was shut-off. An inter-

esting practical application is seen for controlling the dose

of the delivered biomolecules or medicine.

Ultrasound

Ultrasound has been broadly used for synthesis of

materials. Recently ultrasound has been used for release

of encapsulated materials [68,75,76]. Ultrasound at rela-

tively high powers (100–500 W, in the kilohertz fre-

quency range) was sufficient to destroy microcapsules.

Ultrasound operating at the most attractive, medically

allowed range of power was unfortunately not sufficient to

induce release from capsules.

The efficiency of ultrasound can be enhanced by increas-

ing the density of materials introduced into the shell of

polymeric microcapsules. For example, ZnO nanoparti-

cles were used for opening of microcapsules [77], while

enhancement of release was observed upon incorporation

of metal nanoparticles in polymeric shells. In this case the

effectiveness of this process can be controlled by tuning

the shell thickness and its roughness.

Similarly to possibility of using temperature and laser for

encapsulation and release, ultrasound has been used for

encapsulation of drugs, for example, rifampicin.

Magnetic fields

Magnetic field has been traditionally used for targeting.

The idea is to act by magnetic field on magnetic
www.sciencedirect.com 
nanoparticles adsorbed into the shell of polyelectrolyte

multilayer capsules. Further extension of application is

foreseen by using magnetic fields for releasing from

microcapsules.

Lvov et al. showed that the permeability change of

microcapsules can be induced by exposing microcapsules

functionalized with magnetic nanoparticles immobilized

onto the polyelectrolyte shell. In that work introduction

of ferromagnetic cobalt (Co/Au) nanoparticles into poly-

electrolyte multilayer shell and application of magnetic

field led to increase of permeability increase of micro-

capsules. During the experiments, an alternating mag-

netic field was applied (1200 Oe) in a solution containing

PSS/PAH capsules functionalized with magnetic, cobalt

containing nanoparticles, and the influx of fluorescently

labeled molecules was observed. Not only cobalt, but also

iron nanoparticles were used for such a release [78]. One

of the disadvantages of the above approach is that the

application of magnetic field was carried out for substan-

tially long time. Investigation of heating properties [79]

of small superparamagnetic nanocrystals provided

important information about magnetic field–nanoparti-

cles interaction.

Mechanical deformation

Mechanical deformation belongs to some of the most

basic and most obvious release methods. Its links with

release have been dating back to early work on carbon

paper. The simple idea of pressing on microcapsules and

by this inducing the release appears to be indeed an

attractive option.

Early work on investigation of mechanical properties

included application of colloidal probe AFM (atomic

force microscopy) for pressing on microcapsules [80].

Mechanical deformation of microcapsules filled with

fluorescent polymer was investigated. That was carried

out by combining of AFM (atomic force microscopy) with

fluorescent microscopy [81].

Gold nanoparticles were shown also to increase of the

stiffness of microcapsules, and that paved the way to

enhancing the mechanical properties of soft exponen-

tially grown polyelectrolyte multilayer films [82]. On the

other hand, mechanical effect can also be achieved by

stretching [83]. Peculiarly, stretching can be also applied

for films for determining their mechanical properties [84].

Directionality-control, time-control and wavelength-control

of release

Directionality of release is essential for application in

which pricewise targeting is required. For example, for

capsule-in-capsule intermixing applications it is desir-

able to target a specific compartment or a part of a

compartment of a more complicated multicompartment

structure. In regard with nanoparticles, the feasibility of
Current Opinion in Pharmacology 2014, 18:129–140
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direction-specific release was shown on example of giant

microcapsules functionalized  with gold nanoparticles

[85]. Depending on which spatial area was illuminated,

release was originated in a certain direction. Another

example of direction-specific release was achieved by

mechanical force. For direction specific release a sharp

AFM tip [86], instead of a flat (and large compared to

microcapsule) colloidal probe bead [87�], was used. The

encapsulated molecules were released in a specific direc-

tion precisely controlled by the site of sharp AFM press.

Time specific release allows for providing specific doses

of release at a desired period of time. Partial release

through laser-nanoparticle interaction is certainly one

of the options of controlling the dose and controlling

time of the release [34]. Non-destructiveness and con-

trollability [33] are one of the most important character-

istics of such a release. Although such an approach was

demonstrated on the individual capsule level, its exten-

sion to a large number of capsules is possible. One

potential obstacle for providing uniformity of doses and

perfect control of release properties is precise control of

amount and distribution of nanoparticles from capsule to

capsule. Organic molecules have better potential for

uniformity of the distribution, and release was demon-

strated for microcapsules functionalized with organic

molecules. Perhaps even more attractive option for indu-

cing release suitable for in vivo application is that based

on enzymatic degradation. The idea is based on incorp-

oration of mechanisms, like disulfide degradation [88] or

biomolecules [53] which can undergo degradation upon

action of enzymes inherently present in body/tissue. Here

a simple approach of controlling the number of layers in

the shell of polyelectrolyte multilayer capsule permits for

slowing-down or accelerating the release [54].

Ability to control release from capsules by wavelength of

laser light brings another mechanism of external and

remote control. In one implementation nanorods, absorb-

ing both in the visible and near-infrared parts of spectrum

were used for inducing release [89]. Another interesting

approach was suggested by Thomas et al., who used

photocleavable esters to provide means of using organic

molecules [90].

Selected applications of release from
polymeric capsules and other carriers
Immune system response, release inside cancer cells

and neurons

Application of microcapsules to induce immune system

response is a growing research area. Investigation of the

surface presentation of small peptides by the major his-

tocompatibility complex (MHC) class I molecules is of

particular importance to immunology. Mechanically

stable (thermally shrunk four-bilayer PSS/PDADMAC)

polyelectrolyte multilayer capsules were introduced by

electroporation assisted method into cells. Laser exposure
Current Opinion in Pharmacology 2014, 18:129–140 
of microcapsules allowed for induction of time and space

specific release, so that the so-called surface-presentation

of peptides was investigated.

Cell viability, which is important for such intracellular

[91�] delivery and release, was investigated on an

example of MDA-MB-435S cancer cells [92]. Substantial

temperature rise inside cells was shown to lead to cancer

cell death, while non-destructive delivery was proposed

for delivery of drugs. Release inside neurons [93] opens

up a way to investigate a number of processes in the area

of neurology. In vivo applications of microcapsules have

been also conducted, for example, in vaccine [94�] deliv-

ery for pharmaceutical [95] applications. Cell viability

after delivery of coated nanoparticles [96] is another

confirmation of suitability of polyelectrolytes.

Multiple stimuli release and multicompartment

structures–relevance for theranostics

One application area — theranostics [97] — is an emer-

ging application area which necessitates development of

multicompartment delivery carriers as well as multiple

stimuli for inducing release from them. Microcapsules

functionalized with both magnetic and gold nanoparticles

were magnetically manipulated and opened with laser

[98]. Such a concept can be also used for inducing release

either by laser or magnetic field. Microparticles function-

alized with carbon nanotubes and gold nanoparticles can

be used as sensors [99].

Multicompartmental capsules [100] is relevant for theranos-

tics. Different approaches have been pursued for multi-

compartmentalization including shell-in-shell structures

and other subcompartments spread over the surface of

capsules. In this class of applications some subcompart-

ments are responsible for sensing and diagnostics, while

other are responsible for therapy by releasing drugs

needed for treatment. Microcapsules containing enzymes

have attracted particular attention [101]. Microcapsules

possessing both a substrate and a corresponding enzyme

in the same structure are yet another important step

toward designing advanced drug delivery carriers [102].

Microcapsule fusion may first of all be of interest for

studying the state of molecules inside polyelectrolyte

multilayers (e.g. their mobility, which is so different in

exponentially grown thick as opposed to normal or thin

films), but it is also related to intermixing of subcompart-

ments relevant for theranostics. Reactions in multicom-

partmental microcapsules were monitored under a

microscope. A summary of developments in the area of

enzymes was recently presented. In another study, a

coupled chain reaction in multiple concentric CaCO3

particles/capsule was investigated [103]. Research in

the area of enzyme-catalyzed reactions revealed very

promising approaches for treatment of diseases; there

preserving catalytic activity of enzyme is one of the most

significant factors [104]. Inward interweaving assembly of
www.sciencedirect.com
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capsules [105] represents an interesting alternative for

build-up of multicompartment capsules.

Sensing is first and foremost relevant for cell biology.

Sensing pH in cells [106] or oxygen [107] is relevant

for sensoring part of theranostics [97]. This can be imple-

mented by designing a semipermeable capsule which

would permit ions to go through its shell [108], but would

protect and preserve inside the larger molecules

(proteins), which are used as indicators or sensors. Recent

advances include triple [109] sensing implementation.

Mechano-biology benefits from mechanical means of inves-

tigate. However, study of mechanical pressure induced

release enabled determining forces which cells exert

upon uptake, that is microcapsules were used as sensors

for studying cell mechanics [110]. Deformation was accu-

rately measured by AFM: these measurements were

correlated to uptake of microcapsules by cells. The stiff-

ness and release from microcapsules undergone thermal

treatments (at fifty, sixty and seventy degrees) were

characterized through an ex situ method using AFM (by

a technique referred to as colloidal probe). The corre-

lation between the forces measured by AFM and release

induced upon uptake revealed that cells utilize forces on

the order of 0.2 mN.

Planar films are relevant for many in vivo delivery plat-

forms. Microcapsules on planar polymeric films

represents an interesting opportunity to add drug delivery

functionality to the films [111]. So-called exponentially

grown thick multilayer films may themselves carry mol-

ecules, but incorporation of microcapsules opens

additional opportunities for modulating the release,

which can be additionally accomplished from microcap-

sules embedded into the films [111]. It can be noted that

functionalization of such films with nanoparticles [112]

enhances their mechanical properties [82] and avails laser

induced release. In the area of films those capable of free-

standing [113], reconfigurable [114], and self-regulating

[115] capabilities are particularly important.

Release from other types of carriers

Liposomes are probably the most studied type of drug

delivery carriers, partially owing to the fact that molecules

which comprise their walls, lipids, are also abandoned in

cells and constitute its surface. In regard with release, the

above mentioned methods were used for release from

liposomes [116,117]. Both laser induced release and mag-

netic field induced release from liposomes whose surface

was functionalized with nanoparticles were demon-

strated.

Polymersomes represent an interesting carrier paving a

bridge between liposome and polymeric capsules. Recent

activity of in the area of polymersomes was directed at

synthesizing new polymers and designing novel types of
www.sciencedirect.com 
polymersome carriers, while on the developmental side

multicompartmentalization [118] and induction of inter-

action between subcompartments is one of the emerging

trends.

Capsosomes [119], which combine polymer microcapsules

and liposomes, were recently introduced by the analogy

between polymersomes and polyelectrolyte multilayer

capsules. This class of carriers is somewhat closer linked

with actual microcapsules, but provides an opportunity of

inclusion of relatively small molecules.

Particulate delivery carriers are very closely related to

microcapsules because particles from which capsules

are made could be directly used as carriers [120] and

inducing release from particles is essential. Layer-by-layer

assembly offers very attractive means of particle modifi-

cation and controllability of release [121,122]. An interest-

ing approach for obtaining particles follows from obtaining

polymer-filled template [123] or for surface initiated

polymerization on silica [124]. Specific targeting, for

example endothelial [125], is regarded an important aspect

of delivery.

Emulsion template capsules [126] is another area wherein

application of describe above release mechanisms find

reflection. Emulsions offer interesting means of encap-

sulation and release of non-water soluble molecules and

have been widely used in industry. Microfluidics has been

used in this area for assisting in assembly.

New types of polymeric capsules are carriers functionalized or

made from novel materials, like silk and spider silk

[127,128] provide attractive means for construction of

improved carriers and release from them. Development

of different materials, particularly in regard with strength-

ening capsules and providing additional means of con-

trolling the permeability and release are some of the

directions in this area.

Red blood cells are probably the most attractive carriers

because of their inherent potential as long circulating

delivery platform. Functionalization of red blood cells by

gold nanoparticles [129] was recently demonstrated,

because development of red blood cell-like microcap-

sules [130] is another complementary research direction

relevant for therapy [131]. It is interesting to note that in

the same way as laser was used for release of biomolecules

from microcapsules, it was also applied for releasing of

large (over 10 kDa) and small (under 1 kDa) molecules

from vicinity of red blood cells upon laser illumination.

Facilitating traffic through lipid membranes
The permeability of a lipid membrane for internal func-

tion regulation of cells as well as for small molecules,

peptides relevant for therapy is gaining a particular

attention [3]. Insights into this process with unmatched
Current Opinion in Pharmacology 2014, 18:129–140
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Figure 4
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Schematic of laser-nanoparticle induced permeability study through lipid

bilayer using ionic current monitoring at a nanopore.

Reproduced with permission [132�].
precision can be studied by monitoring ionic current

through a lipid membrane. If necessary any of the porins

and channel proteins can be also immobilized on the

membrane.

External modulation of a membrane represents thus a

desired means of facilitating the delivery. It was recently

shown that aggregates of gold nanoparticles can be used

for irreversible ionic current change, while ionic current

through nanorod functionalized membrane can oscillate

upon laser-nanorod interaction [132�].

The schematics of the experiment is shown in Figure 4: a

giant liposome was spread across a pore thus sealing the

pore and blocking the ionic current, which would have

been generated due to the ions present in the solution.

Several types of nanoparticles have been used in that

study, while their aggregation affected the interaction

with the membrane and the laser. Laser was used here in a

similar way as that for release from polymeric microcap-

sules and liposomes. Laser-nanoparticles interaction may

be of non-thermal nature [133], lead to nanoparticle

transport across the membrane [134] or even lead to

bubble formation [135,136]. Bubble formation around

laser nanoparticles has been recently explored [135],

wherein the effect of medium, its composition, and

aggregation state of nanoparticles have been investigated.

Lipid membrane modulation opens attractive opportu-

nities to monitor ionic current with a very high precision;

so far opening and closing of the lipid membrane was

observed for gold nanorods, but breakage of the mem-

brane was reported for gold nanoparticles. The difference

was attributed to aggregation in the latter case and that

was also confirmed for gold nanocages which aggregated

the most. Pharmacologically relevant application of such

membrane modulation relates to delivery of molecules,

which was recently demonstrated for different types of

molecules [137].
Current Opinion in Pharmacology 2014, 18:129–140 
Conclusions
We have described insights of various release methods

for polyelectrolyte multilayer microcapsules and high-

lighted pharmacological relevance, which is associated

with drug delivery by carriers or modulating the mem-

brane facilitating the drugs reaching their target. Appli-

cability of a broad range of physical, chemical and

biological methods makes microcapsules an unique

and attractive carrier not only for studying fundamental

properties of polymers, but also in regard with their prac-

tical applications. Some of applications, such as intracellu-

lar delivery, vaccine delivery, enzyme-catalyzed reactions

are described here, multicompartmentalization and

sensing applicable to theranostics. Described here

release based methods are also looked at from the

applicability to other carriers standpoint of view. Lipo-

somes, polymersomes, capsosomes, emulsion based

carriers, particles can all be affected by the methods

of release described here. We have also highlighted

applicability of release based methods, in particular

laser-nanoparticle interaction, to permeability study of

lipid membranes. This emerging technology based on

ionic current monitoring through a nanopore is capable

of providing information about the state of lipids with

unprecedented precision.
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