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Abstract: In the paper, we review our work on heterogeneous III-V-on-silicon photonic 

components and circuits for applications in optical communication and sensing. We 

elaborate on the integration strategy and describe a broad range of devices realized on this 

platform covering a wavelength range from 850 nm to 3.85 μm. 

Keywords: heterogeneous integration; optical communication; optical sensing 

 

1. Introduction 

Silicon photonics is emerging as a powerful technology for the integration of optical functions on  

a chip. The main advantages of the technology are the compactness of the resulting circuits (due to the 

high refractive index contrast), the availability of high-speed opto-electronic components on the platform 

and the use of the well-developed silicon electronics fabrication tools for the realization of these photonic 

integrated circuits. However, silicon as well as germanium, the two main materials used in silicon 

photonic integrated circuits (PICs), have an indirect bandgap, making monolithic laser integration onto 

silicon photonic integrated circuits difficult. High performance semiconductor lasers (as well as other 

opto-electronic components) are realized in III-V semiconductors. Therefore, there is a need for the 

integration of III-V semiconductors on silicon photonic integrated circuits, in order to complete the 

toolkit for the realization of complex and advanced heterogeneous silicon photonic integrated circuits. 

The integration of III-V semiconductor opto-electronic components onto silicon photonic integrated 

circuits can be realized in various ways, ranging from flip-chip integration [1] over bonding  

approaches [2–4] to hetero-epitaxial growth [5]. Flip-chip integration has the advantage that the devices 

can be grown and fabricated on their native substrate, while it does require accurate alignment in the 

assembly process. Hetero-epitaxial growth allows for front-end, wafer-scale integration of the III-V 

materials, but it is challenging to grow high quality III-V materials on silicon, realize electrical injection 

and integrate such devices in a typical silicon photonics process flow. Bonding approaches, on the other 

hand, combine some of the advantages of flip-chip integration (i.e., epitaxial layer structures grown on 

their native substrate) with the scalability of hetero-epitaxial integration and is therefore considered as a 

very attractive approach for III-V integration onto silicon photonic integrated circuits. Several bonding 

techniques are being used: molecular bonding [2], metal bonding [3] and adhesive bonding [4]. In this 

paper, we elaborate on the adhesive bonding heterogeneous integration technology developed in our 

group, as well as the devices that have been demonstrated on this platform. Devices for both 

communication applications as well as sensing applications are described. 
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2. III-V-on-Silicon Integration Technology 

2.1. Adhesive Die-to-Wafer Bonding and Wafer-to-Wafer Bonding Technology 

While there are various methods of transferring compound semiconductors onto a silicon-based 

waveguide platform (molecular bonding, adhesive bonding, anodic bonding, metallic bonding), adhesive 

bonding offers some significant advantages. Since the adhesive planarizes the surface, the cleanliness 

requirements are more relaxed, resulting in a significant reduction in bonding preparation. In addition, 

surface roughness requirements are relaxed. 

The adhesive of choice in our work is DVS-BCB (divinylsiloxane-bis-benzocyclobutene), because of 

its low curing temperature, high degree of planarization, high optical clarity, good thermal stability, 

excellent chemical stability, low moisture absorption, and wide applicability, as will be shown in the 

examples below. Diluting the DVS-BCB with mesitylene, thin bonding layers can be achieved  

(<50 nm). The largest disadvantage of DVS-BCB is probably the low thermal conductivity, especially 

in the context of power consuming devices such as semiconductor lasers or optical amplifiers. However, 

with sub 100 nm thick bonding layers, the several micron thick buried oxide of the  

silicon-on-insulator photonic integrated circuit (PIC) is dominant in the thermal resistance of the device. 

 

Figure 1. III-V on silicon heterogeneous integration process flow (reproduced from [1]). 

The bonding process is schematically depicted in Figure 1. It starts with cleaning both  

III-V and silicon-on-insulator (SOI). The SOI cleaning is performed by immersing the sample for 15 

min into a Standard Clean (SC-1) solution, i.e., NH4OH:H2O2:H2O 1:1:5, heated to 70 °C. Alternatively, 

one can also use a microwave O2 plasma. To achieve thin bonding layers, mesitylene is added to the 

DVS-BCB (Cyclotene 3022-35). The dilution depends on the required bonding layer thickness and the 

topography of the silicon PIC. Prior to bonding, the spun DVS-BCB is pre-cured to evaporate all the 

solvents. In this step, the DVS-BCB is already partially polymerized, making it more solid-like, thereby 

improving the bonding layer thickness uniformity. For the III-V preparation one or more sacrificial 

layers are etched. The etch chemistry depends on the material system. Afterwards, a thin (<10 nm) silicon 

oxide layer is deposited to improve the adhesion to BCB. Alternatively one can use the native oxide of 

the III-V surface. The III-V dies are then brought into contact with the DVS-BCB coated silicon 
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photonics substrate and loaded in a Suss MicroTec ELAN CB6L wafer bonder. After pumping to 

vacuum and heating the sample to 150 °C, 300 kPa pressure is applied. After 10 min, the temperature is 

further increased to 280 °C and the DVS-BCB is fully cured for one hour. The III-V substrate is removed 

by grinding and wet etching. The III-V membrane is now transferred to a Si sample. Because of the 

simplicity of the bonding process, it is very versatile. Virtually any compound semiconductor can be 

transferred, as will be discussed later on in the paper. In addition, multiple die bonding and full wafer 

bonding has been demonstrated [4]. 

2.2. III-V on Si Device Processing Technology 

The processing of the 200 mm silicon-on-insulator wafers is carried out in imec’s CMOS pilot line. 

Several etching depths are available, depending on the device requirements. Fiber-to-chip grating 

couplers are typically used to interface with the photonic integrated circuit, allowing for wafer-scale 

measurements. After waveguide processing, the wafer is covered by a thick SiO2 layer, and the 

subsequent chemical mechanical polishing process planarizes the wafer, leaving about 20 nm SiO2 above 

the silicon waveguide. 

After bonding of the III-V substrate onto the silicon PIC as described in Section 2.1, the III-V 

substrate is removed. Since most device demonstrations in this paper are based on InP-based III-V layer 

stacks, in this section we will elaborate on the process flow for InP-based heterogeneously integrated 

devices. The process flow is schematically described in Figure 2. The InP substrate is removed using 

HCl:H2O (3:1, 40 °C) (Figure 2c) until the InGaAs etch stop layer is reached. After etching the InGaAs 

sacrificial layer using H2SO4:H2O2:H2O (1:1:18), a SiN layer of 200 nm is deposited on top of the p+ 

contact layer by PECVD. The III-V waveguide pattern is transferred into this SiN hard mask by optical 

lithography and reactive ion etching (RIE) (Figure 2d). Then, the pattern is further etched into the p+ 

contact layer by ICP-RIE (Figure 2e). Since the designed coupler (see Section 3.1) between III-V and 

silicon waveguides requires narrow III-V tips (500 nm), wet etching with HCl:H2O (1:1) is used to etch 

the thick p-InP layer, forming an inverted-trapezoid-shaped waveguide that has a much smaller 

waveguide width at the bottom (Figure 2f). Once again, a thin layer of SiN (~200 nm) is deposited and 

patterned (by optical lithography and RIE) to protect the III-V waveguide while exposing the active III-V 

layers from two sides (Figure 2g). Etching of the active layers is carried out using H2SO4:H2O2:H2O 

(1:1:10) (Figure 2h). Ni/Ge/Au contacts are evaporated onto the InP n+ contact layer by a lift-off process 

(Figure 2i). In order to electrically isolate the devices, the n+ contact layer between neighboring devices 

is etched using HCl:H2O (1:1) (Figure 2j). A photoresist mask is used to protect the III-V waveguide 

during this etching process. Afterwards, DVS-BCB is spin-coated on top of the wafer to planarize the 

top surface (Figure 2k). Etch-back using RIE thins down the DVS-BCB layer thickness to expose the 

SiN hard mask on top of the p+ contact layer (Figure 2l). After removing the SiN layer by RIE (Figure 2m), 

the metal p-contact layer (Ti/Au) is formed on top of the p+ contact layer by lift-off (Figure 2n). Optical 

lithography and RIE etching are used to etch deep vias into the DVS-BCB layer down to the n-metal contact 

(Figure 2o). As the final step, Au is deposited on top of the p and n metal contacts by lift-off or plating 

for probing (Figure 2p). 
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Figure 2. Step-by-step typical process flow for heterogeneously integrated III-V on Si devices. 

3. Optical Coupling between the III-V Device Layer and the Silicon Waveguide Layer 

Efficient optical coupling between the III-V device layer and the silicon waveguide layer is critical 

for the integration of III-V opto-electronic components on silicon PICs. The optical coupling scheme 

should not only be efficient, it should also work over a broad wavelength range and be fabrication 

(alignment) tolerant. In order to satisfy these requirements for waveguided III-V opto-electronic devices, 

an adiabatic taper scheme was developed. For bonded surface illuminated photodetector structures, a 

diffractive grating structure is used. 

3.1. Adiabatic Taper Interface 

Optical coupling between a waveguided III-V opto-electronic component and the underlying silicon 

waveguide layer is realized through a taper-based spot-size converter structure. In our heterogeneous III-V/Si 

devices the optical mode is strongly confined to the III-V waveguide (for efficiency) and a strong wave 

vector mismatch exists between the III-V and silicon photonic wire waveguide layer. By tapering the 
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III-V and/or silicon waveguide, wave vector matching can occur and the optical mode can be gradually 

transformed to eventually reside in the silicon waveguide. If the waveguide dimensions vary slowly 

along the propagation direction, the tapering is adiabatic [6]. This means that no power exchange occurs 

between the fundamental waveguide mode and the higher order waveguide modes. In many of our 

recently developed laser devices, a double adiabatic tapered coupler has been successfully  

implemented [7–9]. For use in electro-absorption modulator (EAM) devices, a very compact tri-sectional 

tapered coupler has recently been proposed [10]. Both structures will be briefly discussed below. 

The device geometry of the double adiabatic tapered coupler is shown in Figure 3a [9]. The coupler 

is piecewise linear and consists of two parts: the first part (Taper I) has a length of 35 μm and decreases 

the III-V waveguide width from 3 μm to 1 μm. In the second taper part (Taper II) the actual  

III-V-to-silicon coupling takes place through gradual tapering of both the III-V and silicon waveguide. 

Taper II has a length of 150 μm with the III-V waveguide being tapered from 1 μm to a narrow taper tip 

(<500 nm), whereas the silicon waveguide width is tapered from 180 nm to 1 μm. A 400 nm thick silicon 

waveguide is used in this coupling scheme, as this simplifies the III-V-to-silicon coupling compared to 

the case of direct coupling to a 220 nm thick device layer (considered as a standard layer thickness for 

the realization of high index contrast silicon photonic waveguide structures). The thick silicon 

waveguide layer also relaxes the requirements on the III-V taper tip width: a width of 500 nm is sufficient 

to achieve a highly-efficient, low-reflection power transfer from the III-V mesa to the silicon waveguide. 

This is illustrated in Figure 3b. A second spot-size converter structure is used to eventually couple the 

light from the 400 nm thick waveguide to the standard 220 nm single mode silicon strip waveguide. 

Finally, we note that along with the taper tip width and the III-V/silicon spacing, taper misalignment 

also has a direct impact on the taper coupling efficiency. A longer taper leads to a more tolerant structure, 

at the expense of a larger device footprint. Typically, the used adiabatic taper structures allow for a 300 nm 

misalignment between III-V and silicon waveguide layer. 

 

Figure 3. (a) Double adiabatic tapered coupler; (b) Simulated power transmission and 

reflection at the taper tip as a function of III-V taper tip width; (c) Tri-sectional tapered 

coupler. Reproduced from [9] and [10]. 

Figure 3c shows the geometry of tri-sectional tapered coupler for EAM devices [10]. Because the 

taper mimics a semi-3D taper to prevent the excitation of higher order modes in the thick p-InP cladding 

layer, the taper length of this device can be substantially reduced down to 10 μm. The removal of the p-type 
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indium phosphide (p-InP) layer in part of the taper structure prevents the electrical driving of part of the 

taper structure, limiting the types of devices for which this approach can be used. 

3.2. Grating Coupler Interfaces 

For the integration of surface illuminated III-V photodetectors on silicon PICs, a vertical grating 

coupler interface can be used [11–15]. Figure 4a schematically shows this coupling scheme where the 

light confined in a silicon waveguide is diffracted vertically to the III-V photodetector bonded on the 

grating coupler. The required photodetector length depends on the grating coupler strength. An important 

design consideration in this coupling structure is to maximize the directionality of the grating (the ratio 

of optical power diffracted upwards to the total diffracted power). A vertical cavity is formed by the 

reflection at the DVS-BCB/III-V interface at the top and the SiO2/Si substrate interface at the bottom. 

This means that the directionality depends on the exact location of the SOI grating in this cavity. By 

optimizing the DVS-BCB bonding thickness and buried oxide thickness, the directionality can be optimized. 

Figure 4b shows a two-dimensional full vectorial simulation of the absorbed power in a bonded III-V 

photodetector as a function of the DVS-BCB thickness (design A). Adding an anti-reflection coating 

between III-V material and DVS-BCB avoids the formation of such a vertical cavity, resulting in a much 

more robust optical coupling (design B). 

 

Figure 4. (a) Schematic view of grating coupler interface between Si waveguide circuit and 

III-V photodetector (b) Simulation example of grating based coupling to a III-V 

photodetector. Design B has antireflection coating while Design A does not (reproduced 

from [13]). 

4. III-V-on-Silicon Devices for Optical Communication Applications 

Silicon photonic integrated circuits are currently finding applications mostly in the realm of optical 

communication. Both transceivers for optical interconnects in datacenters as well as transceivers for 

long-haul coherent communication are being commercialized. These transceivers use external III-V laser 

sources that are interfaced with the PIC. The scaling of the required aggregate bandwidth of these 

transceivers, especially in the context of optical interconnect applications, will require wavelength 

division multiplexed transceivers, therefore requiring the integration of multiple lasers on a single 

transceiver chip. This requires a scalable approach to laser integration, for which we use adhesive  

die-to-wafer bonding. Besides lasers, other opto-electronic devices such as EAMs can also be integrated 
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this way. In the subsequent sections, we will elaborate on the realization of III-V-on-silicon laser sources 

and EAMs for optical communication applications. 

4.1. III-V-on-Silicon Laser Sources for Optical Communication Applications 

4.1.1. 1550 nm Semiconductor Optical Amplifiers Integrated on Silicon Photonic Integrated Circuits 

Optical amplifiers form an essential part of most photonic circuits in order to compensate for  

losses [16]. Amplifiers can be used in receivers, boosting the signal before being detected which 

increases sensitivity [17], but are also used in more complex photonic circuits [18]. The III-V-on-silicon 

platform offers a large design space for semiconductor optical amplifiers (SOAs), as the optical mode 

distribution over the III-V and silicon device layer can be tailored by design. This allows optimization 

of the gain and saturation power of the amplifier. Amplifiers are generally optimized either for high 

output power or for low power consumption and small footprint [19]. A compact and low injection 

current III-V-on-silicon optical amplifier has been realized in which the optical mode is predominantly 

confined to the III-V waveguide [20]. 18 dB small signal gain with low power consumption was 

demonstrated. The output power in the silicon waveguide as a function of the waveguide-coupled input 

power at several wavelengths is shown in Figure 5a for an injection current of 100 mA. We see that the 

output power saturates at 10 dBm. The gain saturation is shown in Figure 5b. The noise figure at  

1550 nm reaches 7 dB for low optical input power levels at the highest amplifier drive current of  

100 mA, as shown in Figure 5c. Gain-clamped optical amplifiers were also demonstrated. In this case  

a distributed feedback grating is implemented underneath the optical amplifier (see Section 4.1.2) for 

the device to lase away from the gain peak of the III-V active region. The gain as a function of optical 

output power is shown in Figure 5d. The gain is substantially lower than for the classical configuration, 

however it remains flat over a wider range of optical output power compared to the classical SOA. 

4.1.2. 1550 nm Distributed Feedback Lasers Integrated on Silicon Photonic Integrated Circuits 

Distributed feedback lasers are important optical sources for integrated transceivers because they 

provide single mode emission, have a small footprint, high optical output power and relatively narrow 

linewidth. Their small footprint also makes direct modulation of these laser sources attractive.  

Direct modulation of laser diodes for high-speed transceivers has significant advantages over the use of 

external modulators in terms of power consumption, fabrication complexity and compactness [21–25], 

especially for short distance optical interconnects. High-speed directly modulated lasers on the InP 

platform and bonded to a silicon substrate have been demonstrated recently [21–23]. Given the 

mentioned advantages of silicon photonics, it would be desirable to have directly modulated lasers with 

a high modulation bandwidth, heterogeneously integrated on and coupled to silicon PICs. This was 

recently demonstrated [26]. The device layout and a device SEM cross-section are shown in Figure 6. 

The laser structure consists of the amplifier structure elaborated in Section 4.1.1, with a silicon 

distributed feedback grating implemented underneath the III-V mesa. The grating coupling strength is 

determined by the spacing between the III-V and silicon layer. The distributed feedback (DFB) grating 

period in the experiment is 245 nm and has a 50% duty cycle. The length of the DFB laser is 340 μm and 

two 220 μm long tapers are used to realize a high efficiency and low reflection coupling from the laser 
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to the silicon waveguide. The grating coupling strength is 135 cm−1. The laser operates single mode and 

has 6 mW single facet waveguide coupled output power at 100 mA bias. The device has a 3 dB electro-optic 

bandwidth of 15 GHz at 100 mA bias current as shown in Figure 7a. 28-Gbps non-return-to-zero (NRZ) 

direct modulation with 2.1 dB extinction ratio is demonstrated as shown in the inset of Figure 7a. After 

transmission of over 2 km of dispersion shifted single mode fiber, only 1 dB power penalty is incurred 

(see Figure 7b). 

 

Figure 5. (a) Output on chip as function of the input power on chip. (b) Gain as function of 

input power for different injection current. (c) Noise figure of the amplifier as function of 

on-chip input power for different injection currents. (d) Gain as function of output power 

on-chip in gain-clamped operation. 

  

(a) (b) 

Figure 6. (a) Layout of the distributed feedback laser structure. (b) SEM device cross-section of 

the fabricated devices. 
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(a) (b) 

Figure 7. (a) Small signal response at different bias currents and large signal eye  

diagram at 28 Gbps with 2.1 dB extinction ratio using 211-1 pattern length (inset). (b) bit 

error ratio (BER) measurements for back-to-back and 2 km DSSMF configuration. 

Reproduced from [26]. 

4.1.3. 1550 nm Tunable and Multi-Wavelength Lasers Integrated on Silicon PICs 

Once having a high performance III-V silicon hybrid optical amplifier available, it is possible to 

combine it with the rich variety of building blocks offered by the silicon photonics platform to construct 

more complex laser devices as illustrated in Figure 8. Figure 8a shows some of the typical building blocks 

being used: the hybrid amplifier itself, DBR-mirrors used as on-chip reflectors and tunable ring resonators 

and wavelength multiplexers for providing wavelength selectivity. The DBR-mirrors used as on-chip 

reflectors define the laser cavity and replace traditional cleaved facets. It is important that they are well 

designed to have controllable reflection and low transmission loss, especially at the output side of the 

device. They could e.g., be implemented using a shallow etch step in a locally widened 220 nm high 

waveguide as described in [27]. 

 

Figure 8. Schematic layout of complex hybrid III-V silicon tunable and multi-frequency 

lasers. (a) Some basic building blocks in our tool box, including a III-V on silicon hybrid 

amplifier, a standard and high reflection DBR-mirror, a tunable ring resonator and  

an integrated wavelength multiplexer. (b) Different implementations for tunable lasers.  

(c) A multi-frequency laser. 
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Integrating the optical amplifier with a tunable ring resonator allows building a tunable laser as shown 

in Figure 8. To ensure wide tunability, narrow linewidth and a relatively straightforward implementation 

thermal tuning is generally preferred. Using a single ring resonator, tuning of around 10 nm typically 

can be reached. E.g., in [8] we demonstrated up to 8 nm tuning by applying 25 mW of electrical power 

to the ring resonator (Figure 9a). This device had a threshold current of 45 mA and output power of up 

to 10 mW at room temperature. The linewidth was measured to be around 1.7 MHz (at 80 mA). In 

addition, more complex ring resonator based reflectors have been demonstrated [28]. To increase the 

tuning range, multiple ring resonators with slightly different free spectral range (FSR) could be 

integrated, exploiting the so-called Vernier effect. Several different configurations have been proposed in 

literature (e.g., a 35 nm tuning range was demonstrated in [29]). The exact placement of the ring 

resonators can influence the maximal attainable output power and care has to be taken in optimizing the 

overall design. 

 

Figure 9. Spectral response of hybrid III-V silicon lasers. (a) tunable laser (from [8])  

(b) AWG-based multi-frequency laser (from [27]). 

The ring resonator based tunable lasers described above typically require a rather complex tuning 

scheme and are designed to generate only a single wavelength channel at a time. To alleviate this problem, 

so-called digitally tunable lasers or multi-frequency lasers were demonstrated [27]. They consist of an 

amplifier array, in this case a hybrid III-V on silicon amplifier array, integrated with a wavelength 

multiplexing device such as an arrayed waveguide grating (AWG), a series of ring resonators or a planar 

concave grating (PCG). Turning on a single amplifier generates a single well-defined wavelength 

channel without further control. Turning on multiple amplifiers allows generating a comb of wavelengths 

with well-defined channel spacing in a single output waveguide. Figure 9b shows the output spectrum 

for a 4-channel device realized by integrating 4 amplifiers with a silicon AWG. Very good suppression 

of the side modes is obtained. A similar device was realized integrating the amplifier array with a 

demultiplexer consisting of four ring resonators with slightly increasing radii coupled to a common bus 

waveguide [27]. Similar threshold currents, output powers and linewidths were obtained as for the single 

ring tunable laser described above. 

These examples show the strength of the hybrid III-V on silicon platform in building complex laser 

devices fully integrated on chip. The use of on-chip DBR-reflectors to form the laser cavities allow 
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straightforward integration with further functionality offered by the silicon photonics platform such as 

silicon modulators and Ge-detectors, as demonstrated in [30]. 

4.1.4. 1550 nm Distributed Feedback Dual Wavelength Laser Sources for THz Signal Generation 

The ever-increasing demand for bandwidth and mobile data transfer has driven the need for higher 

frequency carriers for wireless communications up to the THz range [31]. A promising technology to 

generate such carriers is optical heterodyning [32,33]. In this approach a dual-wavelength laser source 

is combined with a high-speed photodiode, typically a uni-travelling-carrier photodiode (UTC-PD). The 

beat between the two laser wavelengths generates the THz carrier. The integration of UTC-PDs on 

silicon photonic integrated circuits was recently demonstrated [34]. For the dual-wavelength laser 

implementation, several solutions have been proposed: a tailored spectrum Fabry-Perot laser [35], a 

multi-section distributed feedback (DFB) lasers [36] and a chip with two independent laser  

diodes [37]. In our work, an array of asymmetric DFB lasers was designed and fabricated using  

III-V-on-silicon technology [38]. In an asymmetric DFB laser, the quarter wave phase shift is placed 

away from the center, as illustrated in Figure 10a. The asymmetrical grating allows two longitudinal 

modes to lase at the same time (see Figure 10b), while a central phase shift typically results in single 

mode operation. To ensure stable dual-mode lasing, both modes must be spectrally positioned 

symmetrically around the gain peak. Instead of a single device, an array of asymmetric DFBs with 

slightly varying parameters was fabricated. As a result, independent of temperature or manufacturing 

variations a dual-wavelength device can be found in the array. A major advantage of an asymmetric DFB 

laser compared to a multi-section DFB laser [36] is that only one current source needs to be controlled. 

An advantage when compared to two independent laser diodes is that the two laser lines are emitted by 

the same cavity, therefore a more stable THz signal can be expected. The performance of the realized 

devices was assessed by connecting the output of the dual-wavelength DFB laser to a UTC-PD with 

integrated antenna [38]. The signal emitted by the antenna was collected by a WR 2.8 horn antenna and 

down-converted using an electronic mixer. This down-converted signal is then analyzed by an electrical 

spectrum analyzer. The linewidth of the carrier and its frequency drift are shown in Figure 10c,d. The 

instantaneous 3 dB-linewidth of the signal at 357 GHz is 4.2 MHz. A longer sweep of 30 s shows that 

the signal drifts 28 MHz. This performance allows for on-off keying wireless data transfer using 

envelope detection. 

4.1.5. 1550 nm Mode-Locked Lasers 

Mode-locked laser diodes are gaining interest as compact wavelength division multiplexing (WDM) 

sources since one single laser can generate a large number of coherent wavelength channels. Also, they 

are the laser source of choice for optical time division multiplexing applications [39]. A mode-locked 

laser (MLL) produces a train of short pulses, which corresponds with a wide comb of optical modes in 

the frequency domain. 

Low noise, high output power and a broad output spectrum are of great importance for optical 

communication applications. In order to achieve low-noise performance, it is important to limit the 

length of the optical amplifier (to reduce spontaneous emission) and realize a low-loss optical cavity. 
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The III-V-on-silicon platform allows using low-loss silicon waveguide structures (both in terms of 

nonlinear two-photon absorption as well as linear scattering losses) to form the laser cavity. 

 

Figure 10. (a) Cross section of a III-V-on-silicon DFB laser and asymmetric dual-mode 

DFB laser. (b) Optical output spectrum of asymmetric DFB laser at different injection 

currents. (c) Electrical output spectrum of UTC-photodiode illuminated by the dual 

wavelength laser showing an instantaneous linewidth of 4.2 MHz. (d) Integrated trace of 

electrical signal over thirty seconds. Reproduced from [38]. 

This fact was also recognized by others, demonstrating low phase noise hybrid silicon MLLs.  

A 15 kHz 3 dB RF line width (at 9.95 GHz) was demonstrated in a linear cavity design with on-chip 

feedback in [40]. In this section we will discuss three different MLL geometries studied in our work. 

The first demonstrations were based on classical colliding ring cavity and linear cavity arrangements [41] 

as shown in Figure 11a,b. Further improvement of the output power and RF spectral purity was achieved 

with a novel anti-colliding pulse MLL design [42] as shown in Figure 11c. 

Mode-locking can be realized by placing a saturable absorber (SA) in a standard multimode laser 

cavity. In our case, the SA is made by electrically isolating a small part of the III-V gain material and 

reverse biasing that section. In the first two designs, the SA is placed in the center of the laser cavity.  

In the anti-colliding geometry, the SA is implemented on the low-reflectivity out-coupling mirror of the 

laser cavity. The optical mode is then coupled to the silicon waveguide using an adiabatic taper structure. 

The main part of the laser cavity length is realized in the silicon waveguide layer using  

a spiral waveguide structure. In each case, the length of the cavity is designed to reach a repetition rate 

of 5 GHz. Details about the device processing can be found in [41,42]. To induce passive  

mode-locking, the gain section was biased at 160 mA and the SA was reverse biased at −1.2 V for the 

colliding linear cavity design, 179 mA and −1.3 V for the ring design and 61 mA and −0.7 V for the 

anti-colliding pulse geometry. The output of the mode-locked laser was coupled to an optical fiber 
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through a fiber-to-chip grating coupler. Device characterization is carried out on a thermo-electric cooler 

at 20 °C. Table 1 compares the output characteristics of the three laser geometries. 

 
 

(a) (b) 

 

(c) 

Figure 11. Layout of the different III-V-on-silicon mode-locked laser cavity designs:  

(a) A linear cavity colliding pulse geometry; (b) A ring cavity geometry; (c) The linear cavity 

anti-colliding pulse geometry. 

Table 1. Comparison of the performance of the different mode-locked laser (MLL) designs. 

Method Self-Colliding [41] Ring [41] Anti-Colliding [42] 

10 dB optical bandwidth (nm) >10 7 3.5 

Pulse width (ps) 1.5 - 3 

3 dB electrical line width (kHz) 12 16 1.7 

Integrated timing jitter (50 kHz–10 MHz) (ps) 2.65 1.65 2.8 

Threshold current (mA) 40 50 30 

Output power at thermal roll-over (mW) 0.2–0.3 0.04–0.08 8–10 

We note that the optical bandwidth of the self-colliding MLL, plotted in Figure 12a, is the widest of 

the three designs. The cavity of this laser is formed by two broadband DBR gratings etched in the silicon, 

whereas in the anti-colliding laser design, the bandwidth of the grating underneath the SA limits the 

bandwidth of the optical comb. 

 

Figure 12. (a) High resolution optical spectrum (bandwidth: 20 MHz) of the linear cavity 

colliding pulse mode-locked laser. (b) Wide span electrical spectrum of the generated pulse 

train of the anti-colliding pulse MLL. (c) Linewidth of the fundamental RF tone of the  

anti-colliding pulse MLL. Reproduced from [41,42]. 

 (a) (b) (c) 
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Furthermore, the anti-colliding pulse MLL clearly outperforms the other two geometries in terms of 

output power and RF line width. This is in accordance with the theoretical analysis of such a cavity under 

passive mode-locking [43]. Figure 12b shows a wide span electrical spectrum of the anti-colliding pulse 

MLL, showing both the fundamental RF tone and its harmonics. The electrical line width of the 

fundamental RF tone of this laser (1.7 kHz 3 dB linewidth and 5 kHz 10 dB linewidth) is plotted in 

Figure 12c. 

4.1.6. III-V-on-Silicon Microlasers 

For applications such as on-chip optical interconnects, requiring low output power laser sources  

(10–100 μW), a small footprint and low power consumption, microsources are of great interest. 

Reducing the laser cavity dimensions however puts more stringent requirements on the cavity Q-factor 

in order to obtain continuous wave lasing with low threshold current. Below we elaborate on 3 types of 

heterogeneously integrated microlaser sources: InP-based microdisk and resonant cavity laser structures 

coupled to silicon waveguide circuits, as well as GaAs-based hybrid III-V/silicon vertical cavity surface 

emitting laser (VCSEL) structures. 

1550 nm Microdisk Lasers 

Heterogeneously integrated microdisk lasers have been studied for about a decade. A schematic of 

such a microdisk laser is shown in Figure 13, together with a SEM picture of a typical device cross 

section. Single mode, CW operating lasers with a typical diameter of 7 μm can be realized with low 

threshold currents of 0.5 mA and output powers of a few tens of μW coupled to a silicon waveguide 

circuit. The low threshold currents are possible thanks to the small volume of the InP membrane and the 

low losses of the whispering gallery mode. These losses can be minimized by using a tunnel junction 

and limiting the overlap of the mode with the top contact using careful alignment of the top contact, 

limiting the scattering loss due to sidewall surface roughness by optimizing the etching process and by 

designing a small evanescent coupling of the whispering gallery mode to the underlying silicon 

waveguide [44–46]. 

 
 

(a) (b) 

Figure 13. (a) Schematic view of an InP microdisk laser heterogeneously integrated onto 

SOI. (b) SEM picture of the device cross section. Reproduced from [44]. 



Photonics 2015, 2 984 

 

 

A special feature of microdisk lasers and ring lasers in general is the possibility of unidirectional 

lasing. This feature has potential applications in all-optical flip-flops and in low-power optical signal 

regeneration. In a symmetrical microdisk laser, without coupling between clockwise and counter 

clockwise modes, a bistable unidirectional behaviour is generally found just above the threshold current, 

with the lasing direction being determined by initial conditions or by externally injected optical pulses. 

This bistable unidirectional behaviour is possible because the cross gain suppression is twice as large as 

the self-gain suppression [47]. Due to sidewall surface roughness and reflections inside the silicon bus 

waveguide, there is usually coupling between clockwise and counter clockwise modes. In this case, 

bistable unidirectional operation is still observed in a symmetrical microdisk configuration, but only for 

sufficiently high bias currents (determined by the amount of coupling). Asymmetric microdisk 

configurations (with different coupling from clockwise to counter clockwise than from counter 

clockwise to clockwise) behave unidirectional in a direction determined by the strongest of the two 

coupling coefficients. In particular, if coupling from the clockwise to the counter clockwise mode is the 

largest, then lasing will be predominantly in the counterclockwise mode. The unidirectionality becomes 

progressively better with increasing bias current, again owing to the larger cross gain saturation [48]. 

The bistable unidirectional behavior found in symmetric microring or microdisk device configurations 

can be exploited to implement all-optical flip-flops. The lasing direction can be changed by injecting 

short optical pulses (with a wavelength sufficiently close to the lasing wavelength in order to obtain 

injection locking). Switching has been demonstrated with 100 ps pulses with energy as low as 1.8 fJ and 

switching times are less than 60 ps [49]. The unidirectional asymmetric microring lasers have been 

demonstrated to be suitable for low power all-optical 2R regeneration [50]. The regeneration relies on 

the fact that the injection of light with a wavelength within the injection locking bandwidth is physically 

equivalent to an extra reflection of the laser light. Hence, by externally injecting light into the direction 

opposite to the lasing direction, one can modify the equivalent coupling coefficients such that the lasing 

direction switches to the direction of the injected light signal. Figure 14 shows measured bit error rate 

curves at 10 Gbps without and with regeneration in a microdisk laser as a function of the received power, 

demonstrating this regenerative capacity. 

 

Figure 14. Measured BER curves at 10 Gbps, before and after regeneration with a microdisk 

laser. Reproduced from [50]. © 2013 IEEE 
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Finally, by using an epitaxial layer stack with detector layers stacked on top of the laser epitaxial 

structure, it is possible to densely co-integrate detectors with microdisk lasers enabling the realization of 

compact bidirectional optical links on silicon [51,52]. Photodetectors fabricated using such epitaxial 

structure, bonded onto an SOI waveguide, had dark currents of 22 and 67 nA and responsivities of 0.69 

and 0.73 A/W for lengths of 40 and 60 μm respectively. A bandwidth of 12 and 18 GHz was obtained 

for 0 and −1 V bias. The direct modulation bandwidth of the microdisk lasers was 7.8 GHz, but could 

be increased using injection locking methods. The bandwidth of photodetectors and microdisk lasers 

permitted the demonstration of a 10 Gbps SOI-based optical interconnect link [51,52]. Figure 15 shows 

the large signal modulation response for a complete link consisting of a heterogeneously integrated 

microdisk laser and photodetector on an SOI waveguide. 

 

Figure 15. Large signal modulation response of a full optical link based on a microdisk laser, 

an SOI waveguide and a heterogeneously integrated photodetector for a 10 Gbps 27-1 PRBS 

pattern. Reproduced from [52]. © 2013 IEEE 

1550 nm Resonant Cavity Mirror Lasers 

While microdisk lasers can obtain small footprint, single mode operation and low threshold current, 

the laser wavelength of the device is determined by the diameter of the III-V microdisk, which is 

therefore prone to variation on the wafer. Therefore, ideally one would like to use structures defined in 

the silicon device layer to determine the laser wavelength, while keep the optical confinement in the III-V 

waveguide layer high, in order to reduce device footprint and power consumption. This can be realized 

by the resonant cavity mirror design shown in Figure 16a. Two identical passive silicon grating cavities 

are coupled to the III-V waveguide above to form a linear device. Each silicon cavity is evanescently 

coupled to the InP waveguide. If the optical mode in the InP waveguide is of the silicon cavity’s 

resonance wavelength, the silicon cavity will be excited. The energy built-up inside the silicon cavity 

couples back into the InP waveguide both co- and counter-directionally to the incoming light. The  

co-directional light will interfere destructively with the InP waveguide mode while the  

counter-directionally coupled light propagates back into the III-V waveguide. Because CMOS 

manufacturing techniques allow for compact, high-Q silicon cavities, this approach enables high and 

narrow band reflectivity over a short distance. An optically pumped proof-of-concept device [53] 

confirmed the potential advantages of using resonant mirrors as resonators in III-V-on-Si lasers. The 

threshold pump power of the experimentally demonstrated device was mW-level and the laser operated 

in single mode with a side-mode suppression ratio of up to 39 dB. However, the practical usability of 

optically pumped lasers is rather limited, as most applications require an electrical pumping mechanism. 

To achieve electrical pumping, metallic contacts have to be placed on the III-V waveguide structure to 

allow injection of electrical carriers. These metallic structures should be placed sufficiently far away 
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from the optical mode to prevent excessive loss due to absorption in the metal. This leads to relatively thick 

III-V waveguides (1–2 μm) and therefore a high modal effective index (~3.3), which prevents phase 

matching with the underlying silicon cavity. Moreover, such a large waveguide supports multiple 

transversal modes. Therefore, a novel mesa geometry was adopted, that allows for electrical injection in 

high vertical index contrast III-V membranes, as shown in Figure 16b. Lasing of resonant cavity mirror 

structures in pulsed operation was demonstrated, as discussed in [54]. Single mode operation was 

obtained with a threshold current of 4 mA in a 160 μm long device. 

 

 

(a) (b) 

Figure 16. (a) Longitudinal cross-section of the resonant cavity mirror laser.  

(b) Transversal cross section of the electrically pumped device. Reproduced from [53,54]. 

850 nm VCSEL Integration 

For various applications in the visible-NIR wavelength range, such as short reach optical data 

communication and spectroscopy, an integrated short-wavelength III-V-on-Si laser is of great interest. 

GaAs-based VCSELs are very energy-efficient light sources. While silicon photonic integrated circuits 

are opaque in the visible-NIR, Silicon nitride (SiN) based waveguide circuits can be used. Those circuits 

can also be fabricated in a CMOS fab, thereby inheriting the same advantages as the silicon-on-insulator 

waveguide platform. As a first step towards GaAs VCSEL integration on SiN waveguide circuits, we 

demonstrate a heterogeneously integrated short-wavelength hybrid-cavity VCSEL on Si, by bonding a 

GaAs-based “half-VCSEL” to a dielectric DBR (Ta2O5/SiO2) on Si using ultra-thin  

divinylsiloxane-bis-benzocyclobutene (DVS-BCB) adhesive bonding. After bonding, oxide-confined 

GaAs VCSEL structures were fabricated in Chalmers University of Technology [55]. 

The device cross-section is illustrated in Figure 17a whereas the light-current-voltage characteristics 

under continuous operation, measured at 25 °C can be seen in Figure 17b. VCSELs with different oxide 

aperture diameters of three, five, seven, and nine μm were characterized. Threshold currents of 0.3 mA 

and 1.2 mA, respectively were measured with smallest and largest oxide aperture. A nine μm oxide 

aperture diameter VCSEL produces a maximum output of 1.6 mW at 845 nm wavelength, limited by 

thermal rollover at 6.0 mA bias current. These hybrid VCSEL structures show ~3 times higher thermal 

impedance than ordinary oxide-confined VCSELs, because of the low thermal conductivity of the 

dielectric DBR. At present the performance of VCSEL is mainly limited by high thermal impedance, 

which can be further improved by integrating a metallic heat spreader. 
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(a) (b) 

Figure 17. (a) Schematic cross-section of the oxide-confined hybrid-cavity VCSEL.  

(b) Measured light-current-voltage characteristics for hybrid-cavity VCSELs with oxide 

aperture diameters of 3–9 μm. Inset: laser spectrum for a 7 μm aperture VCSEL operated at 

3.0 mA. Reproduced from [55]. 

4.2. III-V-on-Silicon Electro-Absorption Modulators for Optical Communication Applications 

Wavelength division multiplexing (WDM) modules are of key importance for realizing high 

aggregate bitrate optical interconnects. To imprint data on the individual optical carriers, both direct 

modulation and external modulation can be used. In the case of external modulation, for shorter distance 

links III-V EAMs are often used. We developed a 5 × 20 Gbps WDM transmitter consisting of an array 

of 5 EAMs heterogeneously integrated on a silicon PIC used for wavelength multiplexing (using an 

AWG) and fiber-chip interfacing, operating around 1.55 μm [56]. The lumped III-V EAMs show a 3-dB 

E/O bandwidth of 17 GHz and can operate up to 28 Gbps. A module with a compact footprint  

(1.5 × 0.5 mm2), a low driving voltage (~2.5 Vpp), and a large extinction ratio (4.9–6.9 dB) is obtained with 

100 Gbps capacity. Figure 18a shows the schematic of the chip layout. On each channel of the AWG, a 

separate EAM is integrated. The AWG is formed using 220 nm height silicon rib waveguides and it has 

five channels with 200 GHz channel spacing. The top view of the EAMs is shown in Figure 18b. The 

passive silicon waveguide underneath is a rib waveguide with 1.5 μm width and is 160 nm etched into 

the 380 nm silicon layer. The optical coupling between the silicon device layer and the III-V epitaxial stack 

is realized using a multi-level taper consisting of two linearly tapered sections in the III-V structure, as 

discussed in Section 3.1. The coupling efficiency from the passive silicon waveguide to the III-V 

waveguide using this 45 μm long taper can be more than 95%. 

The minimum insertion loss of the EAM at 0 V bias is measured to be 1.2 dB. The spread in insertion 

loss is attributed to device-to-device fabrication variations. Figure 19a illustrates the measured static 

extinction ratio of the 100 μm long EAMs under different reverse biases. More than 12 dB extinction ratio 

can be achieved when the bias is changed from 0 V to −2.5 V. Figure 19b–f shows the eye diagrams 

after the AWG multiplexer at 20 Gbps for the five different channels. All EAMs exhibit clean and open 

eyes. The dynamic extinction ratios vary between 4.9 dB and 6.9 dB. 
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(a) (b) 

Figure 18. (a) Schematic diagram of the chip layout. (b) top-view of the III-V on silicon 

EAMs. Reproduced from [56]. 

 

  

(a) (b) © 

   

(d) (e) (f) 

Figure 19. (a) Bias dependent normalized transmission of each channel. (b–f) Optical eye 

diagrams at 20 Gbps for each channel. Reproduced from [56]. 

5. III-V-on-Silicon Devices for Optical Sensing Applications 

While PICs are mainly targeting optical communication applications, the use of the integration 

platform is currently also being considered for optical sensing applications. Most efforts so far have been 

focused on bio-sensors, using chemically functionalized integrated optical resonators as the transducer 

for the binding of bio-molecules to the silicon surface. Large arrays of chemically functionalized 

resonators can this way be integrated on a low-cost, disposable chip. In this application, the selectivity 

of the sensor is completely determined by the functionalization chemistry. Therefore, it is interesting to 

study whether other integrated sensor systems could be realized on the silicon photonic platform, and 
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could get their selectivity not from chemical functionalization, but rather from the specific absorption 

spectrum that each molecule possesses. This absorption spectrum serves as a fingerprint for the molecule 

and allows for the analysis of the composition of a liquid, gas or solid sample. Opposite to small gas 

molecules, which have very sharp absorption lines, the absorption spectrum of many molecules of 

interest in the context of bio-applications show rather broad absorption spectra. This makes the use of 

integrated laser sources less suitable for this purpose. Rather, there is a need for broadband light sources 

and integrated spectrometers integrated on a single chip. Depending on the molecules of interest, the 

operational wavelength range of the spectroscopic sensor will also be different. In this section, we will 

elaborate on our work towards the integration of broadband optical sources on a silicon PIC, as well as 

the realization of integrated spectrometers. For the broadband sources, we will focus on the 1.2 μm to 2 μm 

wavelength range, while for the integrated spectrometers operation up to 3.8 μm wavelength will  

be described. 

5.1. III-V-on-Silicon Broadband Light Sources for Optical Sensing Applications 

5.1.1. Superluminescent LEDs 

An important building block for the realization of a full on-a-chip spectroscopic system is  

an efficient broadband light source that can be integrated onto PICs. In many of such sensor applications 

high power and wide bandwidth sources are of critical importance, making superluminescent LEDs the 

preferred option. To achieve the wide bandwidth, we opted, in a collaboration with the University of 

California—Santa-Barbara, for a combination of quantum well intermixing and multiple die bonding. 

Other techniques use a dual QW design [57], multistate QWs [58], quantum dots [59] or use 

supercontinuum generation. The latter is discussed in paragraph 5.2.3, the others are difficult to design 

and optimize given their complex structure and only work well at specific drive currents.  

Quantum well intermixing is a technique where the composition of the quantum well and barrier is 

changed by atom disordering. Before bonding, the InP epitaxial layer stack is implanted with 

phosphorous atoms, which are annealed into the active region. Depending on the mask applied before 

the implant and the annealing duration and temperature, the band gap is locally blue shifted. A typical 

maximum shift is 100 nm at telecom wavelengths [60]. To shift the band gap further, a second die was 

bonded. Since each die was intermixed, four band gaps were transferred to SOI. The emission from these 

different active regions was combined in series, as depicted in Figure 20. This implies that the longest 

wavelengths propagate through all the other sections. 

After combining multiple die bonding and quantum well intermixing, a broadband superluminescent 

LED was fabricated with the process described in [60]. Each band gap section can be pumped separately, 

as shown in Figure 21a. In order to maximize the 3 dB bandwidth, the pumping currents are individually 

tuned, resulting in the spectrum shown in Figure 21b. The on-chip power is −8 dBm and the 3 dB 

bandwidth is 292 nm, ranging from 1258 nm to 1550 nm. 

These devices were heterogeneously integrated using molecular bonding. A COMSOL heat 

simulation of the superluminescent LED shows a thermal resistance (normalized to surface area) of 
2

12 8
Kcm

.
kW

 for a 50 nm thick BCB bonding layer and 
2

10 5
Kcm

.
kW

 for molecular bonding, indicating that 
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the largest source of thermal impedance is the buried oxide layer underneath the silicon waveguides, and 

not the thin DVS-BCB bonding layer. 

 

Figure 20. Illustration of superluminescent LED comprised of four band gaps connected to  

a silicon waveguide circuit. Reproduced from [60]. 

  

(a) (b) 

Figure 21. (a) On-chip spectra when pumping the different sections of the superluminescent 

LED. The dashed, dash-dotted, solid and dotted lines indicate the section at 1300 nm,  

1380 nm, 1460 nm and 1540 nm respectively. (b) On-chip spectrum when pumping the 

different sections of the superluminescent LED differently to maximize optical bandwidth. 

The pumping currents were 70 mA, 50 mA, 300 mA and 140 mA for the sections at 1300 nm, 

1380 nm, 1460 nm and 1540 nm respectively. Reproduced from [60]. 

5.1.2. Power-Efficient Single Spatial Mode LEDs 

Similar to superluminescent LEDs, power efficient LEDs would be of great use in sensing 

applications. Especially if this integrated LED can combine efficiency and fabrication simplicity, one 

can think of high-volume low-cost spectroscopic sensors based on these devices. Using heterogeneous 

integration, very high refractive index contrast III-V membranes can be realized. In a high refractive 

index contrast waveguide, the efficiency of capturing the spontaneous emission into a single spatial 

mode is boosted compared to classical low index contrast structures. While electrical injection of such 

thin membranes is difficult, an optically pumped membrane LED can be envisioned, pumped by  

an efficient waveguide coupled laser sources, such as a VCSEL. Avoiding the electrical pumping also 

makes the device fabrication more straightforward. 
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We have been investigating the integration of thin InP membranes on top of an SOI waveguide to 

create an efficient optically pumped waveguide coupled LED [61]. The thin membranes are obtained by 

bonding an ultra-thin III-V stack onto the SOI chips via DVS-BCB bonding, as shown in Figure 22. In 

combination with an appropriate waveguide design, the membrane (LED) can be optically pumped via 

the single mode SOI waveguide underneath. A significant power fraction of the entire spontaneously 

emitted light couples back into the single mode of the SOI waveguide. 

The device in Figure 22a consists of an SOI photonic wire waveguide that tapers down, squeezing 

the pumping mode into the III-V membrane. The III-V is shaped as a ridge waveguide and has a taper 

connection to the silicon as well. The membrane material is chosen to strongly absorb the optical pump. 

The absorbed light will generate electron-hole pairs that lead to spontaneous emission, which is collected 

efficiently into a single spatial mode in the III-V membrane waveguide because of the high refractive 

index contrast. 

 

 

(a) (b) 

Figure 22. (a) Illustration of an optically pumped membrane LED. (inset) SEM image of the 

fabricated device. (b) Measured spectra of an optically pumped LED (50 μm device length; 

green: in transmission; blue: in reflection). Reproduced from [61]. 

By optimizing the confinement of the pump light in the III-V material and the spontaneous emission 

collection efficiency in the SOI waveguide, an optimum membrane thickness of 115 nm is obtained. For 

the layer stack reported in [61], the confinement factor in the four quantum well structure is 18.4%. The 

spontaneous emission collection efficiency into the fundamental guided mode in the SOI, is around 10%. 

The spontaneous emission couples to both forward and backward propagating modes in the SOI, 

meaning it is possible to collect light both in transmission and in reflection. Given the strong pump 

absorption, the carrier concentration will be highest at the first taper and lower towards the end of the 

III-V waveguide due to pump depletion. For the signal in transmission, there will be an optimum device 

length: a very long device may not be pumped completely to transparency and hence reabsorb the 

spontaneous emission. The spontaneous emission in reflection does not suffer from this problem, but 

then a photonic integrated circuit to (de)multiplex signal and pump has to be designed. Figure 22b shows 

the LED spectra collected both in transmission and reflection for a 50 μm long LED. Optical pumping 

was done at a wavelength of 1310 nm using 0.5 mW waveguide coupled power. The collected spectrum 
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in reflection is broad (3 dB bandwidth of 230 nm) peaking at 1565 nm, while in transmission the collected 

spectrum is both weaker (15 dB difference) and narrower (3 dB bandwidth of 100 nm). It is also red-shifted 

to 1613 nm. The difference between the transmission and reflection spectrum is attributed to incomplete 

pumping of the LED. Towards the end of the device, the shorter wavelengths are absorbed again. 

5.1.3 Supercontinuum Generation in a III-V on Silicon Waveguide Structure 

On-chip supercontinuum generation (SCG) has attracted a lot of attention from researchers because 

of a number of exciting potential applications such as sensing [62,63], spectroscopy [64], 

telecommunications [65], optical clocks and frequency metrology [66]. On the SOI platform, by taking 

advantage of the large Kerr index of silicon (n2 ≈ 6 × 10−18 m2/W) and the tight confinement of light due 

to its large index contrast, SCG has been successfully demonstrated in different pump pulse width 

regimes and wavelength ranges [67–71]. However, silicon as a nonlinear material for SCG has certain 

drawbacks: its small bandgap of 1.1 eV means that it suffers from large nonlinear losses due to  

two-photon absorption (TPA) and the associated free-carrier absorption (FCA) when pumping at 

wavelengths below 2.2 μm. While this effect is somewhat reduced by the use of hydrogenated 

amorphous silicon [68,70], certain III-V materials like InGaP offer not only a similarly large Kerr index 

and linear refractive index as silicon but also have a large bandgap (Eg = 1.9 eV) thereby eliminating 

TPA-based nonlinear losses for pumping in the telecom wavelength range. Unlike silicon, III-V 

materials also possess a strong second-order nonlinearity, which can be further exploited alongside the 

third-order nonlinearity. 

In order to generate a supercontinuum in the 1–2 μm wavelength range we consider the use of InGaP 

membrane waveguides integrated on top of a SOI or SiN waveguide circuit. As a first step, the generation 

of a supercontinuum on an InGaP membrane waveguide not interfaced with a silicon-based PIC is 

demonstrated. In this case, the InGaP membrane—which is grown lattice matched on a GaAs substrate—is 

adhesively bonded to a silicon substrate with 3 μm thick thermal oxide on top. The GaAs substrate is 

then removed by wet etching. Using e-beam lithography and ICP etching in a two-step process—in 

collaboration with the Laboratoire de Photonique et Nanostructure, Paris and Thales Research and 

Technology—photonic wire waveguides coupled to shallow etched fiber-to-chip grating couplers are 

fabricated. Details about the fabrication and the linear and nonlinear properties of the fabricated 

waveguides can be found in [72]. The large index contrast between the III-V membrane and the oxide or 

DVS-BCB layer beneath allows for strong nonlinear interactions through the tight confinement of light. For 

SCG, we pump dispersion engineered InGaP membrane waveguides with 170 fs pump pulses centered 

at 1550 nm [73]. In this pulse duration regime, SCG is known to occur via soliton fission and dispersive 

wave generation both of which depend critically on the dispersion properties of the waveguide [74,75]. 

As such, the waveguide is designed to exhibit anomalous dispersion at the pump wavelength and have 

two zero-dispersion wavelengths (ZDWs) on either side of the pump. Figure 23a shows the 

supercontinuum spectrum at the output of InGaP membrane waveguides of different widths. Dispersive 

waves can be observed flanking the spectra on both ends of the spectrum and their positions vary for the 

different waveguides. The locations of the ZDWs relative to the pump wavelength (see Figure 23b) are 

critical in determining the position of these dispersive waves and thus the overall bandwidth of the 

supercontinuum. For the case of the 700 nm wide waveguide, the dispersive waves are located at 1005 nm 
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and 2097 nm as shown in Figure 23c. The supercontinuum is thus octave-spanning which is important 

for certain frequency metrology applications. This clearly demonstrates the importance of dispersion 

engineering for achieving the widest possible supercontinuum. The octave-spanning spectrum was 

achieved with a pulse energy of only 2 pJ which constitutes an order of magnitude improvement over 

the state-of-the-art SCG achieved in SOI at these wavelengths [71]. Figure 23d shows the simulated 

evolution of the spectrum along the length of the 700 nm wide waveguide and is seen to match well with 

the experimentally observed spectrum shown in Figure 23c. Spectral broadening occurring due to self-phase 

modulation, soliton fission and dispersive wave emission can be seen. One can also see that the octave 

spanning SCG is achieved in a waveguide of only 1.5 mm long. 

 

Figure 23. (a) The supercontinuum spectra at the output of 2 mm long waveguides of widths 

800 nm, 790 nm, 770 nm, 760 nm, 700 nm and 650 nm respectively from top to bottom. 

Individual spectra have been displaced by 40 dB for clarity. Dispersive waves can be 

observed at the ends of the spectra for all the waveguides. (b) The simulated dispersion 

profiles of the waveguides showing the ZDWs on either side of the pump wavelength at  

1550 nm. (c) The experimental octave-spanning supercontinuum for the 700 nm wide 

waveguide with arrows showing the position dispersive waves. (d) The simulated evolution 

of the supercontinuum spectrum along the waveguide propagation length, which matches 

well with the experimental spectrum shown in (c). Reproduced from [73]. 

5.2. III-V-on-Silicon Spectrometers for Optical Sensing Applications 

As discussed above, there is an interest in spectroscopic sensors in which the absorption spectrum of 

a sample is measured. When a broadband light source is used, a spectrometer is required to spectrally 

decompose the transmitted light and compare it to the light that went through a reference path that did 

not go through the sample under study. Single mode optical spectrometers provide the best possible 

resolution for a given device footprint and are therefore of great interest for these applications. Besides 

passive spectrometers, also integrated photodetector arrays are required. For the telecommunication 

wavelength range, Ge-based photodetectors are typically used. Recently, low dark current, high 
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responsivity devices have been demonstrated with a cut off wavelength of about 1600 nm [76]. In many 

spectroscopic sensing applications one wants to work beyond a wavelength of 1600 nm, because of the 

more pronounced absorption features at longer wavelengths. This again requires the heterogeneous 

integration of III-V semiconductor devices onto the silicon photonic spectrometers. In next sections, we 

will elaborate on such III-V-on-silicon spectrometers for operation beyond the telecom wavelength window. 

5.2.1. Passive Integrated Spectrometers 

Integrated spectrometers are essential components for on-chip spectroscopic systems. Arrayed 

Waveguide Grating (AWG) and Planar Concave Grating (PCG) are the two most commonly used 

dispersive integrated spectrometers. Both types of devices work on the principle of interference of 

multiple light paths. An AWG consists of two free propagation regions (also known as star couplers), 

which are connected by delay lines having constant path length increment between them. Light is split 

up in the input star coupler and the different contributions after passing through delay lines interfere in 

the output star coupler. As a result, different wavelengths are focused at different places and can therefore 

be guided to separate output waveguides. In a PCG, the same slab is used for de-focusing as well as 

focusing while the constant length increment is achieved by a curved grating. More information about 

theory and design of AWGs can be found in [77] and details about PCG design are available in [78]. We 

have demonstrated different integrated spectrometers in different silicon and silicon nitride based 

platforms. The performance summary is given in Table 2 with references to the original publications. 

Figure 24 shows measured transmission spectra—in collaboration with the University of Southampton—of 

an AWG and PCG in the mid-infrared wavelength range. 

Table 2. Representative integrated spectrometers across different platforms. 

Device/Technology 
Central 

Wavelength (μm) 

Footprint 

(mm2) 

No of Channels/Channel 

Spacing (nm) 

FSR 

(nm) 

Insertion 

Loss (dB) 

Crosstalk 

(dB) 

AWG/SOI [79] 1.55 0.231 16/3.2 57.6 <3.0 >25.0 

AWG/Si3N4 [80] 0.89 0.337 12/2 30 <1.5 >20.0 

S-AWG/SOI [81] 1.55 0.079 4/30 144 <2.0 >19.0 

AWG/SOI [14] 2.20 1.000 6/1.6 13 <3.0 >17.0 

AWG/SOI [82] 2.37 0.439 7/5 50 <3.0 >25.0 

AWG/SOI [83] 3.80 0.858 6/10 80 <2.0 >20.0 

PCG/SOI [14] 1.55 0.269 8/6.5 100 <1.5 >20.0 

PCG/SOI [14] 2.32 1.040 8/5 60 <6.0 >15.0 

PCG/SOI [83,84] 3.80 3.060 8/10 105 <2.0 >20.0 
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Figure 24. (a) Measured transmission spectra of short-wave infrared AWG [82].  

(b) Measured transmission spectra from a mid-infrared PCG [83]. 

5.2.2. GaSb-Based Photodetector Integration 

The antimony-based material system can be used for photodetection beyond the telecommunication 

wavelength window. This material system can make use of three group III elements (Al, Ga, In) and  

two group V elements (As, Sb) to cover a wide wavelength range. Epitaxial layers of this material system 

can be grown lattice matched to GaSb or InAs substrates. Solid-source Molecular Beam Epitaxy (MBE) 

is used by the University of Montpellier to grow GaInAsSb and InAsSb based epitaxial layer stacks on 

on-axis (100) oriented n-type GaSb substrates. The MBE reactor is equipped with both As- and Sb-valved 

cracker cells and conventional element-III cells. Be and Te are used as p- and n-type dopants. 

Ga0.79In0.21As0.19Sb0.81 based PIN diode structures have been grown to reach a cut-off wavelength of 2.65 μm 

whereas InAs0.91Sb0.09 based PIN diode structures are used to cover the 3 μm wavelength range. Details 

about epitaxial layer stacks and their growth can be found in [13,15,85,86]. The integration process starts 

with the fabrication of the SOI spectrometers in imec’s CMOS pilot line. Then DVS-BCB based 

adhesive bonding is used to bond the III-V die to the SOI chip. After bonding, the GaSb substrate is 

removed using mechanical grinding and wet etching with a HF/CrO3 solution, until the etch stop layer is 

reached. After removing the etch stop layers by wet etching, the photodetector mesa is fabricated 

lithographically aligned to the underlying output grating couplers of the SOI spectrometer. Ti (2 nm)/Pt 

(35 nm)/Au (100 nm) contacts are then deposited using e-beam evaporation. To passivate the device, 

DVS-BCB is then spin coated on the sample and cured at 250 °C for 1 h. Finally, deposition of Ti/Au 

contact pads is carried out after etching the DVS-BCB to access the top and bottom contacts. Figure 25a 

shows a microscope image of a fabricated silicon photonic AWG with integrated photodetectors. 

We have demonstrated evanescently coupled GaInAsSb based photodetectors in [85] and [13] with a 

responsivity as high as 1.4 A/W at room temperature. Grating-coupled GaInAsSb based photodetectors 

are demonstrated in [13–15] with an on-chip responsivity as high as 0.6 A/W. In [14] an array of 46 

detectors was integrated onto a spectrometer chip, showing the scalability of the integration process. 

Recently, we have also successfully integrated grating-assisted InAsSb-based photodetectors on an 

AWG operating at wavelength of 3.8 μm. A responsivity of 0.3 A/W at room temperature was obtained [86]. 
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Figure 25. (a) Microscope image of a silicon AWG after integration of GaInAsSb 

photodetectors. (b) Measured photoresponse of this III-V-on-silicon spectrometer. 

Reproduced from [15]. 

5.2.3. InP-Based Photodetector Integration 

Compared with GaSb, the InP-based material system uses a cheaper substrate for epitaxial growth 

and the related heterogeneous integration technology is more mature. The cut-off wavelength of active 

device based on type-I lattice matched active regions is limited to about 1.75 μm. By straining the active 

region, operation up to 2.3 μm can be obtained [87]. In recent years, high performance electrically 

pumped lasers using type-II InP-based heterostructures were reported, lasing in a wavelength range from 

2.2 μm to 2.7 μm [88]. Therefore, the heterogeneous integration of type-II active devices on SOI is 

attractive for spectroscopic sensors operating in the 2 μm wavelength range. Type-II InP-based 

photodiodes were integrated on a silicon waveguide circuit using adhesive bonding technology [89]. The 

absorbing active region of the photodiodes consists of six periods of a “W”-shaped quantum well as 

shown in the inset of Figure 26a. Light is coupled from the silicon waveguide to the III-V waveguide 

using a taper structure. The dark current under reverse bias of 0.5 V is 12 nA as shown Figure 26a, which 

is much lower than the hybrid GaSb-based photodiodes (1.13 μA at −0.1 V). Figure 26b shows the  

fiber-referred optical spectral responsivity of the photodiodes, together with the fiber-to-chip grating 

coupler efficiency. The waveguide-referred responsivity is higher than 0.5 A/W over the wavelength 

range of 2.2–2.42 μm (the wavelength range limitation of our laser source). The peak fiber-referred 

responsivity is 0.12 A/W at 2.32 μm, corresponding to a waveguide-referred responsivity of 1.2 A/W. 

The epitaxial layer stack used for the photodiode integration can also be used to realize edge emitting 

lasers or superluminescent LEDs, thereby enabling fully integrated spectroscopic sensor systems in the 

2 μm wavelength range. 
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Figure 26. (a) I-V curve of the photodiodes without light input, the inset picture shows the 

band structure of one period of the “W”-shaped quantum well. (b) Wavelength dependence 

of the fiber-referred responsivity of type-II photodiodes (inset: fiber-to-chip grating coupler 

efficiency). Reproduced from [89]. 

6. Conclusions 

Heterogeneous integration is a powerful approach to integrate high performance III-V opto-electronic 

components onto silicon-based photonic integrated circuits. In this paper, the integration of different 

types of opto-electronic components including semiconductor lasers, optical amplifiers, electro-absorption 

modulators, light emitting diodes and photodetectors onto silicon photonic integrated circuits is 

demonstrated. In most of these examples, the opto-electronic components are integrated on planarized 

and passive silicon waveguide circuits. While already quite complex, photonic integrated circuits can be 

realized this way, by co-integrating different III-V opto-electronic components, much added value could 

be created if these III-V opto-electronic components were heterogeneously integrated on the full silicon 

photonics platform, including high speed silicon optical modulators, germanium (avalanche) 

photodetectors, heaters, efficient fiber-to-chip couplers, etc. This requires the local removal of the back-end 

stack in order to bring the III-V epitaxial material in close proximity to the silicon device layer. It can 

be expected that the etching of the back-end dielectric stack down to the silicon device layer will result 

in a non-flat surface. In addition, in this context, the use of adhesive die-to-wafer bonding is very 

appealing, as it is quite forgiving in terms of surface topography and roughness, giving the planarizing 

action of the DVS-BCB bonding agent. This integration is the subject of future research. 
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