Nonlinear Optics on a Silicon Platform for Broadband Light Generation and Ultrafast Information Processing

Bart Kuyken, Raphael Van Laer, Francois Leo, Dries Van Thourhout, Roel Baets, Gunther Roelkens
Photonics Research Group, Department of Information Technology
Ghent University – imec
Ghent B-9000, Belgium
Bart.Kuyken@imec.ugent.be

Takuro Ideguchi, Simon Holzner, Ming Yan, Theodor W. Hänisch, Stéphane Coen, Peter Verheyen, Joris Van Campenhout, Simon-Pierre Gorza, Sylvain Combie, Alfredo De Rossi, Fabrice Raineri, William M. J. Green, Nathalie Picqué

Abstract—With the help of the strong nonlinear optical response in silicon nanophotonic wire waveguides complex sources and devices can be integrated on a chip. We demonstrate mid-infrared wavelength translators and frequency combs. Furthermore, we open up the possibility for the integration of nonlinear optical functions at telecom wavelengths by exploiting more exotic nonlinear interactions in silicon waveguides as well as new waveguide platforms.

Keywords Nonlinear optics, four-wave mixing; Nonlinear optics, integrated optics

1. INTRODUCTION

The high confinement of integrated waveguides, made out of high refractive index semi-conductor materials, can enhance nonlinear optical processes incredibly. Furthermore, the nonlinear refractive index of semi-conductor materials such as silicon or InGaP itself is very high. Hence, nonlinear optical interactions can become very efficient in semi-conductor waveguide platforms made out of these materials. These interactions can be used for a set of applications.

One application is the development of broadly tunable or broadband sources in the mid-infrared. These sources would meet the demand of sources needed for mid-infrared sensing. Mid-infrared sensing exploits the strong and specific absorption lines of many molecules in the mid-infrared wavelength region [1], sometimes referred to as the “molecular fingerprint region”. This would enable chip-scale optical sensors with a high sensitivity and selectivity. Through nonlinear optical mixing broadly tunable sources and devices can potentially be integrated on the silicon-on-insulator platform. Specifically, the absence of two-photon absorption beyond 2.2 μm - hampering efficient nonlinear interactions at telecom wavelengths - allows for efficient nonlinear interactions in the mid-infrared in silicon waveguides.

Another traditional application of nonlinear optics is ultrafast signal processing. However, because of the high two photon absorption at telecom wavelengths, crystalline silicon does not seem to be the ideal candidate here. Nonetheless, by shifting towards materials with a wider bandwidth, two-photon absorption can be suppressed or eliminated at telecom wavelengths enabling efficient nonlinear interactions. We show that InGaP and a-Si:H on insulator nanowire waveguides can be used to obtain efficient nonlinear interactions in the telecom window with or less parasitic two-photon absorption.

Lastly, we show that even in the presence of two-photon absorption at telecom wavelengths the photon-phonon interaction can be made efficient in silicon waveguides. The latter paves the way for making e.g. high quality all optical RF-filters on a CMOS platform.

All these demonstrations show how integrated platforms are very efficient for doing nonlinear optics at different wavelengths for different applications.

Fig. 1. Down converted signals of respectively a telecom signal at 1565 nm (black), 1559 nm (red), 1554 nm (blue), and 1550 nm (green) in a telecom wavelength translator.
II. SILICON BASED MID-IR DEVICES

The (crystalline) silicon devices presented here are based on waveguides fabricated on a 200 nm silicon-on-insulator wafer with a 400 nm thick device layer. The relatively thick layer allows for operating the waveguides at mid-infrared wavelengths. Contrary to waveguides fabricated in “standard” 220 nm thick layers they are not in cut-off nor leak towards the silicon substrate at these long wavelengths. Furthermore, the nonlinear parameter is found to be ~40 (Wm)⁻¹ at a wavelength of about 2200 nm. A first demonstration of the efficient nonlinear interactions of these waveguides is a so-called wavelength translator [2,3]. This translator can link the telecom band with the mid-infrared wavelength region. For example, we show that a pump centered at 2190 nm, can down convert signals over more than an octave from the telecom band to ~3700 nm. In a second experiment, a waveguide is used to generate an octave spanning frequency comb. In the experiment a 1600 nm wide waveguide is pumped with fs pulses [4]. The fs pulses centered at 2290 nm are broadened in the waveguide. The output spectrum, a supercontinuum (see Figure 2) covers an octave spanning from ~1550 nm up to ~3250 nm. Moreover, the coherence of the obtained supercontinuum is verified by beating it with a narrow linewidth CW laser on a fast photodiode. The obtained beat notes have a linewidth in the order of 50 kHz, limited by the instabilities of the pump optical parametric oscillator. The narrow bandwidth beatnotes show that the supercontinuum consists out of a set of narrow line width lines and is as such a frequency comb.

III. NON-CRYSTALLINE SILICON INTEGRATED PLATFORMS FOR ALL-OPTICAL SIGNAL PROCESSING

The detrimental nonlinear absorption in silicon waveguides at telecom wavelengths hampers efficient nonlinear interactions. For all-optical signal processing applications one wants to work at telecom wavelengths. So other materials are sometimes preferred over crystalline silicon for these applications. These materials should have a wide band-gap to avoid the two photon absorption. Ideally, they should also have a high linear and nonlinear refractive index. The combination allows for high confinement waveguides made out of a material with a high nonlinear refractive index. We have explored the use of hydrogenated amorphous silicon [5] and InGaP [6] for making highly nonlinear waveguides. Because of the relatively wide band-gap of these materials, the fabricated structures show no or only weak two photon absorption. Nonetheless, the waveguides show a strong nonlinear response. Figure 2 shows a cross section of a fabricated InGaP waveguide. As can be seen in the figure the dimensions of the waveguide (250 nm high, 630 nm wide) are very similar than those for crystalline silicon waveguides at telecom wavelengths.

IV. STRONG PHOTON-PHONON COUPLING IN CRYSTALLINE SILICON WAVEGUIDES

Strong photon-phonon coupling has been demonstrated in integrated structures such as photonic crystals before. Lately, however, the photon-phonon coupling has been investigated in silicon waveguides as well [7]. In a first demonstration researchers described the coupling between photons in a waveguide and phonons in a silicon nitride membrane adjacent to the waveguide. Recently, we have observed even stronger photon-phonon coupling by confining the photons and phonons in the same photonic wire [8]. By doing so we achieve a nonlinear interaction which can be stronger than the interactions arising from the nonlinear refractive index of silicon. We show a strong interaction of light and sound with frequencies around 10 GHz. Although the bandwidth of the interaction is much smaller than the Kerr effect, the scheme can be used for Radio Frequency signal processing.

Fig. 2: The input and output spectrum of the short pulses traveling through the 1 cm long silicon waveguide. The arrows indicate at which wavelength the coherence is measured.

Fig. 3: A SEM cross-section of an InGaP waveguide with measured dimensions of 630 nm x 250 nm.

V. CONCLUSION

In short, the high optical nonlinear response of integrated silicon waveguides allows for complex devices in the mid-infrared such as an optical wavelength translator as well as an octave spanning mid-infrared frequency comb. Despite the success of (crystalline) silicon platforms, InGaP and a-Si:H platforms are more suitable for doing ultrafast signal processing in the telecom band. Lastly, by tailoring the strong phonon-photon coupling new applications such as novel RF filters are within reach.

REFERENCES


