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Reservoir computing is a recent bio-inspired approach for processing time-dependent signals. It has enabled a
breakthrough in analog information processing, with several experiments, both electronic and optical, demonstrating
state-of-the-art performance for hard tasks such as speech recognition, time series prediction, and nonlinear channel
equalization. A proof-of-principle experiment using a linear optical circuit on a photonic chip to process digital signals
was recently reported. Here we present a photonic implementation of a reservoir computer based on a coherently
driven passive fiber cavity processing analog signals. Our experiment has error rate as low as or lower than previous
experiments on a wide variety of tasks, and also has lower power consumption. Furthermore, the analytical model
describing our experiment is also of interest, as it constitutes a very simple high-performance reservoir computer
algorithm. The present experiment, given its good performance, low energy consumption, and conceptual simplicity,
confirms the great potential of photonic reservoir computing for information processing applications ranging from
artificial intelligence to telecommunications. © 2015 Optical Society of America

OCIS codes: (200.4700) Optical neural systems; (200.4740) Optical processing; (200.0200) Optics in computing; (200.4560) Optical data

processing; (200.4260) Neural networks; (200.3050) Information processing.
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1. INTRODUCTION

Reservoir computing is a recent bio-inspired method for process-
ing information [1–3] that uses a recurrent dynamical system
called a “reservoir” to process time-dependent signals. The inter-
nal variables of the dynamical system, also called “reservoir states,”
provide a nonlinear mapping of the input into a high-dimensional
space. The time-dependent output of the reservoir is then given
by a linear combination of the internal variables. The readout
weights used to compute this linear combination are optimized
so as to minimize the mean square error between the target and
the output signal, leading to a simple and easy training process.
Moreover, some global parameters can be tuned to get the best
performance, depending on the reservoir architecture and on the
task. The simplicity and the flexibility of such systems make them
powerful to solve a very large range of tasks, such as speech rec-
ognition [4], nonlinear channel equalization [3,5–7], detection of
epileptic seizures [8], robot control [9], time series prediction
[1,3,7,10], financial forecasting, and handwriting recognition;
see [10,11] for recent reviews.

Recently, experimental implementations of reservoir comput-
ing have provided a breakthrough in analog information process-
ing, and in particular in optical information processing. Several

experiments [12–22] (see also the simulations in [23]) report
analog information processing, often with error rate comparable
to the best digital algorithms. These works all use as a nonlinear
dynamical system a delay line with a single nonlinear node.

Integrated optical reservoir computers (RCs) have also been
investigated in simulation [24–28]. Very recently, a proof-of-
principle experiment that carried out simple processing of digital
signals was demonstrated [29]. This experiment uses a linear
optical network made from interconnected delay lines and works
with coherent light, thereby encoding information in both the
amplitude and the phase of the electromagnetic field. This can
improve performance [24,25] compared to systems that use only
the light intensity. The necessary nonlinearity was provided by
the readout photodiodes that, since they produce a current pro-
portional to the intensity of the light, provide quadratic nonlin-
earity. The use of nonlinearity in the readout layer of reservoir
computers has been previously investigated theoretically [5,6].

Here we combine the advantages of the approach based on a
delay dynamical system and of the approach based on a linear
optical circuit with quadratic nonlinearity provided by the read-
out photodiode. We present an experimental implementation of a
photonic reservoir computer based on a coherently driven passive
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fiber cavity that processes analog signals. Our system exhibits
several advantages compared to previous experiments. First, it
is much more flexible than the architecture presented in [29],
in which many parameters, such as the number of internal var-
iables or the strength of the internal connections, are fixed by the
hardware and cannot be tuned to improve performance on spe-
cific tasks. In addition, we are able to process analog signals ex-
perimentally (contrary to the experiment described in [29], which
only processes digital signals, due to the limitations of very high-
speed electronics). Nevertheless, the reservoir presented in [29] is
able to process information faster thanks to the integration on
chip. Second, our reservoir is a passive optical cavity, with very
low intracavity losses. We therefore do not need any amplifier or
active element in the cavity as in previous experiments based on a
delay line [12–22,30] (for instance, in [17], passive nonlinearity
was used, but because of high intracavity losses an amplifier was
placed inside the cavity). This absence of active elements in the
cavity removes a major source of noise, and therefore improves
performance. It also decreases the energy consumption of the res-
ervoir. In fact the total optical power injected in the reservoir layer
(0.57 mW peak power at the entrance of the cavity) is to our
knowledge the lowest used so far.

Most importantly, in all tasks on which we have tested it, our
experimental reservoir computer has error rate as low as or lower
than all previous experiments [12–17,21,22,29,31] that studied
the same tasks, and the same also holds true for many results
obtained previously in simulation or using digital algorithms
[7,12,22,24,29,32]. Note that the experiment can also be trans-
lated into a digital algorithm. This algorithm is of interest by
itself as it constitutes a very simple high-performance reservoir
computer algorithm.

2. OPERATION PRINCIPLE

In the experiment reported here, the input signal is coded in the
amplitude Ain�t� of the electromagnetic field. This signal is then
sent to the reservoir, which consists of a passive fiber cavity (see
Fig. 1). The evolution equation of the amplitude A�t� inside the
cavity is given by

A�t� � α exp�jΔφ�A�t − T � � βAin�t�; (1)

where T is the roundtrip time, α is the feedback gain that is tuned
through an intracavity optical attenuator, β is the transmission
coefficient of the input fiber coupler, j � �−1�1∕2, and Δφ is
the phase detuning of the cavity.

As explained in detail in [12,13], successful use of the delay
dynamical system architecture as a reservoir computer depends
crucially on the method used to encode the input signal. Here
we use the method introduced in [13]. The input u�t� is held
constant for duration T 0 using a sample and hold procedure; then
this input is multiplied by a mask functionm�t�, which is periodic
with period T 0. The interconnections between the internal var-
iables are obtained by desynchronizing the masked input
m�t�u�t� and the cavity so T 0 ≠ T . In the present case, it is
further essential for some tasks to add a bias A0 to the masked
input. The input signal amplitude is therefore equal to
Ain�t� � m�t�u�t� � A0. The mask function m�t� is taken to
be a step function, constant over intervals of duration
θ � T 0∕N , where N is the number of internal variables of
the reservoir. The desynchronization is defined by T 0 �
TN∕�N � k�, where 1 ≤ k < N . All our simulation and exper-

imental results were obtained with k � 1; i.e., each internal
variable is thus coupled with its nearest neighbor. In this way,
we get the richest dynamics possible for this unsynchronized
regime (e.g., if k and N have a common divisor, then there would
be several independent reservoirs, each with a fraction of the num-
ber of neurons. The dynamics would then be less rich, and the
performance worse).

In order to discuss in more detail the operation principle of the
reservoir, it is useful to introduce a discretized time t�n; i� corre-
sponding to the middle of each interval of duration θ:
t�n; i� � nT 0 � �i � 1∕2�θ, where n ∈ Z and i ∈ �0; N − 1�.
With this notation, the sample and hold input u�n� is only a func-
tion of n, and the mask m�i� is only a function of i. We denote
xi�n� � A�t�n; i�� the state of the internal variables. The continu-
ous time evolution Eq. (1) can thus be approximated by the
discrete time evolution equations:�
xi�n��αxi−k�n−1�exp�jΔφ��β�miu�n��A0� k≤ i≤N
xi�n��αxN�i−k�n−2�exp�jΔφ��β�miu�n��A0� 0≤ i≤ k ;

�2�
with 1 ≤ k < N . Note that when Δφ ≠ 0, xi are complex values
and the dynamics of the system is richer. As discussed in the next
section, it is often experimentally convenient to carry out a non-
linear preprocessing of the input. This small change does not
modify the performance of the reservoir, except for the evaluation
of the memory capacities for which the results depend on this
input signal preprocessing.

All the reservoir states denoted xi�n� � A�t�n; i�� are recov-
ered by a photodiode, which performs a quadratic transformation
on A�t�, since the photodiode output is proportional to jxi�n�j2.
The output y�n� of the reservoir is taken to be a linear combina-
tion of jxi�n�j2:

y�n� �
XN−1

i�0

W ijxi�n�j2: (3)

Note that Eqs. (2) and (3) are the numerical models we will
refer to later in the text.

In the operation of a reservoir computer we distinguish two
phases. In the training phase we send inputs for which the target
output y��n� is known. We then record the values of jxi�n�j2 and
use them to compute the readout weightsW i, by minimizing the
mean square error h�y��n� − y�n��2in using Tikhonov regulariza-
tion [13] (also called ridge regression). In the test phase, the read-
out weights W i are kept fixed, and the output signal y�n� is
computed using Eq. (3), and compared to the target output
y��n�. The performance of the reservoir computer can be opti-
mized by adjusting the values of the parameters α, Δφ, A0,
and the amplitude of mi (equivalent to changing β, which in
the experiment is fixed by the coupling ratio of the cavity input
coupler and cannot be modified). The input mask mi, randomly
chosen from a uniform distribution, is kept fixed.

As we show in the next sections, experimental and numerical
simulations based on Eqs. (2) and (3) perform very well on a
number of benchmark tasks. This good performance can be
explained by the following points.

First, using complex variables (when Δφ ≠ 0) makes the
internal dynamics richer. For some tasks this is crucial, and
contributes importantly to the improvement of performance (a
fact already pointed out in [24,25,29]). Indeed using complex
variables doubles the number of internal variables (2N ), even
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if we can only use N readout weights W i to compute the
output y.

Then, another contributing fact is that there is very little noise
in our experiment. This is confirmed by the total memory capac-
ity being close to its maximum value (see Section 4). This weak
noise level is due to the absence of active (and therefore noise-
inducing) elements in the reservoir.

Finally, a third favorable factor has more to do with the tasks
investigated than with the reservoir itself. Indeed a reservoir com-
puter can be seen as a map from the input time series u�n� to the
variables used to compute the output (here jxi�n�j2). The output
of the reservoir is the projection of the desired output y��n� onto
the space spanned by jxi�n�j2 (see [33] for a detailed discussion).
In the present case the reservoir states xi�n� are given by a linear
combination of the previous inputs u�n − l� (l � 0; 1; 2;…) with
exponentially decaying dependence on l (the fading memory
property essential for good reservoir performance). The variables
jxi�n�j2 used to compute the output are therefore given by the
sum of a constant, a linear, and a quadratic fading memory func-
tion of previous inputs (note the role of the bias A0 that ensures
that jxi�n�j2 contain linear terms). The fact that a reservoir based
on Eqs. (2) and (3) performs well on a task therefore means that
for this task, the desired output y��n� can be well approximated
by quadratic functions of previous inputs. The higher-order
nonlinearities present in many reservoir algorithms are therefore
not necessary for these tasks, and may even be detrimental.
There are of course some tasks that require nonlinearities of
higher order than quadratic, and for these tasks our architecture
would not give good performance. However, by cascading
reservoirs of the type reported here, nonlinearities of arbitrarily
high order could be obtained, so this is not a fundamental
problem.

3. EXPERIMENTAL IMPLEMENTATION

Our fiber optics experiment is depicted in Fig. 1. The optical sig-
nal is generated by a continuous wave (CW) laser at 1550 nm
with a coherence time much greater than the inverse linewidth
of the cavity, with output power adjusted between 11 and
41 mW. Note that below we always quote the optical power
at the entrance of the cavity, as this is the experimentally relevant
quantity, and the setup was not optimized to minimize the losses
between the laser and the cavity.

The input signal Ain�t� is encoded by modulating the ampli-
tude of the laser signal with a lithium niobate Mach–Zehnder
(M-Z) interferometer in a push–pull configuration driven by
an arbitrary waveform generator (AWG). Consider first that
no bias A0 is needed. As the M-Z transfer function is sinusoidal,
we first tried to precompensate the voltage signal V generated by
the AWG, so that Ain�t� is proportional to m�t�u�t�. Then
we removed the precompensation of the masked input signal,
so that the optical M-Z output signal Ain�t� is proportional
to sinfV �t��π∕�2V π��g with V �t� � γm�t�u�t� ∈ �−γV π ; γV π �
(V π being the characteristic voltage of the M-Z modulator
and γ ∈ �0; 1� an adjustable parameter). We have checked that
both codings give the same performance of the reservoir, except
for the evaluation of the memory capacities for which the results
depend on this input signal preprocessing.

For some tasks, it is necessary to bias the input.
Experimentally, the bias is introduced by applying a direct current
(DC) voltage V 0 ∈ �−V π;DC; V π;DC� to the “DC electrode” of the

M-Z. When a bias is applied, the scaling of the input amplitude is
important, and the voltage driving the radio frequency (RF)
electrode of the M-Z is taken to be V � γm�t�u�t� ∈
�−γV π;RF; γV π;RF�. The input signal therefore has the form

Ain�t� � sin

�
π

2

�
γm�t�u�t�
V π;RF

� V 0

V π;DC

��
: (4)

In our case, we measured V π;DC � 7.54 V and
V π;RF � 7.27 V. The AWG followed by RF amplifiers provides
a maximum voltage amplitude V of 3.27 V on both RF electrodes
of the M-Z, corresponding to the possibility to tune γ in the range
of [0,0.45]. All the results presented here were obtained with a
maximum power at the output of the M-Z (i.e., at the entrance
of the cavity) of 2.11 mW for unbiased masked input signal (re-
spectively 5 mW for biased masked input signal). This value was
chosen to provide a sufficient signal-to-noise ratio (SNR) on the
readout photodiode, while avoiding Brillouin backscattering
issues. However, we experimentally showed that we can decrease
the power at the output of the M-Z to as low as 0.57 mW for
unbiased masked input signal (respectively 1.35 mW for biased
masked input signal) without affecting performance. Below this
level, the SNR on the photodiode was too small.

The reservoir itself consists of a ∼230 m long passive fiber cav-
ity (made of single-mode fiber SMF-28e), corresponding to a
roundtrip time of T � 1.13209 μs. With the desynchronization
parameter k � 1, and using N � 50 internal variables (which we
use for most tasks), we therefore have T 0 � 1.10989 μs, and the
temporal length of each internal variable is equal to θ � 22.2 ns.
The output refresh rate 1∕T 0 ∼ 0.9 MHz can be seen as the
processing speed of our RC. It is quite low due to the use of rather
slow electronics (AWG and photodiode) and a correspondingly
long fiber cavity. However, this is not a fundamental limit since
the refresh rate can in principle be easily increased by using a
smaller cavity and faster electronics.

The input signal Ain�t� is injected into the passive fiber cavity
using a 90/10 coupler, corresponding to β � �0.1�1∕2 � 0.316.
A tunable optical attenuator is used to adjust the feedback gain in
the range 0 < α < 0.806.

Fig. 1. Experimental setup: Blue lines (dark gray) correspond to fiber
optic and orange lines (light gray) to electrical connections. Laser, long
coherence telecom wavelength laser; I, isolator; PC, polarization control-
ler; M-Z, amplitude modulator (lithium niobate Mach–Zehnder inter-
ferometer in push–pull configuration); OA, optical attenuator; PFS,
piezoelectric fiber stretcher; AWG, arbitrary waveform generator; DL,
delay loop; HV ampli., high-voltage amplifier; PID, proportional–
integral–derivative regulator; Ph., photodiode; Osc., oscilloscope. The
PC inside the cavity is used to control the Jones matrix of the cavity,
and the PCs before the cavity ensure that A�t� and the counterpropagat-
ing control signal are on the two different polarization eigenmodes of the
cavity.

Research Article Vol. 2, No. 5 / May 2015 / Optica 440



In order to stabilize the fiber cavity, 10% of the laser light
intensity is coupled into it in the counterpropagating direction
using a 90/10 coupler (see Fig. 1), and its intensity is used as
a control signal processed by a proportional–integral–derivative
(PID) regulator that drives a piezoelectric fiber stretcher inserted
in the cavity. In this way the phase detuning Δφ of the cavity can
be precisely controlled. A 90/10 coupler is finally used to send
10% of the optical intracavity power to the readout photodiode.
A digital oscilloscope records the photodiode signal. The oscillo-
scope record is used in a digital postprocessing stage realized by a
computer to compute the readout weights W i , to produce the
output y�n�, and to estimate the performance on specific tasks.
Note that no time averaging is used in the oscilloscope recording,
contrary to some earlier experiments.

The results of the experiment were carefully compared with
discrete time simulations. Further details on the experimental
setup and simulations are provided in Appendix A.

4. RESULTS

Here we present the results we obtained both experimentally and
through simulations for different benchmark tasks widely used in
the reservoir computing community. Except where indicated, we
used N � 50 internal variables and a ridge parameter of 10−4. As
there are many parameters to scan (α, Δφ, V 0∕V π;DC, γ, and the
ridge parameter), the reliability of our simulations allowed us to
experimentally scan only the regions in parameter space that
provide good performance. The experimental results are then
compared with the simulation results within these regions.
The experimentally reachable parameter ranges with our setup
are the following: α ∈ �0.366; 0.806�, Δφ ∈ �−π; π� rad,
V 0∕V π;DC ∈ �−1; 1�, and γ ∈ �0; 0.45�. When V 0∕V π;DC � 0,
γ was always set to its maximum experimental reachable value.

For each choice of these parameters, we repeated the experi-
ment 10 times with 10 different input series, averaging the per-
formance obtained, except for the speech recognition task. This
performance is then compared with the best published results
obtained to date with different reservoir computer architectures
[7,12–17,21,22,24,29,31,32].

In the following subsections, we provide a small description for
each of these tasks. For a more in-depth description, see [13,15].

A. Memory Capacity Evaluation

In this basic task we test the ability of the reservoir to recall simple
linear or nonlinear functions P of previous inputs u�n − l�. Three
different memory capacities (MCs) are considered [33,34], i.e.,
the linear, quadratic, and cross-memory capacities. The memory
function MF�l� is computed as MF � 1 −NMSE ∈ �0; 1�
(NMSE, normalized mean square error) and is obtained by com-
puting the correlation between P and the reservoir states, as is
done in [33]. The total memory is the sum of the three different
memory capacities. Theoretically it cannot exceed the number of
internal variables [33]. Table 1 reports the best values obtained for
each memory capacity, as well as for the total memory capacity,
compared with three other architectures [13,15,17]. The results
were obtained using 10 datasets of 2200 input samples randomly
drawn from a uniform distribution in the interval �−1; 1� (except
for the total memory in simulation, in which case 10 datasets of
60,000 input samples were used, to lower statistical noise, given
that the total memory in our particular reservoir architecture is
very close to the maximum).

Note that all the memory capacity results obtained experimen-
tally for the three architectures [13,15,17] selected for comparison
and reported in Table 1 are taken from [17]. The reasons are that
memory capacity results for the optoelectronic architecture [13]
were first reported in [17], and that the memory capacity results
for the semiconductor optical amplifier (SOA) based architecture
published in [15] contain mistakes that were corrected in [17].

The linear memory we obtained is comparable to the one ob-
tained for the SOA-based RC [15], but lower than for the opto-
electronic [13] and saturable absorber (SA) based [17] RCs. The
quadratic memory is about three times larger than the values re-
ported for the optoelectronic [13] and SOA-based [15] RCs, and
more than five times larger than for the SA-based RC [17]. The
cross-memory is slightly larger than that obtained for the opto-
electronic architecture [13], but more than six times larger than
with the SOA-based RC [15], and two times larger compared
with the SA-based RC [17]. Finally, the total memory capacity
is comparable to that obtained for the optoelectronic RC [13],
and larger than those obtained for the SOA [15] and SA [17]
based RCs.

In summary, for most of the memory capacity evaluations, our
reservoir architecture exhibits comparable or better performance

Table 1. Memory Capacity Evaluationa

Linear Memory Quadratic Memory Cross-Memory Total Memory

MF LMF�l�:P�u�n − l��
� u�n − l�

QMF�l�:P�u�n − l��
� 3u2�n − l� − 1

XMF�l ; l 0�:P�u�n − l�; u�n − l 0��
� u�n − l�u�n − l 0�

MC LC � Pl�lmax

l�0 LMF�l� QC � Pl�lmax

l�0 QMF�l� XC � Pl�lmax

l�0

Pl 0�l 0max

l 0�l�1 XMF�l ; l 0� C � LC�QC� XC

Sim. LC � 22.61	 0.07 QC � 13.25	 0.23 XC � 33.90	 0.82 C � 49.99	 0.13
Exp. LC � 21.14	 0.34 QC � 12.07	 0.10 XC � 30.20	 0.46 C � 48.37	 0.47
[13] LC � 31.9 QC � 4 XC � 27.3 C � 48.6
[15] LC � 20.84 QC � 4.16 XC � 4.71 C � 25.20
[17] LC � 36.8 QC � 2.23 XC � 14.32 C � 37.05

aMF, memory function; MC, memory capacity; Sim., simulation results of our architecture; Exp., experimental results of our architecture; LMF, linear memory function;
LC, linear capacity; QMF, quadratic memory function; QC, quadratic capacity; XMF, cross-memory function; XC, cross capacity; C, (total) capacity. The conditions under
which these results were obtained in both simulation and experiment are as follows: LC was obtained for α � 0.806 and by scanningΔφ in the range [0,1.42] rad, V 0∕V π;DC

in the range �−0.6; −0.53�, and γ in the range [0.33,0.45] (without any precompensation of the masked input signal); QC was obtained for α � 0.806, Δφ � 0 and by
scanning V 0∕V π;DC in the range �−0.22; 0.85� and γ in the range [0.3,0.45] (without any precompensation of the masked input signal); and XC and C were obtained for
α � 0.806, Δφ � 0, and V 0∕V π;DC � 0 (with precompensation of the masked input signal).
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than the three experimental RC setups [13,15,17] taken for com-
parison, sometimes several times larger. The fact that the exper-
imental total capacity C is very close to the maximum value (50)
indicates that very little noise is affecting the experiment.

Note that the simulation model is in good agreement with the
experimental results. As there is no noise in the simulation, the
total memory capacity in simulation is found to be extremely
close to the maximum value of 50, in agreement with theoretical
expectations.

B. NARMA10

The nonlinear auto-regressive moving average (NARMA10) task
is one of the most-used benchmark tasks in the field of reservoir
computing [1,7,11–13,32]. The aim is to reproduce the behavior
of a nonlinear, 10th-order system with random input u�n� drawn
from a uniform distribution over the interval [0,0.5]. The target
output is the following:

y��n� 1� � 0.3y��n� � 0.05y��n�
�X9
i�0

y��n − i�
�

� 1.5u�n − 9�u�n� � 0.1: (5)

We trained the reservoir over 1000 steps (1000 values of u�n�),
and tested its performance for the subsequent 1000 steps. The
standard deviation was evaluated by repeating this procedure
10 times. The performance obtained was measured using the
NMSE, defined by

NMSE �
P

n�y��n� − y�n��2P
n

�
y��n� −

P
n
�y��n��
n

�
2
: (6)

For this task, all the results below were obtained with a pre-
compensated masked input signal and no bias V 0∕V π;DC � 0.
Using N � 50 internal variables, we obtained a NMSE of
0.104	 0.02 for the simulation and an experimental NMSE
of 0.107	 0.012. This performance was obtained with
α � 0.806, and Δφ was scanned in the ranges of [0,1.81] rad
and [2.61,3.67] rad. This surpasses the best result reported in ex-
periment to date with N � 50. For instance, in [13] a NMSE �
0.168	 0.015 was obtained with the same number of variables.
The value NMSE � 0.16 in fact corresponds to the best that can
be obtained with a linear shift register [12].

Our simulation model predicts very well our experimental
results. Simulations also showed that our results are strongly
dependent on the oscilloscope resolution: by increasing the
acquisition resolution from 8 to 14 bits in our simulation model
(thus decreasing the quantization noise), we reach a NMSE of
0.062	 0.008, which is a very good result. This simulation result
was obtained with α � 0.806 and Δφ scanned in the range �0; π�
rad. The optimum was reached for Δφ � 0.38 rad. This is in the
range already scanned for the results mentioned above with a res-
olution acquisition of 8 bits, which implies that the increase in
performance is only due to the increase of the oscilloscope reso-
lution. This result is, to our knowledge, better than any result
published up to now with N � 50 internal variables (note that
using 50 variables, the algorithm reported in [7] obtained
NMSE � 0.152	 0.0138). We attribute this very good perfor-
mance to our architecture in which the reservoir is linear and the
readout quadratic. Indeed the nonlinearities exhibited by the
NARMA10 equation are mainly quadratic.

The performance for the NARMA10 task strongly depends on
the number of internal variables. Upon increasing the number of
internal variables to N � 300, we obtained NMSE � 0.0484	
0.0095 in experiment, and NMSE � 0.0463	 0.0142 in sim-
ulation. These results were obtained with α � 0.806 and Δφ
scanned in the range of [0.26,2.35] rad.

Finally it should be noted that using the simple algorithm
given by Eqs. (2) and (3) (that is, without the experimental con-
straints set out in Appendix A and at the end of the first paragraph
of this section), we obtained NMSE � 0.0106	 0.0030 with
N � 400 internal variables. This performance was obtained by
scanning α in the range [0.7,0.99] and Δφ in the range �0; π�
rad. Using the same number of internal variables, a simulation
result of NMSE � 0.022 is reported in [12]. A NMSE �
0.018 is also reported in [32] using N � 520 internal variables.

C. Nonlinear Channel Equalization

In this task, first used in the context of RC in [3], the goal is to
recover an input symbol sequence d�n� from the signal received at
the output u�n� of a standardized nonlinear multipath RF chan-
nel, defined as follows:

q�n� � 0.08d �n� 2� − 0.12d �n� 1� � d�n� � 0.18d�n − 1�
− 0.1d�n − 2� � 0.091d�n − 3� − 0.05d �n − 4�
� 0.04d�n − 5� � 0.03d�n − 6� � 0.01d �n − 7�; (7)

u�n� � q�n� � 0.036q2�n� − 0.011q3�n� � ν�n�: (8)

Here ν�n� is a Gaussian noise with zero mean, adjusted to yield
SNRs ranging from 12 to 32 dB. The symbols d �t� are randomly
chosen between four values f−3; −1; 1; 3g. The performance is
evaluated in terms of symbol error rate (SER), which is the frac-
tion of misclassified symbols.

For this task, we used 50 internal variables, 3000 training sam-
ples, and 6000 test samples. The standard deviation reported in
Fig. 2 was evaluated by repeating this procedure 10 times. The

Fig. 2. Experimental and simulation results for the nonlinear channel
equalization task. Horizontal axis, signal-to-noise ratio of the nonlinear
channel; vertical axis, symbol error rate, i.e., number of misidentified
symbols. These results were obtained with Δφ � 0 rad, γ � 0.45
and without any precompensation of the masked input signal. To get
the best performances for each SNR, α was scanned in the range
[0.45,0.55], V 0∕V π;DC in the range �−0.5; 0.5�, and the ridge parameter
from 10−6 to 10−4. Note that at 28 and 32 dB SNR, the SER is zero for
the passive coherent RC, both in simulation and in experiment.
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results obtained are reported in Fig. 2 and compared to the ones
obtained in [13,17].

Again, we can see that our passive coherent RC architecture
outperforms the previous architectures, using the same test
conditions. In particular, for SNRs of 28 and 32 dB we
obtained, both in simulation and experimentally, a SER of
0%, which means that all 60,000 symbols were correctly identi-
fied. Such very good performance was never attained in previous
experiments.

D. Isolated Spoken Digits Recognition

The goal of this task is to classify 10 digits pronounced 10 times
by five different female speakers, first without noise and then with
babble noise added to the sound records to reach a SNR of 3 dB,
following the procedure explained in [24]. The data were taken
from the NIST TI-46 Corpus [35] (National Institute of
Standards and Technology Texas Instrument-46 Corpus), and
the recording was preprocessed according to the Lyon cochlear
ear model [36]. Ten output classifiers were trained, one for each
digit. Each classifier was trained to output «� 1 » if a specific
digit was sent to the reservoir, and « − 1 » otherwise. A win-
ner-takes-all approach between the classifiers was then used to
select the actual response of the reservoir.

For a better estimation of the performance, a cross-validation
procedure was applied over five subsets of 100 words, chosen
randomly. The reservoir was trained on four of the subsets,
and then tested on the fifth one. This procedure was repeated
five times, so that each subset was used once as a test subset.
The performance values, evaluated in terms of word error rate
(WER), which is the fraction of misclassified digits, are reported
in Table 2.

Again, we can see that our simulation results are very close to
the results obtained experimentally. With no noise on the input
signal, we obtained, using 200 internal variables, an experimental
WER of 0%, which means that all the 500 digits were well clas-
sified. A WER of 0% obtained in simulation is also reported in
[22] using 400 internal variables. Our result surpasses the one
obtained with the optoelectronic RC [13] (WER of 0.4%) with
N � 200 internal variables. A WER of 3	 �1.2�% is also re-
ported in [15] using N � 200.

Experimental results on this task are also reported in
[12,14,16,21,22,31]. The reported WERs are 0.2% [12],
0.04�	0.017�% [14], 0.014��0.051∕−0.014�% [16,22],
0.6�	0.2�% [31], and 0.05% [21]. In these works, N � 400
in [12,14,21], N � 388 in [16,22], N � 150 in [31], and for
the cross-validation procedure, the reservoir was trained on
475 spoken digits and tested on 25 digits. Concerning speed,

it should be noted that the setup presented in [16] carried out
this task with a refresh rate slightly more than 14 times faster than
in the present experiment, while our setup is almost 19 times
faster than in [14], 7.2 ×105 times faster than in [12], and more
than 200 times faster than in [31].

This task can be made more complicated by adding back-
ground babble noise. With a SNR of 3 dB, we experimentally
obtained WER � 0.8�	0.8�% with N � 500. Unfortunately,
we cannot compare this performance because it has never been
tested experimentally until now. In simulation we obtain a
WER � 0.6�	0.9�% with N � 500. This can be compared
to the simulation results of WER � 4.5% [24] using N � 81
and of WER � 1% [29] using N � 500.

On this task, our algorithm (i.e., the simple algorithm given by
Eqs. (2) and (3), without the experimental constraints set out in
Appendix A and at the end of the first paragraph of this section)
reaches WER � 0 with N � 90 for noiseless signal, and
WER � 0 with N � 350 for noisy signal. These later results
were obtained with precompensation of the masked input signal
and without any bias. α was scanned from 0.8 to 0.99, Δφ was
scanned in the region of �0; π� rad, and the ridge parameter was
scanned from 10−6 to 10−4.

5. CONCLUSIONS

In this work we have demonstrated a photonic implementation of
a passive linear fiber reservoir computer working with coherent
light for analog signal processing. This experiment presents many
qualities that were either absent or not simultaneously present in
previous works: we can perform analog optical signal processing,
the easy tunability of each key parameter achieves the best
operating point for each task, the system is able to reach a
strikingly weak noise floor thanks to the absence of active ele-
ments in the reservoir itself, richer dynamics is provided by op-
erating in coherent light, and finally high power efficiency is
yielded as a result of the passive nature and simplicity of the setup.
Note that at this stage we have only obtained low optical power
consumption for the reservoir itself, and have not tried to
minimize the overall power consumption, including all control
electronics.

The main challenge was to stabilize the system, as our reservoir
is a long interferometer made of an optical fibered cavity of ap-
proximately 230 m. In the future, faster electronics (photodiode,
AWG, and oscilloscope) will enable smaller, possibly even inte-
grated, cavities, and hence much simpler stabilization. In addi-
tion, our expertise in interferometric stabilization will allow us
in the future to study photonic reservoir computers in which
the reservoir states are processed in parallel, rather than sequen-
tially, providing significant further speedup.

On the different tasks we tested, the present experiment has
error rate as low as or lower than previous experiments. For in-
stance, the NARMA10 task was up to now considered as a big
challenge, and no experiment with performance exceeding a linear
shift register had been reported before this work.

Quite remarkably, through its conceptual simplicity, our
experimental approach has also contributed to the theory of res-
ervoir computing. Indeed, the discrete time Eqs. (2) and (3) con-
stitute a very simple high-performance reservoir computer
algorithm. In particular, it combines three advantages: (1) the
simple interconnection matrix first introduced in [7]; (2) the sim-
plicity of a linear reservoir associated with a nonlinear output

Table 2. Experimental and Simulation Results for the
Isolated Spoken Digit Recognition Taska

No Noise on the Signal,
with 200 Internal

Variables

SNR � 3 dB, with
500 Internal
Variables

Simulation WER � 0% WER � 0.6�	0.9�%
Experiment WER � 0% WER � 0.8�	0.8�%
aThese results were obtained with precompensation of the masked input signal,

no bias, and α � 0.806. The ridge parameter was scanned from 10−6 to 10−4, and
Δφ was scanned in the range of [−1.62; 0.19] rad.

Research Article Vol. 2, No. 5 / May 2015 / Optica 443



layer; and (3) very good performance on benchmark tasks even
when a small number of internal variables is used. Our algorithm
thus seems very computationally efficient and could also find ap-
plications in numerical implementations of reservoir computers.
This should, however, be confirmed by a more detailed compari-
son with other RC algorithms.

Given the good performance and conceptual simplicity of the
experiment reported here, one can expect that this architecture
constitutes an important milestone in the future progress in pho-
tonic reservoir computing.

APPENDIX A

1. Numerical Simulations

Our simulation model is based on the discrete time Eqs. (2) and
(3), with the nonlinear preprocessing (4) taken into account when
relevant. In addition, the simulation includes the effects of the
most important features of the components of our experimental
setup: the 14 bits of resolution of the AWG, the 8 bits of
resolution of the oscilloscope, the saturation transfer function
of the RF amplifiers used to amplify the signal sent to the
M-Z from the AWG, the low cutoff frequency of these RF
amplifiers (30 kHz to 12 GHz bandwidth), and the low cutoff
frequency of the photodiode used to read the jxi�n�j2 (30 kHz
to 1 GHz bandwidth).

2. Interferometric Stabilization and Phase Detuning
Setting

Our reservoir is a fiber optic cavity with a roundtrip time
T � 1.13209 μs corresponding to approximately 230 m of fiber.
This cavity thus needs to be phase stabilized. This is done using a
piezoelectric fiber stretcher that compensates phase shifts intro-
duced in the cavity by thermal, vibrational, and phonic noise.
To this end, a nonmodulated optical signal, the control signal,
is sent in the cavity in the opposite direction compared to the
reservoir states signal coded in A�t�, as shown in Fig. 1. This sig-
nal is collected by a photodiode, which drives a digital PID regu-
lator. The output signal of the PID regulator is then amplified in
order to control the piezoelectric fiber stretcher.

The polarization controller inside the cavity (see Fig. 1) is used
to tune the Jones matrix of the cavity (the polarization transfer
matrix of the cavity), and thereby tune “the phase offset” between
the two polarization eigenmodes of the cavity. The reservoir states
signal and the counterpropagating control signal are injected on
the two different polarization eigenmodes of the cavity. The PID
stabilizes the cavity on one of the slopes of the control signal res-
onance. By changing the Jones matrix of the cavity, the phase
distance between the resonances of the reservoir states signal
and the control signal can be arbitrarily adjusted, and thus the
detuning Δφ appearing in Eq. (1) can be adjusted to an arbitrary
value.

This is illustrated in Fig. 3, which shows the measured cavity
transfer function for two nonmodulated input signals coupled in
counterpropagating directions in the cavity, on the two different
polarization eigenstates.

In order to minimize the phonic, vibrational, and thermal
noise, we isolated every cavity component in several boxes made
of 1–2 cm thick aluminum plates with stone wool inside, as
shown in Fig. 4 for the delay loop.

All the boxes fit together so that the isolation system of the
whole cavity is almost airtight. These boxes were designed to iso-
late the cavity from the phase noise frequencies that the PID regu-
lator is not able to follow, as its output refresh rate of 8.3 kHz is
limited by the resonance frequency of the piezoelectric fiber
stretcher. Moreover, the whole experiment is placed on an optical
table maintained on air cushions.

Note that in this first implementation, the comparatively long
fiber cavity (230 m) was designed so as to be able to use rather
slow electronics (AWG and photodiode). In future work we in-
tend to use faster electronics, and hence a smaller cavity. A smaller
cavity will be much easier to stabilize and isolate from sources of
phase noise. An implementation on a chip, as in [29], will not
require any stabilization (except for thermal control of the whole
chip).

3. Experimental Setup Components

Table 3 presents the relevant technical characteristics of the main
components used in our hardware setup.

Fig. 3. Resonances of the cavity. Two CW signals are coupled in coun-
terpropagating directions in the cavity, on the two polarization eigenm-
odes of the cavity. A voltage ramp is applied to the piezoelectric fiber
stretcher in order to scan the cavity phase, and the output power is re-
corded. The optical attenuator was set at its maximum transparency.

Fig. 4. Isolation system of the delay loop, open. It consists of two alu-
minum boxes: a small box made of 1 cm thick plates inside a bigger box
made of 2 cm thick plates. The inner plates of both boxes are covered
with stone wool. Each box is isolated from the base on which it rests by
sorbothane sheets that absorb vibrations.

Research Article Vol. 2, No. 5 / May 2015 / Optica 444



Action de Recherche Concertée (ARC) (AUWB-2012-12/17-
ULB9); Interuniversity Attraction Poles (IAP) program of the
Belgian Science Policy Office (BELSPO) (IAP P7-35 “photo-
nics@be”); European Research Council (ERC) (Naresco (ref.
239599)); Fonds de la Recherche Scientifique FRS-FNRS
(FRFC: T.0092.14); Fonds pour la formation à la Recherche dans
l’Industrie et dans l’Agriculture (FRIA).

REFERENCES

1. H. Jaeger, “The “echo state” approach to analysing and training recurrent
neural networks,” Tech. Rep. GMD Report 148 (German National
Research Center for Information Technology, 2001).

2. W. Maass, T. Natschläger, and H. Markram, “Real-time computing with-
out stable states: a new framework for neural computation based on per-
turbations,” Neural Comput. 14, 2531–2560 (2002).

3. H. Jaeger and H. Haas, “Harnessing nonlinearity: predicting chaotic sys-
tems and saving energy in wireless communication,” Science 304, 78–80
(2004).

4. F. Triefenbach, A. Jalal, B. Schrauwen, and J.-P. Martens, “Phoneme
recognition with large hierarchical reservoirs,” in Advances in Neural
Information Processing Systems (2010), Vol. 23, pp. 2307–2315.

5. L. Boccato, A. Lopes, R. Attux, and F. J. Von Zuben, “An echo state net-
work architecture based on Volterra filtering and PCA with application to
the channel equalization problem,” in International Joint Conference on
Neural Networks (IEEE, 2011), pp. 580–587.

6. L. Boccato, A. Lopes, R. Attux, and F. J. Von Zuben, “An extended echo
state network using Volterra filtering and principal component analysis,”
Neural Networks 32, 292–302 (2012).

7. A. Rodan and P. Tino, “Simple deterministically constructed recurrent
neural networks,” in Intelligent Data Engineering and Automated
Learning (IDEAL) (Springer, 2010), pp. 267–274.

8. P. Buteneers, D. Verstraeten, P. Van Mierlo, T. Wyckhuys, D.
Stroobandt, R. Raedt, H. Hallez, and B. Schrauwen, “Automatic detec-
tion of epileptic seizures on the intra-cranial electroencephalogram of
rats using reservoir computing,” Artificial Intelligence Medicine 53,
215–223 (2011).

9. E. A. Antonelo, B. Schrauwen, and D. Stroobandt, “Event detection and
localization for small mobile robots using reservoir computing,” Neural
Networks 21, 862–871 (2008).

10. M. Lukoševičius, H. Jaeger, and B. Schrauwen, “Reservoir computing
trends,” Künstl. Intell. 26, 365–371 (2012).

11. M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to re-
current neural network training,” Comput. Sci. Rev. 3, 127–149 (2009).

12. L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar,
J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information
processing using a single dynamical node as complex system,” Nat.
Commun. 2, 468 (2011).

13. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M.
Haelterman, and S. Massar, “Optoelectronic reservoir computing,” Sci.
Rep. 2, 287 (2012).

14. L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L.
Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information process-
ing beyond Turing: an optoelectronic implementation of reservoir com-
puting,” Opt. Express 20, 3241–3249 (2012).

15. F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar,
“All-optical reservoir computing,” Opt. Express 20, 22783–22795
(2012).

16. D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel pho-
tonic information processing at gigabyte per second data rates using
transient states,” Nat. Commun. 4, 1364 (2013).

17. A. Dejonckheere, F. Duport, A. Smerieri, L. Fang, J.-L. Oudar, M.
Haelterman, and S. Massar, “All-optical reservoir computer based on
saturation of absorption,” Opt. Express 22, 10868–10881 (2014).

18. D. Brunner, M. C. Soriano, and I. Fischer, “High-speed optical vector and
matrix operations using a semiconductor laser,” IEEE Photon. Technol.
Lett. 25, 1680–1683 (2013).

19. M. C. Soriano, S. Ortín, D. Brunner, L. Larger, C. R. Mirasso, I. Fischer,
and L. Pesquera, “Optoelectronic reservoir computing: tackling noise-
induced performance degradation,” Opt. Express 21, 12–20 (2013).

20. M. Hermans, M. Soriano, J. Dambre, P. Bienstman, and I. Fischer,
“Photonic delay systems as machine learning implementations,”
arXiv:1501.02592v1 (2015).

21. M. C. Soriano, S. Ortin, L. Keuninckx, L. Appeltant, J. Danckaert, L.
Pesquera, and G. Van Der Sande, “Delay-based reservoir computing:
noise effects in a combined analog and digital implementation,” IEEE
Trans. Neural Netw. Learn. Syst. 26, 388–393 (2015).

22. K. Hicke, M. A. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer,
and C. R. Mirasso, “Information processing using transient dynamics of
semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top.
Quantum Electron. 19, 1501610 (2013).

23. R. M. Nguimdo, G. Verschaffelt, J. Danckaert, and G. Van der Sande,
“Fast photonic information processing using semiconductor lasers with
delayed optical feedback: role of phase dynamics,” Opt. Express 22,
8672–8686 (2014).

24. K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P.
Bienstman, “Parallel reservoir computing using optical amplifiers,”
IEEE Trans. Neural Netw. 22, 1469–1481 (2011).

25. K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P.
Bienstman, and J. Van Campenhout, “Toward optical signal processing
using photonic reservoir computing,” Opt. Express 16, 11182–11192
(2008).

Table 3. Technical Description of the Most Important
Hardware Components

Equipment Technical Description

Laser Koheras adjustik KOH1995 laser:
- Wavelength: 1550 nm
- Full width at half-maximum (FWHM):
1 kHz
- Maximum output power: 100 mW

Reservoir Optical fibered cavity made with 2 90/10
couplers and one optical attenuator:
- Maximum feedback gain in
electromagnetic field amplitude: 0.806
- Minimum FWHM: 60.3 kHz
- Maximum finesse: 14.65

Arbitrary waveform
generator

Agilent AWG M8190A:
- 14 bits resolution
- Sample rate from 125 MSamples/s to 8
GSamples/s
- DC to 5 GHz analog bandwidth
- Up to 128 MSamples arbitrary waveform
memory per channel

Acquisition system:
oscilloscope

Agilent DSA91204A:
- 12 GHz bandwidth
- Up to 40 GSamples/s on each of four
analog channels
- 1 GSamples memory per channel

PID regulator Homemade PID regulator programmed
using mbed NXP LPC1768 development
board:
- Processor: 32-bits ARM Cortex-M3 core
running at 96 MHz
- Analog-to-digital converter (ADC):
12 bits resolution
- Digital-to-analog converter (DAC):
10 bits resolution
- Output refresh rate: 8.3 kHz

Mach–Zehnder
interferometer

Lucent electro-optic modulator:
- Model: X2624C
- 20 GHz analog bandwidth

Reservoir states
readout photodiode

New focus low-noise photoreciever, model
1611 IR 1 GHz:
- Bandwidth (3 dB): 30 kHz to 1 GHz
- Risetime: 400 ps
- Current gain: 700 V/A
- Responsivity at 1550 nm: 1.04 A/W

Research Article Vol. 2, No. 5 / May 2015 / Optica 445



26. C. Mesaritakis, V. Papataxiarhis, and D. Syvridis, “Micro ring resonators
as building blocks for an all-optical high-speed reservoir-computing
bit-pattern-recognition system,” J. Opt. Soc. Am. B 30, 3048–3055
(2013).

27. H. Zhang, X. Feng, B. Li, Y. Wang, K. Cui, F. Liu, W. Dou, and Y. Huang,
“Integrated photonic reservoir computing based on hierarchical time-
multiplexing structure,” Opt. Express 22, 31356–31370 (2014).

28. M. A. A. Fiers, T. Van Varenbergh, F. Wyffels, D. Verstraeten, B.
Schrauwen, J. Dambre, and P. Bienstman, “Nanophotonic reservoir
computing with photonic crystal cavities to generate periodic patterns,”
IEEE Trans. Neural Netw. Learn. Syst. 25, 344–355 (2014).

29. K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D.
Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman,
“Experimental demonstration of reservoir computing on a silicon photon-
ics chip,” Nat. Commun 5, 3541 (2014).

30. A. Smerieri, F. Duport, Y. Paquot, B. Schrauwen, M. Haelterman, and
S. Massar, “Analog readout for optical reservoir computers,” in

Advances in Neural Information Processing Systems (2012), Vol. 25,
pp. 953–961.

31. R. Martinenghi, S. Rybalko, M. Jacquot, Y. K. Chembo, and L. Larger,
“Photonic nonlinear transient computing with multiple-delay wavelength
dynamics,” Phys. Rev. Lett. 108, 244101 (2012).

32. L. Appeltant, G. Van der Sande, J. Danckaert, and I. Fischer,
“Constructing optimized binary masks for reservoir computing with delay
systems,” Sci. Rep. 4, 3629 (2014).

33. J. Dambre, D. Verstraeten, B. Schrauwen, and S. Massar, “Information
processing capacity of dynamical systems,” Sci. Rep. 2, 514 (2012).

34. H. Jaeger, “Short term memory in echo state networks,” Tech. Rep. GMD
Report 152 (German National Research Center for Information
Technology, 2002).

35. Texas Instruments-Developed 46-Word Speaker-Dependent Isolated
Word Corpus (TI46), NIST Speech Disc 7-1.1 (1 disc) (1991).

36. R. Lyon, “A computational model of filtering, detection, and compression
in the cochlea,” in IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP) (IEEE, 1982), Vol. 7, pp. 1282–1285.

Research Article Vol. 2, No. 5 / May 2015 / Optica 446


