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Optoelectronic Systems Trained With Backpropagation Through Time
Michiel Hermans, Joni Dambre, and Peter Bienstman

Abstract— Delay-coupled optoelectronic systems form promising can-
didates to act as powerful information processing devices. In this
brief, we consider such a system that has been studied before in the
context of reservoir computing (RC). Instead of viewing the system
as a random dynamical system, we see it as a true machine-learning
model, which can be fully optimized. We use a recently introduced
extension of backpropagation through time, an optimization algorithm
originally designed for recurrent neural networks, and use it to let the
network perform a difficult phoneme recognition task. We show that full
optimization of all system parameters of delay-coupled optoelectronics
systems yields a significant improvement over the previously applied RC
approach.

Index Terms— Backpropagation through time (BPTT), delayed
dynamic systems, optical computing, physical neural networks.

I. INTRODUCTION

A rapidly growing body of research focuses on utilizing nonlinear
photonic systems for information processing, using the so-called
reservoir computing (RC) paradigm [1], [2]. RC is built on the con-
cept of using a high-dimensional, dynamical system determined by
randomly initialized parameters as a black-box information process-
ing device. The dynamical system (reservoir) is driven with an input
time series that needs to be processed. The high-dimensional reservoir
state will, as a result, offer a broad set of nonlinear functions of the
recent history of the input signal. Using linear regression, it is then
possible to map the reservoir state to the desired output. Despite the
apparent simplicity of the system, RC has, in certain cases, proven
to be a powerful tool in information processing [3].

Due to the fact that RC uses randomly initialized parameters,
it forms an ideal basis for photonic computation. There is no need for
precisely engineering a particular photonic component for a particular
type of data processing; a photonic reservoir simply needs to be able
to take in information and internally generate a large set of nonlinear
transformations. Research in this direction has lead to a number of
photonic systems being considered as viable candidates for RC. The
two most important ones are those based on optical networks [4], [5],
and those based on delay-coupled systems [6]–[8]. In both cases, the
ability to process data has been demonstrated on a number of tasks,
such as channel equalization, speech recognition, and so forth.

The RC, however, has one important disadvantage. Due to the
fact that the dynamics of the reservoir are determined by randomly
chosen parameters, many types of data processing remain difficult or
impractical to perform. Consider a simple example: suppose that one
wishes to construct a reservoir system to act as a synchronous two-bit
counter. In order for this to be possible, there must exist four distinct
stable attractors somewhere within the space of the reservoir state,
through which the system cycles each time a clock pulse arrives.
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The only way to obtain such a system in the RC approach is to
sample a reservoir with these particular properties by luck. Even
for such a simple device as a two-bit counter, the probability of
sampling a dynamical system with these exact properties in a small-
scale system is extremely small. If the desired behavior is even
more complex, a suitable reservoir might never be found by random
sampling. The only way to overcome this is to dramatically increase
the dimensionality of the state space, yielding systems that are
impractically large and certainly not competitive with alternative
technologies.

The concept of RC originated (among others) as a new method to
train recurrent neural networks (RNN). RNNs are abstract, discrete
time dynamical systems used for processing time series. The time-
honored method for optimizing (commonly called training in the
machine learning community) RNNs is known as backpropagation
through time (BPTT) [9], [10]. Essentially, one defines a cost function
based on the desired network output, and using the chain rule, one
determines the gradient of this cost function with respect to the
internal parameters of the system. The term BPTT stems from the fact
that, due to the recursion in RNNs, computing the gradient involves
propagating an error signal backward through the system updates,
i.e., backward in time.

In [11], we showed that BPTT can be extended to operate on
systems that operate in continuous time, and which are governed
by differential equations instead of a discrete update equation. It was
shown that it can provide robust solutions to surprisingly complicated
problems. Among others, it was successfully used to optimize the
parameters of an integrated optical amplifier network, showing that
it has potentially powerful applications in the domain of photonic
computation.

In this paper, we consider a photonic delay-coupled system as
proposed and studied in [7]. Rather than adhering to the RC paradigm,
we consider the system as a parametric model, which can be
optimized using gradient descent. We use BPTT to optimize most of
the system parameters and test this approach on a challenging speech
recognition task. We show that this approach can fully exploit the
computational power of the photonic system, and yield significantly
better results than the RC approach.

II. DELAY-COUPLED PHOTONICS

We use the setup first described in [7]. The system consists
of an electrically modulated Mach–Zehnder interferometer, which
introduces nonlinearity into the system and modulates the intensity
of a laser beam. This laser is fed into a very long optical fiber,
which acts as a physical delay line. At the other end of the fiber,
the light intensity is detected, converted to an electric signal, filtered
and amplified, and added to an external input signal, before finally
serving as the voltage signal that modulates the Mach–Zehnder
interferometer. A schematic depiction is shown in Fig. 1. This
particular system’s state variable, which we denote by a(t), can be
described by the following equation (taken from [7], but manipulated
to a more compact form):

τ ȧ(t) = −a(t)+ sin(μa(t − D)+ z(t)+ φ)/2. (1)

Here, τ is the time scale of the low-pass filtering operation in the
electronic amplifier, μ is the total amplification, D is the delay of
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Fig. 1. Schematic depiction of a DCMZ interferometer.

the system, z(t) is the external input signal, and φ is a constant
offset. We will consider φ = 0 for the remainder of this paper, as we
will include an offset in the input signal. For ease of notation, we
will denote the system with delay-coupled Mach–Zehnder (DCMZ).
In this paper, all work is performed in simulation, and all parameters
are considered to be dimensionless.

Delay-coupled systems of this sort can be used as reservoirs by
applying time multiplexing, of which we provide a brief overview
here, and refer the readers to [12] for more details. First of all,
we consider a multivariate discrete input time series, which we will
denote by s[i], for i ∈ {1, 2, . . . , S}, S the total number of samples.
This input time series is what we wish to process. We convert it to
the continuous time signal z(t) as follows:

z(t) = m0(t)+
ds∑

k=1

mk(t − i Pm )sk [i]

for Pm < t < (i + 1)Pm . (2)

Here, ds is the dimensionality of the input time series, and mk(t) are
masking signals and PM is the masking period. In other words, each
sample of the input time series is converted into a continuous-time
signal. Once this conversion has taken place, z(t) is used to drive the
system. The state variable a(t) is recorded at a high sample frequency,
and the time trace during one masking period then serves as the
reservoir state. This means that a discrete-time system is essentially
transformed into a continuous-time system, where each time step
from the discrete-time interpretation, corresponds to a time segment
of length PM . The discrete-time input sequence now corresponds to
a time concatenation of time segments of length Pm . The input signal
z(t) and the state variable a(t), even though they are scalar, can show
considerable time variation during one masking period, and this time
trace itself then encodes high-dimensional information.

The sample vectors of a(t) during one masking period are
commonly interpreted as representing virtual nodes. Indeed, one
interpretation of the DCMZ is that the delay line acts as a shift
register, which stores values that can be considered node (neuron)
activations. One after the other, they are propagated through the
system nonlinearity where the low-pass filter operation and the delay
coupling allows different nodes to interact with each other and the
input signal.

Formally, we define a[i] as the reservoir state, corresponding with
the i th input sample

a[i + 1] = [a (i Pm + δ) ; a (i Pm + 2δ) ; · · · ; a (i Pm + Nsδ) ; 1]

where δ = Pm/Ns , the time-separation between virtual nodes, and
Ns is the number of samples during one masking period. This is the
vector, which is send to the reservoir output and, which contains
information on the local history of the input. Note that the final
element is a constant equal to one by definition, which is needed
to provide any constant bias offset to the output. The output series
is defined as

o[i] = Ua[i] (3)

where Ns is the number of samples taken of a(t) during each masking
period, and U are the readout weights, a matrix of size (Ns+1)×do,
with do the dimensionality of the output. All related publications up
to this point have considered the masking signals mk (t) as piecewise
constant, with a number of intervals equal to the number of samples
per masking period. Accordingly, we will use the same approach.
We can define a matrix M of size (ds + 1)× Ns , such that

mk−1(t) = Mkl if (l − 1)
Pm

Ns
< t < l

Pm

Ns
. (4)

We have provided a schematic depiction of the masking process in
Fig. 2(a). In this paper, the elements of M will always be chosen
from a standard normal distribution, and next either scaled (in the
RC approach), or trained (in the BPTT training approach).

In summary, the DCMZ is fully described by (1) and the parame-
ters τ , D, μ, φ, M, and U. In the RC approach, all that is trained are
the output weights U. The elements of M are chosen randomly, and all
that is optimized is its global scaling, and the feedback strength μ, the
two parameters that determine in which dynamical regime the DCMZ
operates. The upside of this approach is its simplicity: the output
weights can be determined in a single shot by solving a linear system
of equations, and their determination does not depend on the internal
operation of the system. This has the added advantage that RC can
be applied even when the underlying dynamics of the system are
unknown or uncertain [for instance if other nonlinear effects appear
in the system than those described by (1)]. All that is required for
RC is to record the feature vectors a[i].

The downside is that a random input mask leads to a random
encoding of the input. More informative components of the input time
series are given the same weight as components that may contain only
noise, or otherwise carry no useful information for the task at hand.
In particular, if the dimensionality of s[i] is of the same order as
the dimensionality of the feature vectors a[i], random input weights
may cause obfuscation of the relevant information. Indeed, this is
illustrated by attempts to apply RC on the phoneme recognition,
where in order to obtain competitive performance, extremely large
reservoirs were needed [13], with tens of thousands of neurons. In the
case of delay-coupled systems, this would translate to using a very
long delay D and a very large number of samples Ns . A long delay,
on the other hand, would require a longer optical fiber, which would
lead to more attenuation and signal degradation, and would impair
one of the system’s greatest advantages: its speed.

III. BACKPROPAGATION THROUGH TIME

In [11], we have introduced an optimization strategy that can be
used to train the parameters of continuous-time dynamical systems.
It is able to fully account for all transient effects that occur within
nonlinear dynamical systems, and—more importantly—is able to
exploit these effects. The algorithm computes the gradient of a cost
function with respect to a set of trainable parameters, and then uses
this to update them. The gradient itself is computed by means of a
continuous-time variant of BPTT.

For the full derivation and proof of the general-case algorithm,
we refer to [11] and its supplementary material. Here, we will limit
ourselves to providing the key equations necessary for a delay-
coupled system like the DCMZ. More precisely, let us write (1) in a
more general form

ȧ(t) = f (a(t), a(t − D), z(t)). (5)

We represent the set of internal parameters of the DCMZ that we
wish to adapt (μ and M) by p. Note that the dependence on M is in
this case through the driving signal z(t). The next step is to define a
cost function CT , which is a function of the output of the system and
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Fig. 2. A: Schematic depiction of the masking principle. Each instance of
the time series s[i] is converted to a finite length signal through the masking
weights M. These are then concatenated in time to form z(t), which in turn
drives the dynamics that determine a(t) (where the white arrow indicates
the direction in which the differential equation progresses). Synchronously
with the input segments, a(t) is measured and multiplied with the output
weights U to form the output time series o[i]. B: Backpropagation process.
Here, an external time series eo[i] is converted into a continuous-time signal
ē(t), where now the masking weights come from U instead. As a consequence
of the fact that the output is a function of samples of a(t) at discrete moments
in time, ē is a series of scaled delta functions at the times of sampling. The
variable ē(t) in turn drives the differential equation that determines e(t), which
runs backward in time.

which we wish to minimize. In order to do this, we will compute the
gradients gp and gU of the total cost with respect to the parameter
sets p and U, respectively

gp = dCT

dp
gU = dCT

dU
. (6)

The gradient gU can be computed straightforwardly from the analytic
expression of the cost function. In [11], we show that

gp =
∫ T

0
e(t)k(t) (7)

with T the total time span in which the system state a(t) is defined,
and where

k(t) = ∂ f (a(t), a(t − D), z(t))

∂p

and the variable e(t) is the error signal, which satisfies the following
differential equation:

ė(s) = ē(s)+ j (s)e(s) + jD(s − D)e(s − D) (8)

where s = T − t , which means the differential equation is solved
backward in time, and

ē(t) = ∂CT

∂a(t)

j (t) = ∂ f (a(t), a(t − D), z(t))

∂a(t)

jD(t) = ∂ f (a(t), a(t − D), z(t))

∂a(t − D)
.

In this particular case, the signal ē(t) is formed in a very similar
way as the masking process described earlier. In this paper, we can
define the cost function as the sum of the costs of each output
instance o[i]

CT =
S∑

i=0

c(o[i]).

The chain rule then leads to

ē(t) = ∂CT

∂a(t)
=

S∑

i=0

∂c(o[i])
∂o[i]

∂o[i])
∂a[i]

∂a[i]
∂a(t)

.

The factor ∂c(o[i])/∂o[i] corresponds to a multivariate time series,
which we will denote by eo[i]. The factor ∂o[i]/∂a[i] corresponds
to the output weights U and the factor ∂a[i]/∂a(t) corresponds to a
set of delta functions, which are centered at the moments at which
the samples of the feature vectors a[i] are drawn. This means that
ē(t) is formed in almost the same manner as the input signal z(t)
with the elements of U now serving as the masking weights. The
only difference is that instead of a piecewise constant function, ē(t)
is a series of scaled delta functions. Note that in reality, a physical
measurement will not be instantaneous (as we assume here for the
samples that make up a[i]), but rather take an average over a certain
time span. If for instance, the measurement takes the average over one
masking time step δ, ∂a[i]/∂a(t) would lead to a piecewise constant
function as well.

Each element of k(t) stands for a different parameter. Note that the
partial derivative with respect to μ can be derived straightforwardly
from (1). To compute the partial derivative with respect to the
elements of M, we need to use the chain rule

∂ f (a(t), a(t − D), z(t))

∂M
= ∂ f (a(t), a(t − D), z(t))

∂z(t)

∂z(t)

∂M
.

The first factor can be computed straightforwardly from (1). The
second can be derived from the definition of z(t) from (2) and (4).

The process of computing e(t) is depicted in Fig. 2(b). Once the
gradients are computed, they can be used to update the parameter
set p as follows:

p← p− ηgp U← U − ηgU

with η a (small) learning rate.
In [11], a photonic application of BPTT was already demonstrated.

It was shown that circuits of semiconductor optical amplifiers could
be optimized to perform digital operations. However, the example
was concerned with training the physical design parameters of the
system, which requires an optimization phase in simulation, and
next the actual fabrication of the device. In the DCMZ described
in Section II, the parameters describing the output weights, masking
weights, and feedback strength are set electronically. Optimizing them
can be validated easily and quickly. In this paper, we explore the
use of gradient descent to train the weights M, U and the feedback
strength μ all simultaneously.

IV. PHONEME RECOGNITION

Previous work with delay-coupled reservoirs, including the DCMZ,
has among others focused on a spoken digit recognition task. The goal
was to classify spoken digits form zero to nine. The classification
error, however, is close to zero in most papers on the subject, and it
serves more as an example task to demonstrate the potential of the
system than for comparative reasons. When we attempted this task
using BPTT, we consistently got a zero classification error. Therefore,
we used the far more challenging TIMIT data set, which is often used
for machine learning benchmarking.
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A. TIMIT Data Set

The goal is to classify phonemes, which are the smallest segmental
unit of sound employed to form meaningful contrasts between
utterances. We used the internationally renowned TIMIT speech
corpus [14]. The speech is labeled by hand for each of the 61 existing
phonemes, which was reduced to 39 symbols as proposed in [15].
The TIMIT corpus has a predefined train and test set with different
speakers. The speech has been preprocessed using mel frequency
cepstral coefficient analysis [16]. The data has a dimensionality of
ds = 39.

For optimizing metaparameters, we chose a validation set using
roughly one tenth of the data in the training set. In this paper, we only
consider the frame error rate (FER), which is the fraction of frames
(time steps) that have been misclassified. Note that in true speech
recognition applications, one is more interested in the phoneme error
rate, which can be measured after the individual frames have been
clustered into a symbolic string of phonemes. In this paper, we are
only interested in the core mechanism that processes the data, i.e.,
the DCMZ, so we omit this step here.

B. Model Details

We make a comparison between the RC approach and the full train-
ing approach as performed by BPTT. For both setups, we consider
systems, which take Ns = 500 samples. In accordance to previous
paper, we choose τ = 5Pm/Ns , such that the low-pass filtering
operation spans roughly the time span of five virtual nodes. In the case
of the RC approach, the parameters μ, D, and the global scaling of
M are optimized on the validation set by means of a random search,
where we picked the best values found over 100 trials. In principle,
when using BPTT, such a search is not necessary. Final performance,
however, will still depend on the initial scalings of the trained
parameters, so here too we did a (small) search for good initial scaling
values for M and μ, based on only 20 trials. Note that in most work
on the DCMZ, the delay D and the masking period Pm are considered
equal, such that each virtual node receives its own previous activation
value as input, and all mixing interaction between virtual nodes is due
to the low-pass filter operation. Other work has used the DCMZ setup
without any low-pass filtering [6], and here a mismatch between D
and Pm is necessary to provide a mixing interaction between different
nodes. Here, we found that the exact delay parameter mattered very
little in either the RC approach or the fully trained network, as long
it was close to the masking period. In principle, it is possible to train
D as well. We found, however, that it always settled immediately to
a value very near to its initial value (less than the length of a single
mask step δ), such that it was of little use.

In [17], it was shown that the performance of DCMZs is limited
by output noise. More precisely, by the fact that the readout happens
by an analog-to-digital converter with a limited number of bits
(quantization noise). In order to take this effect into account, we
included 8-bit quantization (such that its values are quantized to
256 different levels) to the readout in all experiments, both during
training and testing. This ensures that BPTT does not find a nonrobust
solution, which would fail under realistic quantization levels. Due to
the fact that the quantization operation is nondifferentiable, we did
not include it in the error backpropagation phase (treating it as if it
was not there).

As the task at hand is a classification task, we add a so-called soft-
max function to the output (see for instance [18, Ch. 4]), generating a
probability for a certain output to belong to each class. The system is
trained to minimize the cross-entropy between the output probabilities
and the given probabilities (provided by the output labels: one for the
correct class and zero for all the others).

TABLE I
RESULTS ON THE TIMIT PHONEME DATA SET, EACH

AVERAGED OVER 10 EXPERIMENTS

We performed two additional sanity checks. First of all, we tried
out the more classic RC approach for training the output weights,
where they were determined using linear regression, and the cost
function is the squared error between the output and the labels.
Even though this approach is suboptimal for classification tasks,
linear regression has the advantage that the output weights can be
determined in a single shot. The other test we did was to train the
DCMZ with BPTT, but with random and fixed output weights (scaled
using the average scaling of trained output weights). The reasoning
behind this test is the fact that, when we compare BPTT to the RC
approach, BPTT has the inherent advantage that we simply train more
parameters, which should always lead to better performance. In this
case, the number of parameters for the input weights M and the
output weights U are roughly the same, such that we can measure
directly which of the two is more useful to train.

C. Training Details

For all experiments (except the one where the outputs were trained
using linear regression), we used 500 000 training iterations. As the
training set is far too large to compute each single gradient instance
on, each iteration we selected five sequences of 50 time steps, and
used the sum of the gradients to perform a single update, such that we
essentially used stochastic gradient descent. Given the fact that the
training set contains a little over 106 time steps in total, this means
that the training runs through the full training set roughly 100 times.

We chose the learning rate η at 5 · 10−4 at the start of training,
and decreased it with a fixed amount each training iteration until it
reached zero after 500 000 iterations. The parameters that are trained
are U, M, and μ, which have sizes 500× 40, 39× 501 and a scalar
value, respectively.

V. RESULTS

The resulting performances on the test set for the three used
approaches are shown in Table I. The DCMZ trained with BPTT out-
performs both reservoir implementations by a relatively large amount.
Interestingly, the approach with random and fixed output weights and
trained masking weights also yields significantly better performance
than the reservoir approach. This indicates that an optimized input
encoding is highly desirable compared with a random one as used
in the RC approach. Indeed, if input parameters are trained, they
can engage in a useful interaction with the internal dynamics of
the system, optimally extracting the required information from the
input stream. Training output weights cannot adapt the dynamics of
the DCMZ, and therefore optimizing them can only extract useful
information, which happens to reside within the reservoir.

The bottom result in Table I is the lowest FER on the TIMIT data
set mentioned in literature, shown for comparison. Note, however,
that most literature does not mention FER for the reasons mentioned
in Section IV-A, such that even better performances have very likely
been attained in other work.

The computing times for each method are also provided in Table I.
The RC approach, while having inferior performance, still has the
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Fig. 3. Top panel and middle panel: input mask M before and after training,
respectively. Vertical axis: different input channels of the 39-dimensional
feature vector. Horizontal axis: time. Bottom panel: average power spectrum
of the trained input masks mi (t).

advantage of very great speed compared with iterative gradient
descent methods. The two BPTT approaches take roughly twice as
long as the RC approach trained with cross-entropy. This makes sense
as in BPTT, each simulation of the DCMZ is accompanied by a
backward error propagation simulation, which has roughly the same
computational requirements as the forward simulation (simulation of
a differential equation of the same dimensionality and over the same
time span).

In order to gain some understanding of what is obtained by
training M, we visualized the elements of the input masks before and
after training in the top and middle panel of Fig. 3, where the vertical
axis stands for different input channels, and the horizontal axis is the
time direction. We showed those of the experiment in which both
input and output weights were trained. First of all, it turns out that
BPTT significantly increases the overal scaling of the input weights,
pushing the DCMZ in a strongly nonlinear regime. Furthermore,
it appears that different input channels have been scaled differently,
which indicates that BPTT is able to give different parts of the input
a proper weighting factor depending on how informative they are.
The bottom panel of Fig. 3 shows the average power spectrum of the
input masking signals. Note that fully random weights would lead to
a flat spectrum. It appears that lower frequency components in m(t)
are increased during training. This may partially be due to the low-
pass filter operation within the network, which reduces the transfer
of higher frequencies and therefore makes them less useful to encode
information.

One final noteworthy observation is that during the training
process, the amplification factor μ consistently grows and arrives at
large values. In our model, the DCMZ is asymptotically stable with
a single fixed point when μ ≤ 2 (the so-called edge of stability
known from echo state networks [1]). Here, we found, however,
that μ settled at values closer to 4, far beyond this boundary.
Indeed, in the absence of input (z(t) = 0), the trained DCMZs
show strong oscillatory behavior and do not settle to a stable fixed
point.

VI. CONCLUSION

Optoelectronic delay-coupled systems offer a promising platform
for serving as nonconventional data processing devices. We have

shown that it is possible to use a machine learning algorithm known
as BPTT to radically improve their performance on a challenging
phoneme recognition task. Instead of considering the system as
random, we were able to directly optimize the full set of system
parameters. This lead to a far better input representation of the data,
in turn leading to good performance.

The demonstrated success of the approach has profound implica-
tions for the research field of optoelectronic computation. Not only
can BPTT lead to far more efficient and robust processing, combined
with the DCMZs great speed and high degree of parallelism, it could
also provide the boost that makes photonic systems competitive with
more conventional processors. The presented optimization approach
can be applied on any photonic component, which has a dynamical
character (or even just internal delays), and this includes microscopic
on-chip photonic circuits. This means that it can be used beyond only
machine learning applications, but also to optimize the behavior of
basic photonic components.

Future work in this direction will need to overcome several
challenges. The system as was used in this paper has a total of 39 000
trainable parameters, yet this is very modest compared with common
well-performing machine learning models, which often have hundreds
of thousands or even several millions of trainable parameters [20].
There is little doubt that such a scale-up is necessary to tackle truly
difficult problems in time series processing, such that one of the most
pressing questions is how we can redesign the DCMZ, or similar
setups, such that they too are able to embed such a large number of
parameters.
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