Silicon-Organic Hybrid (SOH) Integration for Low-Power and High-Speed Signal Generation

C. Koos,1,2 W. Freude,1,2 J. Leuthold,1,2,7 M. Kohl,1 L. R. Dalton,3 W. Bogaerts,4 M. Lauermann,1 S. Wolf,1 R. Palmer,1,8 S. Koehler,1,2,9 A. Melikyan,1,2 C. Weimann,1 G. Ronniger,1 K. Geistert,1 P. C. Schindler,1,10 D. L. Elder,3 T. Wahlbrink,5 J. Bolten,6 A. L. Giesecke,5 M. Koenigsmann,6 M. Kohler,6 and D. Malsam6
1Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany
2Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
3University of Washington, Department of Chemistry, Seattle, WA, United States
4Photonics Research Group, Ghent University – imec, Department of Information Technology, Gent, Belgium
5AMO GmbH, Aachen, Germany
6Keysight Technologies, Boeblingen, Germany
7Now with: Institute of Electromagnetic Fields, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
8Now with: Coriant GmbH, Munich, Germany
9Now with: University of Cologne, Chemistry Department, 50939 Köln, Germany
10Now with: Infinera Corporation, Sunnyvale, CA, USA

e-mail: christian.koos@kit.edu

ABSTRACT
Silicon-organic hybrid (SOH) integration combines silicon photonic devices with electro-optic organic cladding materials. We demonstrate that SOH modulators can be used to generate advanced modulation formats with high symbol rates at low operating voltages and low energy consumption. Moreover, we show that the SOH approach can be extended to plasmonic waveguide structures, leading to the plasmonic-organic hybrid (POH) concept.

Keywords: Silicon Photonics, integrated modulators, organic electro-optic materials, silicon-organic hybrid (SOH), plasmonics

PROGRESS IN SOH INTEGRATION
Silicon photonics has emerged as a promising platform for integrated photonics [1]. In particular, high-speed optical transceivers, which are indispensable for terabit/s telecommunication links and optical interconnects, can benefit from high integration density, mature CMOS processing, and the possibility of electronic co-integration. These transceivers rely on efficient electro-optic IQ modulators, which support advanced modulation formats at high symbol rates. Implementation of such devices, however, is impeded by the fact that unstrained bulk silicon does not exhibit any second-order nonlinearity, and hence conventional silicon-photonic modulators have to rely on carrier injection or depletion [2]. This limits the modulation efficiency of high-speed devices and leads to a usually rather high energy consumption around 1 pJ/bit for non-resonant Mach-Zehnder modulators [3], [4].

Silicon-organic hybrid (SOH) integration can overcome these limitations by combing silicon-on-insulator (SOI) slot waveguides with cladding layers that consist of highly efficient organic electro-optic materials [5], [6]. In this presentation, we give an overview on our recent progress in the field of SOH integration. Substantial performance improvements of SOH devices were enabled by novel, highly efficient electro-optic materials [7], [8]. We demonstrated modulation at bandwidths of more than 100 GHz [9] and symbol rates of up to 64 GBd, including operation at elevated temperatures of 80°C. With respect to higher-order modulation formats, we showed 16QAM signal generation at symbol rates of up to 40 GBd and line rates of up to 160 Gbit/s [10]. SOH devices feature high energy efficiency, too: At symbol rates of 28 GBd, drive voltages of only 0.6 Vpp are required for 16QAM generation, leading to an energy consumption of 19 fJ/bit [11]. This is the lowest value reported so far for 16QAM modulation at this speed. The extraordinary low operation voltage enables efficient frequency comb generation [12] as well as operation of the modulators by direct connection to standard output ports of field-programmable gate arrays (FPGA), without the need of drive amplifiers and analog-to-digital converters, even if 16QAM signals are to be generated [13]. We also demonstrated that electro-optic cladding materials can be combined with plasmonic waveguide structures. Using this so-called plasmonic-organic hybrid (POH) approach, we demonstrated data transmission based on both phase modulators and Mach-Zehnder amplitude modulators [14], [15].

ACKNOWLEDGEMENTS
We acknowledge support by the European Research Council (ERC Starting Grant ‘EnTeraPIC’, number 280145), the EU-FP7 projects PhoxTroT, BigPipes and Navolchi, the Alfried Krupp von Bohlen und Halbach Foundation, the Helmholtz International Research School of Terahtronics (HIRST), the Karlsruhe School of Optics and Photonics (KSOP), the DFG Center for Functional Nanostructures (CFN), the Karlsruhe Nano-Micro Facility (KNMF), the Initiative and Networking Fund of the Helmholtz Association, the Deutsche
We further acknowledge financial support of the National Science Foundation (DMR-0905686, DMR-0120967, DMR-1303080) and the Air Force Office of Scientific Research (FA9550-09-1-0682).

REFERENCES


