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Colloidal quantum dots (QDs) have emerged as a most attractive optical gain medium in recent
years. They offer a broad gain spectrum that can be readily adjusted by exploiting size-
dependent quantum confinement, a specific choice of QD material or the judicious formation of
heterostructured core/shell QDs. Together with their suitability for solution-based processing,
this makes them a most versatile gain medium for photonic integrated circuits. CdSe/CdS
core/shell CQDs in particular have shown amplified spontaneous emission (ASE) and lasing
under femtosecond and nanosecond pumping. However, to fully assess their potential for micro-
and nanophotonics, a quantitative understanding of their gain characteristics is needed. Here,
we show that the material gain of colloidal QDs can be determined through ultrafast transient
absorption measurements on QD-dispersions, which is a key parameter for the design and
optimization of future QD-based amplifiers and microlasers.

Introduction

Colloidal quantum dots (QDs) offer a number of unique properties that make them ideal
as light emitters in integrated photonics. Due to size quantization, they have a bandgap
and a concomitant emission wavelength that can be readily tuned by their dimensions.
Moreover, being provided as solution-based dispersions, they can be readily
incorporated into dielectric host materials and different photonic structures, including
waveguides, microcavities and photonic crystals by straightforward solution-based
processing methods. This combination of tunable electronic energies and versatile
processing makes them ideal building blocks for integrated optical devices [1].

Various QDs have shown optical gain, mostly under femtosecond optical pumping [2].
Their integration within dielectric host materials to make optically pumped solid-state
QD-lasers is a subject of intense research addressed by various groups. One approach,
compatible with C-MOS processing and amenable to photonic integration is their
embedding in SiNx/QD/SiNx layered stacks. As shown recently, SiNx waveguides and
microdisks, thus functionalized with CdSe/CdS core/hell QDs, can show amplified
spontaneous emission (ASE) [3] and lasing [4] under pulsed optical excitation. One of
the difficulties in designing such devices is that the conditions where stimulated
emission can overcome optical losses in the device and yield net gain are not well
known. This requires a framework in which the material gain of colloidal QDs is (1)
properly defined, (2) measurable and (3) can be linked to the modal gain of QD-based
devices. Here, we extend the concept of the intrinsic absorption coefficient as a QD
material property to an intrinsic gain coefficient or QD material gain. Furthermore, we
show that the material gain can be measured using pump-probe transient absorption
spectroscopy and we demonstrate that it predicts the experimental modal gain of
SiNx/QD/SiNx waveguides. We conclude that the QD material gain, defined as the
intrinsic gain coefficient, is a most useful quantity to assess the optical gain
characteristics of different colloidal QDs in view of their application in optical
amplifiers and lasers.
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Figure 1 (a) 2D-spectrum from a TAS measurement on 9 nm diameter core/shell CdSe/CdS CQDs (pulse
energy 95 uJ/cm?). The black curve corresponds to Ao, which is the absorption spectrum of the unpumped
sample. (b) Corresponding 2D-map of A as function of probe wavelength and delay time, A<O
corresponds to gain, A=0 is indicated by a white line.

Background

The absorption coefficient of a composite material consisting of QDs dispersed in a
non-absorbing medium can be seen as the product of the QD volume fraction f (defined
as the ratio between the total QD volume and the sample volume) and the intrinsic
absorption coefficient y; of the QDs:

i = wxf )

Defined according to eq (1), u; is the absorption coefficient of a fictitious QD
dispersion that has a QD volume fraction of 1. In principle, size quantization makes y; a
function of the wavelength and the size of the QDs. However, it was found that y;
becomes size-independent at short wavelengths, with an experimental value closely
matching the value predicted by Maxwell-Garnett theory based on the bulk dielectric
function of the QD material. [S] Hence, using y; at such a reference wavelength, a y;
spectrum can be readily obtained as a normalized absorbance spectrum A(4), regardless
of the QD volume fraction:

_ A
(D) = A(Aref)ul(lref) )

Optical Gain in Transient Absorption Spectroscopy

Transient absorption spectroscopy (TA) is a pump-probe technique where a sample is
pumped with ultrashort laser pulses after which the change in absorption AA is
measured by a time-delayed white-light pulse. Figure la shows as an example the
transient absorption map, showing AA as a function of probe wavelength and pump-
probe delay, when a CdSe/CdS QD dispersion is pumped using 110 fs pump pulses at
520 nm and a 1 kHz repetition rate. The most striking feature is a reduced absorption or
bleach (AA < 0) at around 620 nm due to state filling of the band-gap transition of the
CdSe core. Adding the absorbance spectrum A, of unexcited QDs, shown in black in
Figure 1a, to AA yields at every delay time the actual absorbance A of the photoexcited
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dispersion. The concomitant map of this so-called non-linear absorbance A is shown in
Figure 1b. Here, positive regions reflect a situation where probe light is still absorbed
by the photo-excited sample. A negative A, on the other hand, implies that probe light is
amplified, i.e., the sample is in a population-inverted state. Clearly, such a state is
present, for the given pump intensity at around 620 nm, for the first 100 ps after the
pump pulse.
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Figure 2 (a) Time slices for different pump pulse energies at fixed probe wavelength 620 nm. (b)
Corresponding material gain spectra with different pump pulse energies at a fixed delay of 4 ps.

Figure 2a represents non-linear absorbance traces obtained on the same sample at a
fixed probe wavelength of 620 nm at different pump pulse energies. It can be seen that a
minimum pulse energy is needed to reach population inversion. However, once pump
energies are sufficiently high, population inversion can be reached within 1 ps after
pumping and can last up to 80 ps. Fitting the relaxation of the transient absorbance A to
a single exponential, yields a decay rate of 4 ns™".

Using eq 3, the non-linear absorbance as plotted in Figs 1b-2a can be rescaled into an
intrinsic gain coefficient. This number yields the gain a QD material with a volume
fraction f =1 would have under the same conditions of optical pumping and
multiplying it with the actual volume fraction yields the gain of any QD sample. Hence,
our rephrasing of the intrinsic gain coefficient as the material gain g,,. Figure 2a
represents g, spectra of CdSe/CdS QDs studied here at a fixed delay of 4 ps. Especially
at high pulse energy, a broad gain band develops with g,,, reaching values of 1000 cm’’
and more.

Integrated devices

We exemplify the qualities of g,, as a design parameter using the case of QD-doped
SiNx waveguides, where we compare g,, with the modal gain obtained from a classical
variable stripe length experiment. [3] The aforementioned QDs were integrated in a
SiN,/QD/SiNy stack, which are etched to form 5 pm wide waveguides of varying
lengths. Pumping these with the same 110 fs pulses at a pump intensity corresponding
to about twice the threshold power for ASE (see Figure 3c), yields an exponentially
increasing light output for waveguides 200-400 um long (see Figure 3a). Fitting the
distance-dependent light intensity to I = Ay(e9' —1)/g [6] yields a modal gain of
100-120 cm’'. This modal gain can be seen as the product of the material gain, the QD
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volume fraction in the film and the overlap between the optical mode and the QD layer.
Estimates of both quantities obtained through refractive index measurement and optical
simulations amount to 50% and 23%, respectively. In combination with the peak
material gain of 750 cm™ under the given pump intensity (see fig 3d), this indeed yields
a modal gain of = 90 cm’', a number in close agreement with the experimental value.
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Figure 3 (a) ASE intensity versus the length of the waveguide at an excitation level of = 2 Pasg. (b)
Crossection of waveguide and it’s mode profile. (c) Microscope picture of the emitting waveguide and the
multimode fiber. (d) The peak material gain (from fig 2b) as a function of pulse energy. For a pulse
energy of = 80 pJ»’cmZ, which is about = 2 P,g; , we find a max g,,, of = 750 cm’!

Conclusion

We have introduced the interpretation of the intrinsic gain coefficient of dispersed
colloidal QDs as their material gain. As such, the material gain of colloidal QDs can be
readily obtained from a normalization of their non-linear absorbance as measured using
transient absorption spectroscopy. Studying gain in SiNx/QD/SiNx strip waveguides,
we show that the experimental modal gain can be interpreted as the product of the
material gain of the QDs, their volume fraction and the overlap between the optical
mode and the QD layer. This indicates that this material gain is a most useful
characteristic of colloidal QDs, that makes possible a comparison between different
QDs as gain medium and the design and simulation of QD-based amplifiers and lasers.
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