
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 24, NO. 1, JANUARY/FEBRUARY 2018 3300108

A Novel Broadband Electro-Absorption Modulator
Based on Bandfilling in n-InGaAs: Design

and Simulations
Jorn P. van Engelen , Longfei Shen, Gunther Roelkens , Member, IEEE, Yuqing Jiao , Member, IEEE,

Meint K. Smit, Fellow, IEEE, and Jos J. G. M. van der Tol

Abstract—We propose and evaluate by simulation a novel mem-
brane electro-absorption modulator heterogeneously integrated
on silicon. The device is based on the electron-concentration-
dependent absorption of highly doped n-InGaAs. It is predicted
that the modulator can be operated over a wavelength range of
more than 100 nm and provides a static extinction ratio of 7.2 dB,
an insertion loss of 4.4 dB, a modulation speed above 50 Gb/s, and a
power consumption of 53 fJ/b. The modulator has a small footprint
of 0.4 × 80 um2 (excluding contact pads) and operates on a CMOS
compatible 1.5 V voltage swing.

Index Terms—Electro-absorption modulator, Burstein-Moss,
bandfilling, InGaAs, Silicon, Indium phosphide membrane, Inte-
grated photonics.

I. INTRODUCTION

THE ever-increasing requirements on data transport net-
works create demand for high-density high-speed pho-

tonic integrated circuits [1]. The InP membrane on Si (IMOS)
platform aims to satisfy this demand by combining high perfor-
mance photonic integrated circuits with silicon electronics [2].

An essential building block in any photonic integration plat-
form is the modulator. A small footprint and broadband switch-
ing are desired for e.g., Dense Wavelength Division Multiplex-
ing (DWDM) applications. Integrated Electro-Absorption Mod-
ulators (EAMs) are often based on the Quantum-Confined Stark
Effect (QCSE) or the Franz-Keldysh effect. QCSE modulators
have a narrow optical bandwidth, while the Franz-Keldysh ef-
fect provides only limited absorption change leading to large
insertion loss for large extinction ratio. Another approach is
the use of phase modulation (e.g., Kerr effect) in an integrated
Mach-Zehnder Interferometer (MZI) setup, but the two arms
and splitters of the MZI make for a large footprint.
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Recent developements in EAMs that are heterogeneously in-
tegrated with silicon have shown improvements in modulation
speed and optical bandwidth. State-of-the-art 50 GHz Ge-Si
EAMs [3], [4] based on the Franz-Keldysh effect demonstrate
optical bandwidths of 10–20 nm. Silicon-based EAMs using
Fermi-level variation in graphene show optical bandwidth in
excess of 80 nm [5], but have low extinction ratio and lim-
ited modulation frequency due to high contact resistance to
graphene. Another modulator that is currently being developed
for the IMOS platform is predicted to have a high modulation
speed [6] but has a large footprint due to the MZI structure.

Highly doped n-InGaAs shows large changes in the absorp-
tion when the electron concentration is varied. The effect was
first measured and explained by Hahn in 1995 [7]. The change in
absorption is due to a combination of band filling and band-gap
shrinkage in InGaAs, which causes electron-density-dependent
absorption. The novel application of this effect in an EAM gives
unique broadband behaviour compared to existing integrated
modulators. Realization of a modulator based on this effect was
previously not viable, but is now possible in the IMOS platform.
This is because IMOS waveguides have high index contrast and
therefore provide strong light-matter interaction [2]. The band
filling effect is inherently broadband and the modulator intro-
duced here will have an optical bandwidth in excess of 100 nm
covering the extended (E), short (S), conventional (C) and long
(L) bands.

In this paper the modeling for the proposed modulator is
introduced. First the electron-density-dependent absorption of
n-InGaAs, which is the basis of the modulator, is discussed. The
proposed device structure and the trade-offs are discussed in
Section III. The methodology of the semiconductor and optical
simulations are given in Section IV and the results are discussed
in Section V.

II. BROADBAND ELECTRO-ABSORPTION MODULATION

InGaAs lattice matched to InP has a bandgap of 0.74 eV,
smaller than the photon energy in the 1.55 μm telecommu-
nication wavelength range. Therefore InGaAs is extensively
used as the absorption material in 1.55 μm photodetectors,
where the photons have energies close to 0.8 eV. In n-type
heavily-doped semiconductors however, a reduction of absorp-
tion near the bandgap is a well-known phenomenon, which is
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explained by the bandfilling effect [8] (also known as the
Burstein-Moss effect). Energy states at the bottom of the con-
duction band are filled up by the high concentration of free elec-
trons, so that photons require energies higher than the bandgap
energy to excite an electron from the valence band to the con-
duction band. This leads to a higher apparent bandgap. While
this effect also takes place for holes in the valence band, the
effect is particularly strong for electrons owing to the lower
density of states in the conduction band as compared to the va-
lence band. InGaAs in particular has the lowest conduction band
density of states in the GaInAsP/InP system, and therefore this
material is used in the proposed EAM. By changing the electron
density inside the n-InGaAs layer, the optical absorption can be
modulated.

Recently Shen et al. [9] used the bandfilling effect to explain
the low-optical-loss in highly-doped n-InGaAs contact layers.
In [9] a model by Weber [10] is used to predict the electron-
concentration-dependent absorption in n-InGaAs and includes
three free-carrier induced effects: bandfilling, bandgap shrink-
age and free carrier absorption. The Urbach tail was neglected.
To predict the absorption of n-InGaAs the same model as in [9]
is used to predict the performance of the proposed EAM. Se-
lected equations from [9] and [10] are repeated here to explain
the modeling.

The absorption is modeled as the combination of three carrier-
dependend effects: bandfilling (BF), bandgap shrinkage (BS),
and free carrier absorption (FCA):

αm(Ep, n) = αBF,BS(Ep, n) + αFCA(n). (1)

The carriers are modeled first as a cause for bandgap shrink-
age, followed by their filling of the band [9]:

αBF,BS(Ep, n) = αIB(Ep − ΔEg(n)) [f(Ev) − f(Ec)] , (2)

where Ep is the photon energy and ΔEg(n) the shrank bandgap
energy that depends on the electron concentration n (ΔEg(n)
is modeled following[10, eq. (26)]). The absorption of the pho-
ton excites an electron from energy Ev in the valance band to
energy Ec in the conduction band. For conciseness we discuss
the case of only a single valance band but all results shown in
this paper consider separate light hole and heavy hole bands that
are summed up to a total αBF,BS (as is done in [10, eq. (22)]).
The probability of an occupied state in the valance band, and
an empty state in the conduction band with a transition energy
equal to the photon energy is given by f(Ev) − f(Ec), with the
Fermi-Dirac distribution:

f(Ev,c) =
[
1 + exp

(
Ev,c − EF

kBT

)]−1

(3)

The relation between Ev, Ec and the photon energy follows from−→
k conservation. Assuming parabolic bands, the relationship is
given in [10, eq. (24)]. The Fermi level depends on the electron
concentration and is defined as:

EF = kBT · F−1
1
2

(
n

NC

)
+ EC, (4)

where kB is the Boltzmann constant, temperature T = 300 K,
F−1

1
2

the inverse Fermi-Dirac integral of order 1/2, n the

Fig. 1. Absorption coefficient at 1.55 μm of n-type InGaAs as a function of
electron concentration. The absorption shows a sharp drop above 1018 cm−3

due to the bandfilling effect.

electron concentration, NC the conduction band density of states
in InGaAs and EC the conduction band edge. In the case of
highly n-doped material f(Ev) ≈ 1. f(Ec) increases with in-
creasing electron concentration and approaches 1, indicating a
reduction of the absorption coefficient in (2).

The interband absorption coefficient is modeled by [9,
eq. (1)]:

αIB(E) =

{
CE−1 (E − Eg)

1
2 , E > Eg;

0, E ≤ Eg,
(5)

where C = 2.0 · 104 cm−1eV1/2 [10] is a material specific con-
stant and Eg the InGaAs bandgap energy.

The free-carrier-absorption αFCA depends on the electron con-
centration n and is found to be nearly constant for wavelengths
between 1 and 2 μm [10]. We follow the model in [9, eq. (4)]:

αFCA(n) = A · n, A = 1.5 · 10−18 cm−2 . (6)

This completes the model for absorption in InGaAsP found
in [10]. Here we apply the model to n-InGaAs with the same
parameters as in [9] and present the absorption dependence of
n-InGaAs from (1) on electron density and photon energy.

A steep drop in the absorption coefficient is predicted for
electron concentrations higher than 1018 cm−3 at a wavelength
of 1.55 μm (see Fig. 1). Experimental data from [7] shows
reasonable agreement with this model. The rise of absorption
beyond 1 · 1019cm−3 is due to free carrier absorption αFCA.

The electron-density-dependent change in absorption of In-
GaAs is steepest around 3 · 1018cm−3 . Variations of electron
concentration around this doping level therefore have a large
influence on the absorption. The EAM proposed here varies
the electron concentration by modulating the depletion depth
into an n-InGaAs layer by using a p-i-n junction. This will be
discussed further in Section III.

The absorption modulation becomes more broadband for
increasing doping levels. This is because with higher dop-
ing levels the material becomes transparent for photons with
higher energies (Fig. 2), while the material remains highly
absorbing when depleted. Fig. 3 shows the material absorp-
tion difference between intrinsic InGaAs and doped n-InGaAs,
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Fig. 2. Wavelength dependence of the absorption in n-InGaAs, with telecom
bands indicated.

Fig. 3. Absorption in i-InGaAs minus the absorption in n-InGaAs (i.e., the
absorption difference that can be achieved for modulation), with telecom bands
indicated.

Δαm(Ep, n) = αm(Ep, n) − αm(Ep, 0), that can be achieved as
a function of wavelength. It is clear that the bandfilling effect
is inherently broadband, even at moderately high doping levels
and that the broadband nature becomes even more pronounced
for higher doping levels.

III. EAM OPERATION AND DESIGN

The device is designed to be integrated in the IMOS platform
[2]. The platform provides tight confinement of the optical mode
by using a high-index-contrast III–V membrane. The overlap
of the optical mode with an absorbing layer can therefore be
made high as compared to platforms with low index contrast.
As will be discussed later only a thin layer of the material can
be absorption modulated. It is therefore essential to design the
device in a platform that can achieve a high overlap of this thin
layer with the optical mode. The IMOS platform also allows
for the double-sided processing that is needed to create the

Fig. 4. Cross-section of (left) standard IMOS waveguide, and (right) the sim-
plified device structure.

TABLE I
LAYERSTACK OF THE ELECTRO-ABSORPTION MODULATOR

Purpose Material Doping [cm−3 ] Thickness

p-contact layer p-InGaAs 1·1019 20 nm
p-contact layer p-InP 1·1018 100 nm
p-SCH layer p-Q1.40 1·1018 70 nm
p-SCH layer p-Q1.40 3·1018 20 nm
Intrinsic buffer i-InP n.i.d. 10 nm
n-Depletion buffer n-Q1.40 3·1018 8 nm
Absorption layer n-InGaAs 2.3·1018 20.5 nm
n-SCH layer n-Q1.40 1·1018 90 nm
Band-smoothing layer n-Q1.10 5·1017 20 nm
Waveguide layer i-InP n.i.d. 300 nm
n-contact layer n-InP 2·1018 100 nm

structure proposed below [11]. Since IMOS aims for integration
of photonics with advanced CMOS electronics, we take the
available voltage swing to be 1.5 V.

The mesa of the proposed modulator is based on the standard
IMOS waveguide of 300 nm high and 400 nm wide. A cross-
section of a waveguide and a simplified cross-section of the
modulator are given in Fig. 4. The actual layerstack is given in
Table I. The heart of the modulator is formed by the n-InGaAs
layer above the waveguide. The doping is chosen to be ND =
2.3 · 1018 cm−3 , which substantially reduces the absorption of
the InGaAs layer, as was discussed in the previous section.

To modulate the electron density in the n-InGaAs layer, a p-
i-n junction is created with i-InP and p-Q1.40 layers. By reverse
biasing the junction (Va = 0 → −1.5 V), the depletion depth
into the n-InGaAs layer increases which leads to higher absorp-
tion. The i-InP buffer limits band-to-band tunneling current and
increases the avalanche breakdown voltage of the junction.

If the n-InGaAs absorption layer is placed directly below the
i-InP in the p-i-n junction then the built-in depletion would cause
part of the n-InGaAs to be highly absorbing even at Va = 0 V.
Therefore, a n-Q1.40 depletion buffer layer is placed between
the n-InGaAs absorption layer and the i-InP buffer layer. This
reduces the insertion loss. Because the depletion edge is not
abrupt, simulation of the modulator in both the optical and
semiconductor heterostructure is needed determine the optimal
thickness of the n-Q1.40 depletion buffer layer.

The doping levels of the p-Q1.40 SCH layer and n-Q1.40
depletion buffer layer are chosen as high as possible so that the
modulation of the depletion depth into the n-InGaAs layer is
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Fig. 5. Visualization of the taper, showing a waveguide (blue) on top of BCB
(pink) being tapered into the modulator.

maximized. The doping levels are however limited by the need
to avoid excessive band-to-band tunneling current, which can
lead to thermal damage [12]. The doping levels in Table I can
be achieved in MOCVD epitaxial growth.

Confinement of the optical mode in the absorption modulated
part of the n-InGaAs is improved by the two Q1.40 SCH layers
on either side of the p-i-n junction. The refractive index of Q1.40
is higher than InP, which pulls the optical mode up from the InP
waveguide layer. In this way the confinement is increased from
2.01% to 2.61%, leading to a higher extinction ratio.

A highly doped n-Q1.10 band-smoothing layer is added be-
tween the i-InP waveguide and the n-Q1.40 SCH layer to reduce
resistance across the junction and the waveguide layer. Because
the i-InP waveguide layer is located between two n-doped lay-
ers, electrons diffuse into the i-InP reducing resistance further.

The p- and n-contact layers are formed by highly doped p-
InGaAs, p-InP and n-InP layers. Previous results of Au/Pt/Ti
metalization for the p-contact and Au/Ge/Ni for the n-
contact [13] have shown a specific contact resistance below
2·10−6 Ω cm2 .

An adiabatic taper was designed to couple light from the
waveguide to the device [14]. In this design all the layers above
the i-InP waveguide layer up to, and including, the p-InP contact
layer are tapered along a length of 5 um (see Fig. 5), starting
with a width of 100 nm and ending with the waveguide width of
400 nm. A 3D visualization of the modulator/passive waveguide
taper is given in Fig. 5. Increasing the length of the taper further
than 5 μm does not improve the coupling efficiency (94%).

For datacom applications an extinction ratio of 7 dB [15] is
desired, as well as a high small signal bandwidth. The electro-
optical behavior has been simulated for various thicknesses and
doping levels of the n-InGaAs and n-Q1.40 layers. Optimization
yields a thickness of 20.5 nm and 8 nm for these layers, respec-
tively, and doping levels of 2.3·1018 cm−3 and 1·1018 cm−3 ,
respectively (the exact method of optimization is outside of the
scope of this paper). To achieve an extinction ratio of 7 dB the
length of the device is chosen to be 80 μm, excluding tapers.

IV. SIMULATION OF THE EAM

To optimize the proposed design the device needs to be sim-
ulated accurately. First the numerical simulation and the analyt-
ical modeling of the semiconductor physics are discussed. The

Fig. 6. Conduction band edge around the the n-InGaAs absorption layer for
the transparent state (Va = 0 V) and the absorbing state (Va = −1.5 V).

electron density in the n-InGaAs absorption layer can then be
used to determine the absorption profile from the curve follow-
ing (1). This is used for the simulation in the optical domain with
the goal to determine the modal loss as a function of applied
voltage.

A. Electron Density Profile From Semiconductor Simulation

The semiconductor processes are modeled in one dimension
(z-axis) because the structure can be considered effectively in-
variant along the x- and y-axis (see Fig. 4). The semiconductor
simulation includes all layers in Table I. A commercial semi-
conductor physics simulator [16] is used with band parameters
from [17] and carrier mobilities from [18] to determine the
band structure and the electron density profile in the n-InGaAs
absorption layer.

From the band structure, shown in Fig. 6, it is clear that there
will be some quantum confined states in the InGaAs absorp-
tion layer due to the narrow thickness of the layer. However,
these conduction band states are filled regardless of the applied
voltage, as the Fermi level is well above the highest confined
quantum state. Because absorbed photons lead to excitation of
electrons to empty states around or above the Fermi level, the
absorption spectrum of the n-InGaAs layer can be assumed to
be identical to that of bulk n-InGaAs. The valence band at 0 V
also gives rise to confined quantum states. However, because
of the high Fermi level, no states in the conduction bands are
available for these electrons to be excited to by the photons. We
can therefore assume that these valence band quantum states
have negligible influence on the absorption spectrum. At−1.5 V
these states disappear completely.

The electron density profile shown in Fig. 7 makes clear
that the depletion edge cannot be approximated as abrupt on
these length-scales. Therefore the full depletion approximation
cannot be used for an accurate simulation of the device. In this
work we use the simulated electron density profile to determine
the absorption at every point in the n-InGaAs absorption layer.
From the figure the function of the n-Q1.40 depletion buffer is
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Fig. 7. Electron density in the n-InGaAs absorption layer for the transparent
state (Va = 0 V) and the absorbing state (Va = −1.5 V.)

clear. As this region will always be depleted due to the built-in
potential, it would have been highly absorbing at 0 V had this
layer been n-InGaAs. The IL is lowered significantly by this
n-Q1.40 depletion buffer layer.

Due to the highly doped layers that form the p-i-n junction
the electric field across the depletion region is high when a
reverse bias is applied. This can lead to avalanche and band-
to-band-tunneling currents and the i-InP layer must be thick
enough to limit these currents. Using an impact ionization model
[19] that includes the dead space effect [20] we estimate the
breakdown voltage due to avalanche current to be −8 V. The
band-to-band tunneling current for the proposed modulator is
predicted to be well below 3 mA [12]. In the past we have found
that currents higher than 3 mA caused thermal damage to a
uni-traveling-wave photodetector (UTC PD, described in [11]).
As the modulator proposed here will have a surface area larger
than that of the UTC PD, we can assume that no thermal damage
will occur.

B. Modal Loss From Electron Density Profile and Tapering

The electron density profile is used to determine the refractive
index profile (via [9, Fig. 1(b)]) and the material absorption of
the n-InGaAs modulation layer (via (1)). Because measurements
by Shen et al. [9] do not show material absorption lower than
300 cm−1 we take this as the lowest possible value (shown as
the dashed line in Fig. 1). A commercial eigenmode solver [21]
is used to find the modal loss at 1550 nm as a function of applied
voltage. The results are shown in Fig. 8 where we find, for a de-
vice configuration with a 20.5 nm thick 2.3·1018 cm−3 doped n-
InGaAs absorption layer, that the predicted IL is 4.9 dB/100 um
and the static ER for a 1.5 V swing is 9.0 dB/100 um at 1550 nm.

The proposed taper is simulated with a commercial 3D finite-
difference time-domain (FDTD) simulator [21]. The fundamen-
tal TE mode inside the device is shown left in Fig. 9. The
Q1.40-SCH layers confine the optical mode around the absorp-
tion layer. Propagation of the fundamental TE mode through the

Fig. 8. Modal loss at 1550 nm of the fundamental TE mode as a function of
voltage. The solid line is the device configuration as discussed in the main text,
unless otherwise mentioned.

Fig. 9. Fundamental TE mode in the device (left). Propagation (right) of the
fundamental TE mode from the EAM into the waveguide through the taper is
shown by the electric field intensity.

taper is shown right in Fig. 9. Beating due to reflections from the
taper are visible, however reflection back into the fundamental
TE mode is less than 1%. Transmission of the fundamental TE
mode from the device into the fundamental TE mode of the
waveguide is 94% (−0.27 dB) [14].

V. EAM PERFORMANCE EVALUATION

A. Optical Performance

From the modal loss in Fig. 8 (full line) the ER for a 80 um
long device is determined to be 7.2 dB with an IL of 3.9 dB.
Including tapers (2 × 0.27 dB) the total IL will be 4.4 dB. The
voltage swing was chosen to be 1.5 V, to be compatible with
CMOS electronics. If the voltage swing is increased, Fig. 8
shows that the ER increases almost linearly.

Note that the IL can be significantly reduced by compromising
the ER as shown by the two dashed lines in Fig. 8. These two
configurations only differ by the doping and thickness of the
n-InGaAs absorption layer. For the same length of 80 um these
achieve an ER of 6.2 dB and 5.3 dB, with an IL of 2.3 dB and
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1.5 dB, respectively. However, to achieve the same 7.2 dB ER a
longer, and therefore slower, device is needed.

With increasing temperature the probability distributions in
(2) become more spread out, leading to higher absorption that
will be most noticable in the transparant state Va = 0 V. How-
ever due to a lack of material parameters, like the constant C in
(5), we are not able to predict this change in absorption.

Because the device is operated by modifying the apparent
bandgap, the refractive index of n-InGaAs will also change
with applied voltage. We estimate the refractive index change
between the transparent and absorbing state of the InGaAs to be
Δn = 0.01 (following [9, Fig. 1(b)]). The phase change is given
by ΔΦ = 2π L

λ0
ΓΔn. Combined with an overlap of Γ = 2.6%

with the depletion modulated part of the n-InGaAs absorption
layer, this leads to a phase change of ΔΦ ≈ 5◦ between the
transparent and absorbing state. The linewidth enhancement
factor in loss modulators is α = Δn/Δk [22], where Δn and
Δk are the change in the real and imaginary part of the refractive
index, respectively. Taking the change in material absorption
Δαm = 5000 cm−1 for the n-InGaAs layer yields α = 0.16,
which is relatively low compared to α = 1 − 2 for conventional
bulk EAMs, or α = 1.5 − 1.7 for directly modulated lasers [22].
This means that the proposed device shows comparatively little
frequency chirp.

As was discussed in Section II the bandfilling effect makes for
an inherently broadband modulator. To quantify the broadband
nature of the device, the wavelength range in which the ER
stays within 1 dB variation is shown in Fig. 3. This range is
determined by estimating the ER, for this purpose only, by ER =
4.3ΔαmΓL, where Δαm is the material absorption difference (y-
axis of Fig. 3), L is the device length, and the factor 4.3 converts
nepers to decibels. (The ER in other parts of this paper are
calculated using a mode solver, as discussed in Section IV-B).
We find that the 1 dB wavelength range is more than 100 nm.
The 3 dB range is estimated to be over 250 nm, taking into
account the absorption of the Q1.40 SCH layers below 1.40 um.
Replacing these layers with a higher bandgap material will make
a 3 dB range of more than 300 nm possible.

The variation in IL with wavelength can be estimated in a
similar way from Fig. 2. We find that the variation in IL is
larger (≈3 dB) in the range where the ER varies less than 1 dB.
However, it should be noted that throughout the S, C and L bands
the variation in IL is expected to be less than 2 dB. Furthermore
using an n-InGaAs absorption layer with higher doping (like
3.5·1018 cm−3) reduces this variation even more.

Throughout the S, C and L bands the variation in ER and
IL is expected to be less than 2 dB. Compared to other EAMs
the proposed device is extremely broadband (e.g., 35 nm for [3]
and 80 nm for [5]). If the n-InGaAs absorption layer is doped
to higher levels even more broadband behavior can be expected
as shown by the ND = 5·1018 cm−3 absorption profile.

B. Electrical Performance

The carrier densities and mobilities resulting from the semi-
conductor simulation can be used to give an indication of the
resistance of the semiconductor layers. The simulation was

Fig. 10. Band diagram at 0 V for the layers listed in Table I. Due to lack of
space, the labels for the n-Q1.40 depletion buffer layer and the i-InP buffer layer
are omitted.

performed in one dimension across all layers listed in Table I.
For 0 V the band diagram is given in Fig. 10. The layers below
the n-InGaAs absorption layer are found to give a resistance to
the metal contacts of 8 Ω, mainly due to the low electron density
in the i-InP waveguide layer. The removal of generated carri-
ers is aided by the n-Q1.10 band-grading layer (see Fig. 10),
and the diffusion of electrons from the n-InP contact layer in-
crease conductivity of the i-InP layer. The p-doped layers above
the absorption layer are found to add 35 Ω due to lower mo-
bility of holes. The metal to semiconductor contact resistance
is not included in the semiconductor simulation, the metal to
semiconductor contact resistance is estimated to increase series
resistance by another 10 Ω. In total the proposed modulator is
thus expected to have a series resistance of Rs = 53 Ω.

The junction capacitance Cj can also be extracted from the
same semiconductor simulation. It is given by Cj = dQ/dVa,
where Q is determined by integrating the space charge density
over the half-space on one side of the junction. Cj varies be-
tween 72 to 115 fF for applied voltages of −1.5 to 0 V because
the depletion depth changes with applied voltage. The simulated
junction capacitance matches closely with results from a theo-
retical full-depletion approximation model. The band-structure
and fermi-levels of layers below the n-InGaAs absorption layer
do not change between 0 and −1.5 V because the depletion
region does not extend this far. These layers therefore do not
contribute to a change in Q with a change in voltage and do
not add to capacitance. Because Cj is proportional to the length
of the device, shortening the device will reduce the junction
capacitance, but this will also lower the ER.

Taking the average of the junction capacitance leads to an
expected cut-off frequency of fc = 1/(2πRsCj) ≈ 30 GHz,
therefore we estimate a modulation speed above 50 Gb/s. The
modulator is RC limited. The transit-time limit lies well above
100 GHz (determined by the transit of electrons across the i-InP
waveguide layer). To increase the modulation speed the dop-
ing in the p-contact layer can be increased, as this is a major
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contributor to the resistance. However the increase in free-
carrier-absorption would lead to a higher IL.

The power consumption is given in energy-per-bit and esti-
mated from Epb = CjV

2/4
s = 53 fJ/b [23], with a voltage swing

of Vs = 1.5 V. This is higher than 12.8 fJ/b in [4]. The energy
usage is proportional to the junction capacitance, and shortening
the device would therefore lower energy usage at the cost of a
lower ER.

VI. CONCLUSION

A novel membrane electro-absorption modulator integrated
on silicon and based on band filling in n-InGaAs is presented.
The modulator is predicted to be optically wide-band and to
provide an extinction ratio of 7.2 dB, an insertion loss of 4.4 dB,
a modulation speed above 50 Gb/s and a power consumption
of 53 fJ/b. The modulator has a small footprint and operates
on the 1.5 V voltage swing that can be provided by CMOS
electronics. This novel modulator is unique in its broadband
nature. Using the bandfilling effect in n-InGaAs, it should be
possible to achieve record optical bandwidths above 100 nm
while staying within 1 dB variation of ER. The results of this
study show that a promising new EAM is feasible; the basic idea
of which can be used in any membrane photonics platform.
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