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Abstract—In this paper, a stochastic modeling approach is
proposed for time–domain variability analysis of general linear
and passive systems with uncertain parameters. Starting from the
polynomial chaos (PC) expansion of the scattering parameters,
the Galerkin projections (GP) method is adopted to build an
augmented scattering matrix which describes the relationship
between the corresponding PC coefficients of the input and
output port signals. The Vector Fitting (VF) algorithm is then
used to obtain a stable and passive state–space model of such
augmented matrix. As a result, a stochastic system is described
by an equivalent deterministic macromodel and the time–domain
variability analysis can be performed by means of one time–
domain simulation. The feasibility, efficiency and accuracy of the
proposed technique are verified by comparison with conventional
Monte Carlo (MC) approach for a suitable numerical example.

Index Terms—Polynomial chaos, time–domain variability anal-
ysis, passivity.

I. INTRODUCTION

The analysis of the effects of geometrical or electrical
parameter variability on the performance of integrated circuits
(ICs) has drawn great attention in the recent years, due to
the increasing integration and miniaturization of such circuits.
The MC analysis is the standard technique to investigate this
problem, thanks to its accuracy and ease of implementation,
but is time and resource intensive, since it requires to perform
a large number of simulations.

A different approach is represented by the PC expansion,
which has been adopted in many contributions [1] – [4] as
efficient alternative to accurate, but computationally cumber-
some, MC–based techniques. The PC expansion describes
a stochastic process as a suitable summation of orthogonal
(polynomial) basis functions with suitable coefficients and
gives an analytical representation of the variability of the
system with respect to the random variables under consid-
eration [5], [6]. For an extensive reference to PC theory and
applications, the reader may consult [1] – [6].

However, it has not been proposed in the literature a
technique able to compute a stable and passive PC–based
macromodel for time–domain variability analysis of generic
linear, passive and frequency dependent microwave systems.
Only for specific devices under the effect of stochastic varia-
tion (namely multiconductor transmission lines with frequency
independent parameters or lumped elements), the technique

[2] allows one to compute an equivalent passive deterministic
system with respect to the PC coefficients of its port voltages
and currents.

Stability and passivity are fundamental model properties
to guarantee stable time–domain simulations (e.g. in time–
domain circuit simulator such as SPICE–like solvers [7]),
which are necessary to analyze the correct behavior of systems
in signal integrity and electromagnetic compatibility analysis.

In order to solve such problem, a new stochastic macromod-
eling approach is proposed, which is capable of computing
a time–domain model of the variability of the scattering
parameters of generic linear, passive and frequency dependent
microwave systems, via the definition of a suitable “augmented
system”. Such “augmented system” is defined by means of
the PC expansion and GP method, while its corresponding
macromodel is obtained via the VF algorithm [8].

This paper is structured as follows: Section II describes the
proposed technique, which is validated by a suitable numerical
example in Section III. Conclusions are shown in Section IV.

II. STOCHASTIC MACROMODELING OF GENERAL LINEAR

SYSTEMS

The proposed technique focuses on modeling general linear
systems described by scattering parameters and is limited to
the case of linear terminations, which can be represented by
means of a corresponding impedance or admittance matrix.

Let us consider a system which is under the effect of a
vector of random variables 𝝃, then the corresponding scattering
parameters 𝑺 (𝝃), forward 𝒂 (𝝃) and backward 𝒃 (𝝃) waves
become stochastic quantities, and their relationship can be
described as

𝒃 (𝝃) = 𝑺 (𝝃)𝒂 (𝝃) (1)

𝑎𝑘 (𝝃) =
𝑉 𝑘 (𝝃) + 𝑍𝐼𝑘 (𝝃)

2
√∣ℜ (𝑍) ∣ (2)

𝑏𝑘 (𝝃) =
𝑉 𝑘 (𝝃)− 𝑍∗𝐼𝑘 (𝝃)

2
√∣ℜ (𝑍) ∣ (3)

where 𝒂 (𝝃) ∈ ℂ
𝑁𝑃×1 = [𝑎1 (𝝃) , 𝑎2 (𝝃) , . . . , 𝑎𝑁𝑃

(𝝃)]
𝑇 ,

𝒃 (𝝃) ∈ ℂ
𝑁𝑃×1 = [𝑏1 (𝝃) , 𝑏2 (𝝃) , . . . , 𝑏𝑁𝑃

(𝝃)]
𝑇 and 𝑺 (𝝃) ∈

ℂ
𝑁𝑃×𝑁𝑃 , 𝑉 𝑘 (𝝃) and 𝐼𝑘 (𝝃) are the voltage and current at the

𝑘–th port of the system, respectively, while 𝑍 is the reference
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impedance (usually the same for all the system ports). By
expressing all the stochastic quantities in (1) − (3) via the PC
expansion leads to

𝑀∑

𝑖=0

𝒃𝑖𝜑𝑖 (𝝃) =
𝑀∑

𝑖=0

𝑀∑

𝑗=0

𝑺𝑖𝒂𝑗𝜑𝑖 (𝝃)𝜑𝑗 (𝝃) (4)

𝑀∑

𝑖=0

𝑎𝑘𝑖 𝜑𝑖 (𝝃) =

∑𝑀
𝑖=0 𝑉

𝑘
𝑖 𝜑𝑖 (𝝃) +

∑𝑀
𝑖=0 𝑍𝐼𝑘𝑖 𝜑𝑖 (𝝃)

2
√∣ℜ (𝑍) ∣ (5)

𝑀∑

𝑖=0

𝑏𝑘𝑖 𝜑𝑖 (𝝃) =

∑𝑀
𝑖=0 𝑉

𝑘
𝑖 𝜑𝑖 (𝝃)−

∑𝑀
𝑖=0 𝑍

∗𝐼𝑘𝑖 𝜑𝑖 (𝝃)

2
√∣ℜ (𝑍) ∣ (6)

where 𝒂𝑖, 𝒃𝑖, 𝑺𝑖, 𝑉 𝑘
𝑖 and 𝐼𝑘𝑖 are the PC coefficients of the

forward and backward wave, of the system scattering matrix,
and of the voltage and current at the 𝑘–th port of the system,
respectively.

Now, by adopting the GP method [2], [6] in equations (4)
- (6) allows one to write

𝒃𝑃𝐶 = 𝑺𝑃𝐶𝒂𝑃𝐶 (7)

where

𝒂𝑃𝐶 =
1

2
√∣ℜ (𝑍) ∣ (𝑽 𝑃𝐶 + 𝑍𝑰𝑃𝐶) (8)

𝒃𝑃𝐶 =
1

2
√∣ℜ (𝑍) ∣ (𝑽 𝑃𝐶 − 𝑍∗𝑰𝑃𝐶) (9)

The vectors 𝒂𝑃𝐶 ∈ ℂ
(𝑀+1)𝑁𝑃×1 and 𝒃𝑃𝐶 ∈ ℂ

(𝑀+1)𝑁𝑃×1

contain the PC coefficients of the incident and reflected
waves, respectively, while 𝑽 𝑃𝐶 ∈ ℂ

(𝑀+1)𝑁𝑃×1 and 𝑰𝑃𝐶 ∈
ℂ

(𝑀+1)𝑁𝑃×1 are the vectors of the PC coefficients for the
port voltages and currents, respectively. Note that the ma-
trix 𝑺𝑃𝐶 ∈ ℂ

(𝑀+1)𝑁𝑃×(𝑀+1)𝑁𝑃 is a deterministic matrix,
obtained via a suitable weighted combination of the PC
coefficients of the system scattering matrix and its reciprocity
can be preserved by adopting orthonormal basis functions [2].
Furthermore, it is possible to prove that the PC coefficients in
(8), (9) are decoupled, as for the original deterministic system:
the PC coefficients of the incident and reflected waves at the
𝑘–th port of the system depend only on the PC coefficients of
voltage and current at the same port.

By comparing (1) − (3) with (7) − (9), a stochastic system
depending on the random variables 𝝃 is described via an
equivalent deterministic system which still represent a system
defined by a scattering parameter matrix, namely 𝑺𝑃𝐶 , with
respect to the PC coefficients of the incident and reflected
waves 𝒂𝑃𝐶 and 𝒃𝑃𝐶 . Hence, the condition for the passivity
of 𝑺𝑃𝐶 are identical to the ones for a deterministic scattering
parameter matrix [9].

Finally, a time–domain model in a state–space form of the
augmented system can be computed via the VF algorithm [8]
and its stability and passivity can be enforced by means of
standard techniques, such as [10].

Now, the equations of the terminations at the system ports
are in the form

𝑽 (𝝃) = 𝑽 𝑆 −𝒁𝐿𝑰 (𝝃) (10)

Fig. 1. Geometry of bandstop microstrip filter.

where 𝑽 (𝝃), 𝑰 (𝝃) represent the vector of the port voltages
and currents, respectively, 𝑽 𝑆 is the matrix of the voltage
sources and 𝒁𝐿 is the matrix of the port terminations. Again,
by means of the PC expansion and GP method, the following
equation can be easily derived

𝑽 𝑃𝐶 = 𝑽 𝑆
𝑃𝐶 −𝒁𝐿

𝑃𝐶𝑰𝑃𝐶 (11)

where 𝑽 𝑃𝐶 and 𝑰𝑃𝐶 are the matrices of the PC coefficients of
the port voltages and currents, while the matrix 𝒁𝐿

𝑃𝐶 is block
diagonal and depends only on the original port terminations
𝒁𝐿. Finally, the PC coefficients of the port signals can be
directly determined by combining (7) − (9) with (11) and
the time–domain variability analysis can be performed with
accuracy and efficiency thanks to the properties of the PC
expansion (i.e. stochastic moments of the ports voltages and
current can be analytically determined).

III. NUMERICAL EXAMPLE

The simulations shown in this Section are performed with
MATLAB 2015𝑎1 and ADS 20152 on a computer with Intel
Core i3 processor and 8GB RAM.

In order to validate the proposed stochastic modeling ap-
proach, the bandstop microstrip filter [11] in Fig.1 is stud-
ied within the frequency range [100Hz − 7GHz]. The width
𝑤 of the base microstrip highlighted in Fig.1 and relative
permittivity 𝜀𝑟 of the substrate are considered as Gaussian
distributed random variables, 𝑤 ∼ 𝒩 (0.5mm, (60𝜇m)2), 𝜀𝑟 ∼
𝒩 (6.15, (0.18)2), while all the other parameters are chosen as
shown in [11].

An initial set of scattering parameters values has been
evaluated via ADS, over 25 samples for the geometrical
parameters (𝑤, 𝜀𝑟) chosen over a 5×5 regular grid. Then, the
PC coefficients of the filter scattering parameters are computed
with 𝑀 + 1 = 10 basis functions and a maximum degree
𝑃 = 3 of the PC basis functions for 101 frequency samples,
following the approach described in [4]. Next, 𝑺𝑃𝐶 can be
calculated for each frequency sample as described in Section
II. Finally, a stable and passive state–space model of 𝑺𝑃𝐶 has
been obtained by means of the VF algorithm targeting −50dB
as maximum absolute model error between the scattering
parameters of augmented matrix and the corresponding state–
space model.

1The Mathworks Inc., Natick, MA, USA.
2Advanced Design System (ADS), Keysight Technologies, Santa Rosa, CA.
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Fig. 2. The mean 𝜇 and the range 𝜇 ± 3𝜎 of the input voltage of the
bandstop microstrip filter. The (solid, dash, dot) lines are computed using the
MC method for 10000 (𝑤, 𝜀𝑟) samples. The symbols (×,∘,□) represent the
same quantities obtained with the PC–based augmented system.

The time–domain simulations are performed by exciting the
filter with a smooth voltage pulse with amplitude 1V, rise/fall
times 0.1ns, width 1.5ns, initial delay 6.75ns and internal
resistance 𝑅𝑆 = 50Ω, while the filter is terminated on a
𝑅𝐿 = 50Ω resistor. Note that the computation of the PC
coefficients of the port signals via the obtained augmented
system requires only one time–domain simulation.

In order to validate the efficiency and accuracy of our novel
technique, a comparison with the time–domain MC analysis
is performed. First, the filter scattering parameters have been
computed for 10000 samples of the chosen random variables
(𝑤, 𝜀𝑟) in ADS. Next, a corresponding state–space description
is calculated via the VF algorithm for each one of the 10000
scattering matrices obtained so far, by targeting a maximum
modeling error of −50dB, and the time–domain MC analysis
is performed by means of such state–space models. The
proposed technique has a good accuracy compared with the
classical MC analysis not only in computing simple stochastic
moments, as shown in Fig. 2, but also complex stochastic
quantities like the probability density (PDF) and cumulative
distribution (CDF) functions, see Fig. 3. Furthermore, the
proposed method requires only 21min 39.52s to estimate the
filter variability features, while the MC analysis requires 139h
36min 55.94s, corresponding to a simulation speed–up of
386×.

IV. CONCLUSION

An stochastic macromodeling approach for time–domain
variability analysis of general linear and passive multiport
systems is presented in this paper, which overcomes the
limitations of the technique [2]. Based on the PC expansion
and GP method, the proposed technique is non–intrusive and
can be applied to many different microwave structures (i.e.
distributed filters, connectors), since its based on the scattering
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Fig. 3. PDF (full line) and CDF (dashed line) of the output current for
𝑡 = 8.8ns computed using the novel PC–based technique; the circles (∘) and
squares (□) represent the same quantities computed by the MC method.

parameters of the system under study. Note that the time–
domain variability analysis can be performed by means of one
time–domain simulation of the computed stable and passive
macromodel. The accuracy and efficiency of the proposed
method are validated by a suitable numerical example, achiev-
ing a simulation speedup of 386× with respect to the MC
analysis.
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