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To improve the detection limit of optical sensors, it is of paramount importance to understand light–matter inter-
action processes at a fundamental level. At room temperature, the ultimate detection limit is governed amongst others
by fundamental thermodynamic fluctuations. Their effect on the properties of light that propagates in amorphous
materials is not well understood. Here, we unveil and model for the first time a dominating high-frequency (terahertz-
range) noise contribution in the phase of laser light having propagated in optical waveguides, leading to Raman-like
sidebands in the optical output spectrum. A salient feature of our approach is to consider a mean relaxation time of the
spontaneous random heat flux in the medium, which leads to a spatial correlation of the thermo-refractive noise. The
resulting phase noise can be several orders of magnitude larger than what was predicted by earlier models. Our model
allows us to explain the origin and specificities of the background that is observed in the Raman optical spectra of
silicon nitride waveguides and silica optical fibers. Not only do these findings add a previously unknown dimension to
the fundamental knowledge about noise in light–matter interaction, they also need to be taken into account in any
optical system in which dynamic fluctuations at the picosecond (ps) or sub-ps level play a role. ©2018Optical Society of

America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (130.2790) Guided waves; (260.2710) Inhomogeneous optical media; (290.5860) Scattering, Raman; (300.6330)

Spectroscopy, inelastic scattering including Raman; (130.0130) Integrated optics; (230.7380) Waveguides, channeled.
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1. INTRODUCTION

The statistical properties of waves can be strongly modified when
they propagate in a random medium subject to temporal fluctua-
tions. The intensity fluctuations of cosmic radio waves induced by
the propagation through the ionosphere are an example of such a
drastic impact of the random nature of the propagating medium,
as observed by Hey et al. in 1946 [1]. In a fluid such as the atmos-
phere, the fluctuations of the dielectric constant are mainly related
to the motion of parts of the fluid that have different densities.

In a solid in thermal equilibrium with the surrounding at an
average temperature hT i � T 0, the thermodynamic fluctuations
[2] are the most fundamental source of the fluctuations of the
dielectric constant. As a result, light propagating in a solid is sub-
ject to thermorefractive phase noise, which has mainly been inves-
tigated either in long fibers [3–5] or in microsphere resonators [6].

Up to now, the observation of the fundamental thermal noise
in optical media has been limited to frequencies lower than
1 MHz [7]. A high frequency cutoff for the associated spectrum
seems not to have been experimentally identified in optical struc-
tures yet. Our main goal is to investigate the high-frequency part

of the optical spectrum of a guided mode subject to fundamental
thermal fluctuations.

The conventional modeling of the thermal noise in a wave-
guide [3,8,9] relies on the classical theory of hydrodynamical fluc-
tuations, as summarized in Fig. 1. In the framework of this theory,
a random spontaneous heat flux δ~q is incorporated to the Fourier
law as follows: ~q � −κ0 ~∇T � δ~q, where ~q is the heat flux in an
elementary volume δV , T the local effective temperature of the
waveguide, and κ0 the heat conductivity [10]. The spontaneous
heat fluxes result from the constant motion of the elementary
charges of the medium. Note that here the temperature T of the
waveguide is defined as a local effective temperature, which is dif-
ferent from the ambient temperature T 0. In contrast to T 0, the
local effective temperature T is subject to fluctuations δT :T �
T s � δT , with T s the local steady-state temperature. The fluc-
tuating part δT is linked to the fluctuation δu of the specific in-
ternal energy u via the thermodynamic relationship δu � CV δT
with CV the specific heat per unit mass at constant volume.

Determining the resulting noise spectrum of the temperature
field requires the complete knowledge of the spatial and temporal
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correlations of the components δqi (i � x; y; z) of the random
heat flux Cq � hδqi�~r; t�δqi 0 �~r 0; t 0�i, which is a priori unknown.
However, some approximations can be carried out. The first one
assumes that the characteristic decay time τ of the fluctuations of
δ~q is much shorter than the time decay of the temperature fluc-
tuations [11], i.e., the thermal relaxation governed by a diffusion
process is much slower than the relaxation of the elementary heat
flux. As a result, the rate of change of δ~q at a given time t is
entirely determined by the value of ~q at t. For weak fluc-
tuations, a linear expansion leads to dδq∕d t � −δq∕τ [12]. As
a consequence the time correlation of the components of the
spontaneous heat flux is given by hδqi�~r; t�δqi 0 �~r 0; t � t 0�i �
2κ0kBT 2

τ exp�− jt 0 j
τ �δii 0δ�~r − ~r 0� [11].

At this stage, the conventional approach that is labeled here as
“standard diffusion”model consists of making the mean relaxation
time τ of the spontaneous heat flux tend to zero, which implies
a “δ“ correlated spontaneous heat flux, hδqi�t�δqi 0 �t � t 0�i �
2kBκ0T 2δ�t 0�δii 0 . Based on the inhomogeneous heat equation
(see Fig. 1), such an approximation results in an 1∕Ω2 power
law of the power spectrum of the thermal fluctuations at high
frequency Ω, and concomitantly of the optical spectrum S�Ω�
of a propagating optical mode in the medium as detailed in
Supplement 1 and plotted in Fig. 2.

Another way of determining the thermal noise is to make use of
the fluctuation-dissipation theorem that was introduced by Callen
et al. [13]. This approach was implemented by Rytov [14]
to develop a spectral theory of the thermal fluctuations that takes
into account quantum effects. As shown in Fig. 2, the standard
diffusion model is in line with Rytov’s theory for frequency jΩj
smaller than 1014 rad∕s. Above this frequency, quantum effects
begin to appear. Although Rytov’s theory goes beyond the standard
diffusionmodel, it is based, as in Ref. [8], on the Fourier law, which
has unphysical properties at high frequencies as discussed later, and
assumes a local thermodynamic equilibrium, which excludes
classical correlation effects of the spontaneous heat flux.

One open question is the consequence of neglecting the mean
relaxation time τ. Here, we develop an approach that allows tak-
ing into account τ and determining its impact on the noise spec-
trum at high frequency. In particular, an exponential decay of
the optical spectrum of a guided mode is analytically predicted
(see Fig. 2), which is in line with the Raman background recently
observed in optical waveguide-based sensors [15–17]. In contrast
to the conventional approach where the slow dynamic of the ther-
mal diffusion plays a crucial role and is responsible for the 1∕Ω2

power low, we will mainly focus on the dynamic of the sponta-
neous heat flux δ~q and consider that the thermal diffusion is
“frozen” at high frequency. This means that we are interested in
the random heat fluctuations around the instantaneous value of
−κ0 ~∇T , which is assumed to be constant during the decay of a
random heat flux fluctuation.

The Fourier law on which the above-mentioned standard
models of thermal fluctuations are based has the drawback to lack
inertial effects. As stated in Ref. [18], it neglects the time needed
for acceleration of the heat flow. Such an approximation that
leads to infinite speed of propagation is questionable at high fre-
quencies [19]. Our approach aims at avoiding such an unphysical
effect [20].

Based on extended irreversible thermodynamics, we will show
that a relaxation time associated with the fluctuation of the heat
flux implies a correlation length l of the fundamental thermal
fluctuations δT . When the correlation length or equivalently the
relaxation time tends to zero, the contribution of the heat flux
fluctuation to the noise spectrum vanishes for Ω ≠ 0 as expected
with the conventional approach.

The knowledge of the spatial frequency spectrum of the fun-
damental thermal fluctuations and of its dynamics allows deter-
mining the time varying spectral density of the resulting refractive
index fluctuations and as a consequence the optical spectrum of
the light field propagating in the medium.

Fig. 1. Positioning of the current model (blue box) against the conven-
tional treatment of the thermo-refractive noise in waveguides. The optical
spectrum S�Ω� is considered at high frequencies. See the main text for the
definition of the different symbols.

Fig. 2. Theoretical optical spectra with standard thermal diffusion
(blue line) and with extended correlation of the heat flux (black line).
The parameters are those of a typical silicon nitride waveguide (see main
text). Red dashed curve: outcome of Rytov’s theory, where quantum ef-
fects are included in addition to the standard thermal diffusion. The blue
area corresponds to the frequency range relevant for Raman spectroscopy.
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The current paper aims at clarifying the role of the temporal and
spatial correlations of the fundamental heat flux on the optical
spectrum of the light field, in particular at high frequency. This
point is not only of fundamental interest due to the ubiquity of
thermal noise but also of paramount importance to set the ultimate
limits of optical sensors. We start by summarizing the main out-
come of our model and then theoretically determine the optical
spectrum of a classical coherent field that is propagating in a
waveguide at thermal equilibrium. This determination is carried
out in the framework of a perturbation approach that assumes
weak fluctuations of the refractive index of the waveguide. The
outcome of our model allows us then to discuss the salient features
of the impact of thermal noise on the light propagation properties.
In the last part, the model is compared with the experimental op-
tical spectrum of a mode guided in a single-mode silicon nitride
(SiN) waveguide, which provides an estimate of the correlation
length of the index fluctuations, of the mean relaxation time of
the spontaneous heat flux, and of the fundamental thermodynamic
limit of the optical noise. In particular, we attribute the origin of the
background that is observed inRaman spectra of amorphousmedia
to the fundamental thermodynamic fluctuations.

2. MAIN THEORETICAL RESULT

Before providing the different steps of the derivation of the optical
spectrum of a guided mode subject to thermal fluctuations, we
first reveal the main outcome of our theoretical approach. In par-
ticular, we compare in Fig. 2 the “standard diffusion”model (blue
line in Fig. 2 and see also Supplement 1) and our current ap-
proach, which is called “extended correlations” insofar as it con-
siders a nonvanishing correlation time τ. For such a comparison,
the different parameters that are defined below are those of silicon
nitride. The optical spectrum (black curve in Fig. 2) resulting
from the “extended correlations” model is given by the pivotal
Eq. (10) hereafter.

The optical spectrum of the standard model is mainly gov-
erned by the thermal diffusivity DT of the medium and the radial
half-width W of the intensity mode profile. In the case of ex-
tended correlations, the spatial correlation length l, the half
width W , and a relaxation time γ that will be defined later are
the three main parameters that allow positioning the extended
correlations optical spectrum against the standard diffusion opti-
cal spectrum.

Figure 2 highlights that the optical spectrum related to the
model based on extended correlations is negligible at frequencies
Ω smaller than 1011 rad∕s but is predominant in a frequency
range that matches the one relevant for Raman spectroscopy,
namely between 10 and 5000 cm−1. As a consequence, the noise
contribution resulting from the extended correlations model sets
the main detection limit for waveguide-based Raman sensing,
which is the main finding of the current article.

The standard model is relevant as long as the frequency is
smaller than 1∕τ, i.e., as long as the temporal correlation of
the random heat fluxes can be neglected. From the experimental
Raman spectrum of silicon nitride waveguides (see Section 3.F
below), the extended correlations model predicts 7 × 108 rad∕s≲
1∕τ ≲ 2.5 × 109 rad∕s. On another side, above the cutoff fre-
quency Ωc ≃ 109 rad∕s of the optical spectrum of the standard
model, the instantaneous temperature T , and so −κ0 ~∇T , can
be considered constant. This implies that the above-mentioned

approximation of “frozen” diffusion applies. As a result, the
extended correlations model is appropriate for frequencies larger
than Ωc .

In the frequency interval defined by 1∕τ and Ωc , as well as in
its neighborhood, a more advanced theory is necessary to deter-
mine the transition between the optical spectra of the standard
diffusion and the extended correlation models. The same holds
for frequencies around 1015 rad∕s where nonclassical effects emerge,
as highlighted with Rytov’s model. Even if at the crossing points
between the different models none of them is accurate, the actual
optical spectrum can be approximated by the envelope of the ex-
tended correlation model and of Rytov’s model.

3. MODEL

The physical system consists of an optical field that propagates in
a single-mode waveguide made of a solid of refractive index n as
schematically represented in Fig. 3. We assume that the propa-
gation length is identical to the total length L of the medium and
that L is much larger than the cross section S of the waveguide.
A harmonic field U of single angular frequency ω0 and amplitude
A is coupled to the waveguide. At the input x0 � 0 of the wave-
guide, this classical stable field is expressed as U �x0; r⊥; t� �
A0�x0; r⊥� exp�−jω0t�, with r⊥ the transverse coordinate in the
�y; z� plane. It undergoes amplitude and phase fluctuations
during the propagation in the waveguide due to thermal noise.
At the output xL � L, the field can be written as U �xL; r⊥; t� �
A�xL; r⊥; t� exp�−j�ω0t − φ�xL; r⊥; t���, where the amplitude
A�xL; r⊥; t� and the phase φ�xL; r⊥; t� are random variables. The
amplitude and the phase of the field after a propagation over a
distance L are related to the amplitude A0�L; r⊥� and the phase
φ0�L; r⊥� of the unperturbed waveguide as follows: A�L;r⊥; t��
A0�L;r⊥��δA�L;r⊥; t� and φ�L;r⊥;t��φ0�L;r⊥��δφ�L;r⊥; t�.
Knowing the statistical properties of δA�L; r⊥; t� and δφ�L; r⊥; t�
is sufficient to determine the optical spectrum S�Ω� of the field at
the output of the waveguide, where Ω � ω0 − ω is the difference
between the angular frequency ω and the frequency ω0 of the
initial field, which is labeled as the pump hereafter. It requires
solving the equation governing the field propagation and model-
ing the spatiotemporal fluctuations of the refractive index δn�~r; t�
along the waveguide.

A. Spatial Fluctuations of the Thermal Field

We consider a domain D of the medium whose volume is suffi-
ciently small so that the spatial variation of the temperature is
negligible and sufficiently large to be treated as a macroscopic

Fig. 3. Schematic representation of the propagating medium with the
input and output optical fields. The energy distribution of the guided
mode is represented by a Gaussian profile. The gray color pattern rep-
resents an arbitrary fluctuation of the temperature field δT �x; r⊥; t�.
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thermodynamic subsystem. The entire medium of density ρ and
volume V is assumed to be incompressible and in thermal equi-
librium with the environment at a temperature T 0. If the local
domain D is also in equilibrium, as assumed in classical irre-
versible thermodynamics (CIT) [21], the fundamental thermal
fluctuations can be determined from the knowledge of the fluc-
tuations of the local specific entropy s, namely its second differ-
ential δ2s. The thermal fluctuations are related to the standard
deviation of the probability PD of the macrostate in D. The in-
cessant motion of the elementary charges that constitute the
medium implies, however, that a given domain D is subject to a
random heat flux. Consequently, the local-equilibrium hypothesis
that is used in the CIT is not satisfied.

Such an issue can be overcome by defining a generalized spe-
cific entropy s�u; ~q� that depends not only on the specific internal
energy u but also on the local heat flux ~q. This approach is at the
heart of the extended irreversible thermodynamics [22]. Assuming
that the specific entropy s�u; ~q� is an additive quantity and a con-
cave function, and that its rate of production is locally positive,
its differential form can be expressed via a generalized Gibbs
equation by defining a non-equilibrium temperature θ given
by θ−1�u; ~q� � �∂s∂u�~q [22]

d s � du
θ

−
τ

ρκ0θ
2 ~q:d ~q: (1)

As we focus here on small fluctuations δ~q of the flux, the non-
equilibrium temperature θ−1�u; ~q� can be approximated by the
local equilibrium temperature T −1�u�. Considering the instan-
taneous value q � −κ0∇�T s � δT � � −κ0∇T [11] and using
u � CV T , a Taylor expansion of the change in entropy around
equilibrium provides an expression for the second differential of
the entropy δ2s,

δ2s�δu;∇δu� � −
1

CV T 2 �δu�2 −
τκ0

ρC2
V T

2 ∇δu · ∇δu: (2)

The spatial correlation of the energy field follows from
Einstein’s formula PD ≈ exp�ρδ2s�δu;∇δu�∕2kB�. Using the spa-
tial Fourier transform of the energy fluctuation δu � R

δukeikxdk,
the probability PD of the macrostate is given by PD �Q

k exp�− ρ
2
� 1�l2k2
CV kBT 2�jδukj2�, where the characteristic length l is

defined as

l �
�

τκ0
ρCV

�
1∕2

�
ffiffiffiffiffiffiffiffiffi
τDT

p
: (3)

It follows that the variance of the Fourier components is
hjδukj2i � CV kBT 2

ρ�1�l2k2� and the spatial correlation can be deter-
mined from the Wiener–Khinchin theorem hδu�~r1�δu�~r2�i �R hjδukj2ieik·�~r1−~r2�d~k, which results in

hδT �~r1�δT �~r2�i �
kBT 2

0

ρCV l3

�
2π2

l
j~r1 − ~r2j

exp
−j~r1 − ~r2j

l

�
:

(4)
The spatial correlation of the fluctuations of the thermal field

diverges for a spatial separation j~r1 − ~r2j that goes to zero. This
behavior is linked to the minimal volume for which thermody-
namic concepts apply, i.e., the minimal volume over which the
energy and consequently the effective temperature have been con-
sidered spatially constant. The divergence can be circumvented by
considering that hδT �~r1�δT �~r2�i is a sequence of functions para-
meterized by the characteristic length l and converges toward the

Dirac distribution kBT 2

CV
δ�j~r1 − ~r2j� when the characteristic length

l approaches zero [23,24]. As a result, the spatial correlation
hδT �~r1�δT �~r2�i can be approximated by the following sequence
of regular Gaussian functions that are parameterized by l and that
also converge towards the same kBT 2

CV
δ�j~r1 − ~r2j� function when l

tends to zero [24,25],

hδT �~r1�δT �~r2�i �
kBT 2

0

ρCV l3

�
8π

ffiffiffi
π

p
exp

−j~r1 − ~r2j2
l2

�
: (5)

From a thermodynamic approach that takes into account local
non-equilibrium by considering a non-vanishing relaxation time τ
of the spontaneous heat flux, we can conclude that the thermal field
is spatially inhomogeneous with a spatial correlation l. The spatial
correlation l has a square root dependence with τ and is governed
by the macroscopic thermal properties of the medium such as the
heat conductivity and the heat capacity. The spatial inhomogeneity
of the thermal field is at the origin of light scattering.

The motion of the elementary charges that shape the medium
constantly induces different statistical realizations of the random
thermal field that have always the same value of the correlation
length. It results in a dynamic light scattering. In addition to its
spatial correlation, the knowledge of the temporal dynamic of the
thermal field is necessary to characterize the interaction between
the propagating light and the medium.

B. Dynamics of the Thermal Field

As the thermal field fluctuates in space and time, its dynamics
can be described by a velocity field as in standard hydrodynamic
models. The dynamics is governed by the distribution f �~v� of
the velocity field that is associated with the random motion of
the elementary constituents of the medium.

In the framework of the generalized entropy [26], the velocity
distribution f �~v� can be described by a generalized Boltzmann
distribution. More specifically, it can be interpreted as the station-
ary non-thermalized solution of the Fokker–Planck equation,
f �~v� ∝ exp�− v2

2τvDv
�, where τv is the relaxation time of the average

velocity, and Dv is a diffusion coefficient in the velocities space
[27]. Defining the variance as σ2v � τvDv, the velocity distribu-
tion can be written as f �~v� ∝ exp�− v2

2σ2v
�. Such a velocity distri-

bution combined with the spatial correlation of the thermal field
results in the presence of thermo-refractive noise at high frequen-
cies Ω, as discussed below.

C. Refractive Index Fluctuations

The presence of thermal fluctuations δT modifies the dielectric
constant of the medium. The fluctuations of the dielectric func-
tion, which are at the heart of the Landau–Placzek theory of light
scattering from hydrodynamic modes [28], will influence the
propagation properties of the guided mode via the wave equation.
Considering a single-mode waveguide, we have used a scalar
model to describe the propagation of the wave. In addition, the
index fluctuations are supposed to be much slower than the os-
cillations of the exciting field, i.e., the frequency bandwidth of the
index fluctuations is regarded to be much smaller than the angular
frequency of the exciting field. As a result, the wave equation can
be written as the Helmholtz equation in terms of the refractive
index n�r; t� � hni � δn0�r; t� and of the vacuum wavenumber
k. For a waveguide with a thermo-optic coefficient ∂n

∂T , the vari-
ance of the index fluctuations hδn20i is directly deduced from the
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equation for the variance of the temperature fluctuation and from
the dielectric state equation. If the optical losses are negligible, it is
given by hδn20i � � ∂n∂T�2hδT 2i.

The conventional treatment of the thermo-refractive noise
does not provide any information about the spatial variations
of the refractive index. Our approach shows that the spatial var-
iations of the refractive index can be described by a Gaussian au-
tocorrelation function [see Eq. (5)]. At two different positions, r1
and r2, the refractive index autocorrelation is hδn0�r1�δn0�r2�i �
hδn20i8π

ffiffiffi
π

p
exp − jr1−r2j2

l2 . Moreover, the dynamics of the fluctua-
tions of the refractive index field are governed by the statistics of a
velocity field that follows a Gaussian probability distribution
function, with a standard deviation σv. The resulting light scat-
tering problem is therefore similar to the one in turbid media.

D. Analytical Determination of the Optical Spectrum

The thermal fluctuations are expected to be sufficiently weak,
which allows us to implement a first-order perturbation approach
in order to achieve an analytical expression of the optical spectrum
of the guided mode. Within this scope, the unperturbed lossless
guided mode Um

0 propagates with a wavenumber β � knϕ and an
envelope Am

0 �x; r⊥� � Am
0 �r⊥�. After the propagation of this

mode over an infinitesimal distance dx of the perturbed wave-
guide, the resulting field can be expressed as U �x � dx� �
Um

0 exp�j�β� kδn�dx�, where we have defined δn � �∂n∕∂T �
nϕαL�, and αL is the linear coefficient of thermal expansion. Its
projection onto the field of the unperturbed guide mode, provides
the fraction

RR�∞
−∞ U �x � dx��Um

0 ��dS of the field that stays
within the guided mode after a propagation over dx, where the
surface integral is performed in a plane transverse to the propagation.
This fraction is assumed to be the same for the perturbed guided
mode Um of wavenumber β. It follows that Um�x � dx; t� ≃RR�∞

−∞ jAm
0 �r⊥�j2�1� jkδndx�dS × exp�jβdx� × Um�x; t�, where

we used exp�jkδndx� ≃ 1� jkδndx. Considering that the en-
velope of the perturbed mode is constant over the distance dx,
which is specific to a regime of light propagation in a disordered
waveguide where a dispersion relationship is still valid [29], the
variation of the phase of the mode Δφ�L; t� � R

L
0 β�x; t�dx − βL

at a distance L is given by

Δφ�L; t� � k
Z

L

0

�ZZ �∞

−∞
jAm

0 �r⊥�j2δn�x; ~r⊥; t�dS
�
dx: (6)

The random nature of δn is at the origin of the phase noise
Δφ�L; t� that modifies the shape of the Dirac-like optical spectrum
of the guided mode of the unperturbed waveguide. The resulting
optical spectrum of the guided field Um�L; ~r⊥; t� can be retrieved
from its temporal autocorrelation function that is defined at times
t1 and t2 as B�L; r⊥; t1; t2� � hUm�L; r⊥; t1�Um�L; r⊥; t2��i.

Assuming that the phase noise is sufficiently weak, a
first-order Taylor series leads to Um�L; r⊥; t� ≈ Am

0 �r⊥��1�
jΔφ�L; t��� exp�j�βL − ω0t��. As a consequence, the autocorrela-
tion at a distance L is a simple function of the phase fluctuations of
the field, B�L; r⊥; t1; t2� � jAm

0 �r⊥�j2�1�hΔφ�L; t1�Δφ�L; t2�i�,
which can be developed further with Eq. (6).

Using a two-dimensional spectral representation of the ran-
dom index function, δn�x; r⊥; t� �

R
~κ exp�j~κ · ~r⊥�dν�x; ~κ; t�

with dν�x; ~κ; t�, the random amplitude of the stochastic Fourier–
Stieltjes integral [30] and the Fourier transform of the square of
the field envelope A�~κ� � 1

2π

R
~r⊥
jAm

0 �r⊥�j2 exp�−j~κ · ~r⊥�d~r⊥, the
correlation function of the phase fluctuations can be simply

expressed as a function of the time-varying spectral density Φn
of the optical index fluctuations,

hΔφ�L; t1�Δφ�L; t2��i � 2πk2L
Z
~κ
jA�~κ�j2Φn�~κ; t1; t2�d~κ:

(7)
For simplicity’s sake, but without losing the effect of the main

physical principles involved, the transverse envelope of the in-
tensity of the guided mode is approximated with a Gaussian
profile ∝ exp�−jr⊥j2∕W 2� of radial half-width W . It follows that
A�~κ� � 1

2π exp�− κ2 W2

4 �.
A crucial step of our model is the determination and physical

interpretation of the spectral density Φn. The thermal dynamics is
the result of the exchange of heat between adjacent domains that
are at different temperatures. The average hvi of the associated
velocity field linked to the thermal field is zero, and the statistics
of the velocity field follows a Gaussian probability distribution
function, with a standard deviation σv. Such a physical represen-
tation allows implementing the frozen flow hypothesis that is a
standard approximation, for instance, in the analysis of turbulent
atmosphere [31,32].

Within the frozen flow hypothesis, the time-varying spectral
density can be written as the product of the spatial power spec-
trum and the power spectrum of the velocity fluctuations (see
Supplement 1),

Φn�κ; jt1 − t2j� � hδn2il3 exp

�
−
l2 � 2σ2v jt1 − t2j2

4
κ2
�
; (8)

where hδn2i � �∂n∂T � nϕαL�2hδT 2i.
As a result, the optical spectrum is given by the sum of the

initial spectrum, here a Dirac distribution δ�Ω � ω0 − ω�, and
the spectral contribution that comes from the thermal fluctua-
tions. Defining the characteristic time γ as

γ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 2 W 2

p
ffiffiffi
2

p
σv

; (9)

and using k � 2π
λ0

with λ0 the wavelength of the pump, the optical
spectrum can be written as

S�Ω� � A2
0

�
δ�Ω� � 4π2hδn2i Ll

λ20

l2

l2 � 2W 2 γe
−γjΩj

�
; (10)

which is the main theoretical result of our study. Note that the
model neglects the intensity depletion at the pump frequency ω0.

When l, or equivalently, the mean relaxation time τ of the
spontaneous heat flux, vanishes, the thermodynamic concepts at
play in the current model do not apply anymore. In particular, the
inequality τ ≫ ℏ∕�kBT 0� is required in the framework of the
theory of thermodynamic fluctuations as discussed in Section 112
of [2]. If such an inequality is not satisfied, a more advanced
model based on quantum mechanics is necessary to describe the
background.

As stressed by Fig. 2, Eq. (10) provides the main contribution
to the optical spectrum in a high frequency range that corresponds
to the spectral domain of Raman spectroscopy.

Our model does not describe the fluctuations at low fre-
quencies, as the slow dynamics of the thermal diffusion has been
neglected, which contrasts with the standard model for which
the slow thermal diffusion is the main focus. A complete descrip-
tion of the optical spectrum at all frequencies Ω would require
the consideration of the proper and complete spatial and time
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correlations of the random heat flux δq�r1; t1�δq�r2; t2� to solve
the inhomogeneous heat equation, which is beyond the scope of
the current paper.

E. Discussion of the Model Outcomes

The theoretical optical spectrum is subject to an exponential de-
cay whose magnitude is set by the characteristic time γ. The
physical origin of the frequency-dependent exponential decay and
of γ can be understood from general statistical physics arguments
as follows. We consider that the optical field is modulated by the
distribution of the non-interacting domains D whose associated
local optical index fluctuates at a specific frequency. In the case of
a local thermal equilibrium, the probability to find a domain D
vibrating at a frequency Ω within the ensemble of distinguishable
domains is governed by the classical Boltzmann distribution. Via
classical frequency mixing, it follows that the optical spectrum
of the field S�Ω� is proportional to exp�− ℏjΩj

kBT 0
�. The exponential

decay of the noise is characterized by a universal parameter γ0 �
ℏ∕kBT 0 ≃ 0.25 × 10−13 s that depends only on the reduced
Planck constant ℏ and the Boltzmann constant kB . Defining the
cutoff frequency of the optical spectrum by the universal decay
constant 1∕γ0, the bandwidth of the field fluctuations is indepen-
dent of the physical properties of the propagating medium for a
system in thermal equilibrium. We will see in the following that
the actual characteristic time γ is slightly smaller than γ0, which
is in line with the departure from the local thermal equilibrium
approximation.

In contrast to the cutoff frequency γ0 that is material indepen-
dent, the amplitude of the optical spectrum S�0� defined at Ω �
0 without the initial pump contribution δ�Ω�, namely the back-
ground, depends on the material properties via the variance hδn2i
of the index fluctuations, on the correlation length l,
on the propagation length L, and on the widthW of the envelope
of the guided mode. The intrinsic physical properties, such as the
heat capacity, the density, and the thermo-optic coefficient, come
into play via hδn2i. Increasing the heat capacity and the density or
decreasing the thermo-optic coefficient minimizes the contribu-
tion of the optical spectrum induced by the thermal noise. Note
that the background amplitude scales as 1∕λ20, which implies an
increase of its impact at shorter wavelength.

As regards the structural parameters of the waveguide, the
value of the modal width W compared to the correlation length
l defines two regimes. In the case of W ≫ l, the amplitude of
the spectrum S�0� varies as 1∕W 2 and, by taking into account the
1∕l3 dependence of hδn2i, it is independent of the correlation
length l. Note that we have assumed that γ is independent of l,
which implies via Eq. (9) that the standard deviation σv of the
velocities’ field scales with l. It follows that low-index-contrast
waveguides can be more advantageous in terms of optical noise
compared to high-index-contrast waveguides due to a larger mode
envelope W .

In the other case,W ≪ l, it appears that the optical spectrum
is proportional to 1∕l2. The correlation length of the disorder
consequently plays a crucial role with respect to the background
noise. The fabrication method of the medium determines the
nature of the disorder and is therefore critical for minimizing
the impact of the thermal noise.

The existing theory that describes the low-frequency thermal
noise in optical fibers predicts a 1∕Ω2 variation of the optical
spectrum in the high-frequency limit [8,9], which is incompatible

with the exponential decay of the experimental optical spectrum
observed in Fig. 4, as discussed in more details in the next section.

The breakdown of the existing theory at high frequencies
comes from the use of a Langevin source to solve the heat equa-
tion, which discards any spatial and temporal correlations of the
fast microscopic dynamics of the random heat current. In particu-
lar, this theory does not take into account the microscopic struc-
tural disorder intrinsic to amorphous materials. It contrasts with
our model that leads to Eq. (10). Our model describes the ran-
dom nature of the heat flux by introducing the correlation volume
l3, and it assumes that the local temporal fluctuation is caused by
a local translation of the optical index value with a locally random
velocity, which is the so-called “frozen-in” condition [30]. As an
important consequence, the current model enables us to quantify
the microscopic correlations of the random heat flux, in particular
the mean relaxation time τ from the experimental characterization
of the optical spectrum at terahertz frequencies, as described below.

F. Experimental Background of a Typical Raman
Spectrum

In Fig. 4, the model is compared with the high-frequency part of
the optical spectrum of an initially monochromatic light beam
that has been collected at the output of a single-mode SiN chan-
nel waveguide. The waveguide has a length of L � 1 cm and a
rectangular cross section of height h � 0.22 μm and width w �
0.5 μm, which leads toW � 82 nm. The classic coherent field is
provided by a Ti:Sapphire continuous-wave (CW) laser, the spec-
tral linewidth of which is smaller than 500 kHz and is negligible
compare to the spectral resolution of the spectrometer. The field is
coupled into the waveguide from free space via microscope ob-
jectives as explained in Ref. [15] in order to avoid any background

Fig. 4. Optical spectrum of a single-frequency pump laser beam after
propagating through a 1 cm long silicon nitride waveguide (SiN). It is
normalized according to the maximum of the laser optical spectrum
Spump�0� at the input of the waveguide and plotted versus the frequency
Ω < 0 relative to the frequency of the laser beam at the input of the wave-

guide. The spectral resolution of the spectrometer is dωspectro

2π � 9 × 1010 Hz.
The inset shows a schematic of the cross section of the SiN waveguide on
top of a 2 μm thick silicon oxide layer. Red curve: experimental data. Black
curve: outcome of the model fit [see Eq. (10)]. Dotted curve: model fit with
a characteristic time γ0 fixed to be equal to ℏ∕�kBT 0� and T 0 � 298 K.

Research Article Vol. 5, No. 4 / April 2018 / Optica 333



contribution coming from the propagation in optical fibers (see
Supplement 1 for the determination of the noise floor and dy-
namic range of the Raman characterization setup). From the
point of view of a material characterization, the measured spec-
trum corresponds to the Stokes part of the Raman spectrum of the
SiN waveguide. The Raman spectrum is generally associated with
well-defined spectral features that are characteristic of the local
vibrations of atomic bonds. Such kind of spectral peaks are visible
in Fig. 4, for instance at a frequency of ν � 70 THz relative to
the pump frequency. They appear on top of a broad background
that exponentially decays with the frequency.

Fitting the theoretical optical spectra S�Ω� to the experimental
Stokes spectrum by adjusting the characteristic time γ and the
amplitude S0 at zero frequency, the global shape of the back-
ground is well reproduced. The values of the fitted parameters
of the model are �S0∕Spump; γ� � �6.5� 0.5 × 10−10; 13� 3 fs�.
From these parameters, the knowledge of the spectral resolution

of the spectrometer dωspectro

2π � 9 × 1010 Hz and the SiN specific
heat CV � 0.17 Jg−1 K−1 [33], thermo optic coefficient ∂n

∂T � 5 ×
10−5 K−1 [34], linear coefficient of thermal expansion αL � 3.9 ×
10−6 K−1 [35], effective index nϕ � 1.8, and density ρ �
2.5 g∕cm3, the correlation length can be estimated to be l �
200� 50 nm. This value corresponds to a silicon nitride material
that was deposited via dense plasma-enhanced chemical vapor
deposition (PECVD) and is one of the largest values that we have
currently achieved. A 50% uncertainty on the experimental
value of S0, which mainly comes from the determination of the
coupling loss at the input of the waveguide, results in a confidence
interval defined between 145 and 300 nm for the correlation
length.

Based on the reported heat conductivity of PECVD silicon
nitride that spans between 16 and 33 Wm−1 K−1 [33], the current
experimental value of l corresponds to a mean relaxation time of
the random heat flux τ that is between 0.4 ns and 1.4 ns. Such a
mean relaxation time that is related to the second sound in solids is,
in general, difficult to determine [19,36]. Importantly, the model
elaborated in this article provides a new method to determine τ.
We have remarked that the fabrication method and the parameters
of the deposition process have a strong impact on the retrieved
value of τ. The value reported here corresponds to a fabrication
process that leads to the minimal background that we observed.

The experimental characteristic time γ is 1.9 times lower than
the value expected from a statistical approach based on a Boltzmann
distribution. Our model suggests that the dynamics of the heat
transfer at the nanoscale is responsible for this unexpectedly low
characteristic time. The heat transfer takes place between the dif-
ferent domains of typical volume l3 and at slightly different tem-
peratures. Based on the current value of the correlation length, the
standard deviation σT �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�δT �2i

p
of the temperature fluctua-

tions among the different domains amounts to σT ≃ 20 mK.
From the value of γ, the standard deviation of the velocity

field linked to the thermal field is σv � 1.3 × 106 m∕s. Such a
value implies that relativistic effects can still be neglected,
which reinforce the choice of a Boltzmann distribution for the
velocity field.

The exponential shape of the experimental background in
Fig. 4 is not limited to integrated SiN waveguides. As unveiled
in Supplement 1, single-mode silica optical fibers exhibit a similar
background. However, the level of this background is much

lower, mainly due to a weaker confinement in optical fibers com-
pared to single-mode SiN waveguides.

4. DISCUSSION

A. Microscopic Approach

The purpose of this section is to discuss approaches that treat the
light–matter interaction at the level of the fundamental vibra-
tional modes of the medium, also called phonons. In particular,
we investigate which phonon-based model is able to reproduce
the exponential shape of the experimental background.

When the vibrational modes are strongly localized and iso-
lated, the system can be viewed as an ensemble of independent
molecules. The Stokes spectrum can be determined from the cor-
relation function of the fluctuations of the local optical dielectric
tensor. Expressing the displacements of the vibrational modes in
terms of normal coordinates and using the correlation properties
of harmonic oscillators, the temporal correlations are determined
from the Bose–Einstein occupation number n�Ω; T 0� � 1∕
�eℏΩ∕kBT 0 − 1�. As the density of states of molecules is discrete,
the Stokes spectrum is promotional to the initial thermal popu-
lation of the normal mode, SStokes�Ω� ∝ 1∕Ω�1� n�Ω; T 0��.
The result of such an extreme approximation does not, however,
account for the shape of the experimental background.

In amorphous solids, the phonon density of states gb�Ω� has to
be considered for each of the vibrational bands b of the normal
modes, as discussed in Ref. [37]. If the product of the optical
coupling tensor Am and the correlation length Λm is assumed
to be the same for each of the normal-mode vibrations m, and if
Λm is at least ten times smaller than the wavelength (Λm < λ∕10),
the contribution of each band b to the Stokes spectrum is propor-
tional to AmΛ3

m∕Ω�1� n�Ω; T 0��gb�Ω� [37]. From an isotropic
three-dimensional model, the density of states of the vibrational
mode is expected to vary as Ω2. The resulting shape of the Stokes
spectrum is again not in line with the experimental spectrum,
which invalidates the hypothesis of this approach. It follows that
a microscopic approach needs to be much more elaborated to
treat systems that are in an out-of-thermal-equilibrium state.

B. Prospect of the Macroscopic Model

Equation (10), which is the main result of our study, predicts
a quadratic temperature variation of the noise contribution of
the optical spectrum. We have tested this prediction against
experiments by varying the temperature of the waveguide. A cri-
tical experimental aspect is to keep the light coupling into the
nanophotonic waveguide stable enough during a temperature
variation. To minimize light coupling issues, we have used a
commercial Raman microscope that allows collecting the back-
propagating light from the waveguide. Starting from room tem-
perature, we have observed a clear quadratic increase of the
background intensity as shown in Fig. 5. Such an observation
strongly supports the thermodynamic origin of the spectral noise
and the relevance of the current model.

The experimental optical spectrum at a fixed frequency has
also been determined for different lengths of the SiN waveguide
(see Fig. 6). In each case, the signal attenuation resulting from the
propagation losses has been taken into account. All the data points
are normalized to the value obtained for a 1 cm long waveguide.
Figure 6 shows that the macroscopic model is in line with the
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observed linear dependence of the optical spectrum with the
propagation length.

5. CONCLUSION

We have modeled and characterized the impact of the thermody-
namic fluctuations on the optical spectrum of a classical coherent
field that propagates in silicon nitride optical waveguides. Our
study suggests that the fundamental thermal fluctuations are at
the origin of the background of the Raman signal that is collected
through a guiding structure. The model relies on a macroscopic
approach that considers the dielectric map of the waveguide
subject to weak spatial and temporal perturbations. It reproduces
satisfactorily the shape of the experimental Stokes spectrum and

provides an estimate of the correlation length of the thermal
fluctuations.

Importantly, our approach goes beyond the current treatment
of the thermo-refractive noise in optical waveguides by consider-
ing the impact of random heat fluxes that are not “δ” correlated. It
allows us to investigate the high-frequency regime of the thermo-
refractive noise.

The benefit of the current approach is to highlight few macro-
scopic parameters that quantify the intensity value of the back-
ground, such as the specific heat and the correlation length of
the thermal fluctuations. In addition, if the entire background
originates from the proposed physical model, we have found a
simple way to quantify the correlation length and the relaxation
time of the thermal fluctuations in an amorphous solid that has
been subject to specific conditions of fabrication. It may be of
interest for the development of low-thermal-noise materials
and should allow prediction of the limitations of different
photonic structures such as interferometer-based integrated
photonic sensors.

Funding. H2020 European Research Council (ERC)
(267853).

See Supplement 1 for supporting content.
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