INTRODUCTION TO SILICON PHOTONICS CIRCUIT DESIGN

Wim Bogaerts

Short Course 454 - OFC 2018

WHAT IS <u>SILICON</u> PHOTONICS?

The implementation of <u>high density</u> photonic integrated circuits by means of CMOS process technology in a CMOS fab

Enabling complex optical functionality on a compact chip at low cost

PHOTONIC INTEGRATED CIRCUITS (PIC)

Integration of (many) optical functions on a chip

GHENT

UNIVERSITY

unec

INDUSTRIAL TAKE-UP EXAMPLES IN TELECOM/DATACOM/DATA CENTERS

- active optical cables (eg PSM4: 4x28 Gb/s on parallel fibers)
- WDM transceivers (eg 4 WDM channels x 25 Gb/s on single fiber)
- coherent receiver (eg 100 Gb/s PM-QPSK)
- fiber-to-the-home bidirectional transceiver (eg 12 x 2.5 Gb/s)
- monolithic receiver (eg 16x20Gb/s)
- 40Gb/s, 50Gb/s and 100 Gb/s Ethernet (future: 400Gb/s)

WHY SILICON PHOTONICS?

Large scale manufacturing

Submicron-scale waveguides

SCALING OPTICAL WAVEGUIDES: INDEX CONTRAST

umec

UNIVERSITY

WAVEGUIDES: SILICON PHOTONIC WIRES

High contrast waveguides

unec

UNIVERSITY

- submicrometer dimensions
- small bend radius

optical mode

13

HIGH INDEX CONTRAST: A BLESSING AND A CURSE

Very tight confinement of light

Very small bend radii : down to 1 μm

Very dense integration of components on a chip

Sub-wavelength design freedom

. .

nec

UNIVERSI

Photonic crystals with extremely high quality cavities

Cheben, OE, 2015

HIGHER CONTRAST, SMALLER CORES, TIGHTER BENDS

Silica on silicon

Contrast ~ 0.01 - 0.1Mode diameter ~ 8μ m Bend radius ~ 5mm Size ~ 10 cm^2

10000 ×

Indium Phosphide

Contrast ~ 0.2 - 0.5Mode diameter ~ 2μ m Bend radius ~ 0.5mm Size ~ 10mm²

Silicon on insulator

Contrast ~ 1.0 - 2.5Mode diameter ~ 0.4μ m Bend radius ~ 5μ m Size ~ 0.1mm²

HIGH INDEX CONTRAST: A BLESSING AND A CURSE

Every nm³ matters

CMOS technology is the only manufacturing technology with sufficient nm-process control to take advantage of the blessing without suffering from the curse

WAVEGUIDES

unec

UNIVERSITY

Waveguide losses dominated by scattering.

Use better litho + etch

Wavelength [nm]

COMPACT BENDS, TRANSITIONS, CROSSINGS

GHENT UNIVERSITY

FIBER-TO-CHIP COUPLING

Vertical fiber interface: allows easy on-chip testing

WAVELENGTH FILTERING FUNCTIONS

Light is a wave: interference at the 100nm scale

- interferometers
- resonators

WAVELENGTH FILTERING FUNCTIONS

Arrayed waveguide grating

SENSITIVITY OF SILICON PHOTONICS WAVELENGTH FILTERS

GHENT

UNIVERSITY

INTEGRATED HEATERS FOR CONTROL

Different types of electrical resistors: metal, silicide, doped silicon

Optional undercut to lower reduce thermal leakage.

ELECTRO-OPTIC EFFECT IN SILICON: INJECTION VS. DEPLETION

Carrier injection

- p-i-n diode in forward bias
- Inject carriers into waveguides
- Strong effect (many carriers)
- Slow effect (~1GHz)

Carrier depletion

- p-n diode in reverse bias
- Extract carriers from waveguide
- Weaker effect
- Fast effect (>40GHz)

Carrier accumulation

- Accumulation at oxide
- Similar to capacitor
- Fast

unec

GHENT

UNIVERSITY

ELECTRICAL SIGNAL MODULATION

Add doped junction to silicon waveguide: modulate refractive index

- travelling wave modulator
- ring resonator modulator

25Gb/s, IVpp Vbias= -0.2V, ER = 2.3dB, Q = 5.3, Opt. Power=13dbm, 1560nm, PRBS=2e31-1

56Gb/s, 2.5Vpp Vbias=-0.75V, ER=4dB, Q=4.2, PRBS=2e31-1

GERMANIUM ELECTRO-ABSORPTION MODULATOR

Advantages

- Uses existing Ge-detector technology
- Compact, optical BW > 35nm

•3dB BW > 40GHz

Next steps

GHENT

UNIVERSITY

•Ge \rightarrow SiGe to reach C-band

Ge-laser

unec

Gupta, S., et al. 50GHz Ge Waveguide Electro-Absorption Modulator Integrated in a 220nm SOI Photonics Platform. In *Optical Fiber Communication Conference* (Vol. 1, pp. 5–7) 2015.

FAST AND EFFICIENT PHOTODETECTORS

Integrated Germanium Photodetectors

- 1 A/W responsivity
- > 70 GHz bandwidth
- 3nA dark current ____
- 1 V operation

GHENT

INTEGRATION ON WAFER SCALE

Compatible with CMOS processing

ALL PHOTONIC FUNCTIONS ARE THERE...

ເກາຍc

LASER INTEGRATION ON SILICON PHOTONICS

Transfer III-V laser material to the silicon Photonic chip

SILICON PHOTONICS ENABLES LARGE SCALE PHOTONICS

>10000 optical functions on a chip

optical guiding, filtering, detection and modulation

efficient fiber-chip coupling

external or integrated light sources

mec

GHEN

UNIVERS

MORE THAN JUST PHOTONS

THE PHOTONIC CHIP IS JUST A PART OF THE SYSTEM

OFC 2018 – Short Course SC454 FIDER arrays

PACKAGING TECHNOLOGY

- Combining photonics and electronics
- Fiber interfaces
- RF connections
- Thermal and mechanical

unec

GHEN1

UNIVERSITY

shielded packages

FABLESS SILICON PHOTONICS

Many fabless Silicon Photonics companies have emerged

- from direct collaboration with fabs (Luxtera, ...)
- starting from MPW (Caliopa, Genalyte, Acacia)

Established players are also partnering

• e.g. Finisar with ST

1ec

• Many keep their fab a secret

How to enter as a new (fabless) startup?

Small building blocks \rightarrow Large circuits

µm-scale building blocks

cm-scale chips

Photonics

Very Large Scale Integration (VLSI)

thousands – millions components

COMPLEXITY AS AN ENABLER

Integrated Electronics

GHENT

UNIVERSITY

unec

- billions of digital gates: unprecedented logic performance
- millions of analog transistors: unprecedented control
- (even with imperfect components: enabled by design!)

Integrated Photonics (Silicon Photonics)

- technological potential of 10000+ photonic elements on a chip
- not even scratched the surface of what this could do

PHOTONIC CIRCUIT DESIGN

ENABLING COMPLEXITY IN PHOTONICS

unec

Industrial PIC technology platforms (Si, InP, ...)

- demonstrations of sensors, spectrometers, ...
- commercial products

But: fairly simple circuits ~ 1970s ICs

More complexity is enabled by design methods

- Design capture: translating ideas to circuits
- Circuit simulation (electrical+photonic)
- Variability analysis on circuits
- Yield prediction and improvement

COMPLEX CIRCUITS \neq COMPLICATED BUILDING BLOCKS

You can do a lot with a few building blocks

Electronics: Transistors, Resistors, Diodes, ... Photonics: Waveguides, Directional couplers, ...

Complexity emerges from connectivity

But you need to support complexity

- Accurate models
- Variability
- Parasitics

nec

GHEN

DESIGNING PHOTONIC INTEGRATED CIRCUITS

Can we learn from electronic ICs?

- Millions of analog transistors
- Billions of digital transistors
- Power, timing and yield
- First time right designs

unec

GHENT

UNIVERSITY

- Very mature Electronic Design Automation (EDA) tools!
- A well established design flow

Can we repurpose this for photonics?

DESIGN ENVIRONMENTS ARE EMERGING

Combinations of Photonics Design and EDA

Physical simulation combined with circuit design

Physical and functional verification

First PDKs with basic models

WHAT IS A DESIGN FLOW?

⁶⁶ Design is the creation of a plan or convention for the construction of an object or a system??

Design Flow

⁶ ⁶ a repeatable pattern of activity, usually involving multiple tasks with a specific set of outcomes??

WHAT IS THE PURPOSE OF A DESIGN FLOW?

to translate an idea into a WORKING chip.

A TYPICAL DESIGN CYCLE

IIII GHENT

UNIVERSITY

umec

design flow

49

A GREAT IDEA?

design flow

time

DESIGN CAPTURE AND SIMULATION

design flow

time

DESIGN CAPTURE

Select/construct functional blocks Connect them together

• Netlist:

list of connections ("Nets") and which components the nets are attached to.

• Schematic:

unec

GHEN1

UNIVERSITY

graphical representation of a netlist, with placements

HIERARCHY

Netlists are hierarchical

- Hierarchical cells: contain another netlist
- Atomic cells: contain a circuit model

umec

IIII GHENT

UNIVERSITY

WAVEGUIDES IN PHOTONIC SCHEMATICS

What are waveguides?

- Simple connections between building blocks ٠
 - the length and shape does not really matter ٠
 - it should just provide a good connection ٠
 - similar as an electrical wire ٠
- Functional building blocks with a certain phase/time delay •
 - length and shape are very important ٠
 - should be treated as a building block ٠

The distinction is important

unec

GHENT

UNIVERSITY

DESIGN CAPTURE AND SIMULATION

Capture design intent in a functional description

- underlying equations
- behavioral models
- flow of information

This typically results in a schematic circuit

Simulated at an abstract level

Optimization: an iterative process

GHENT nnec UNIVERSITY

design flow

time

COMPONENT SIMULATION \neq CIRCUIT SIMULATION

Physical models

Accurate, slow

Based on actual geometries

Best model = reality

Circuit simulations

Approximate, fast

Based on functional description

behavioural models

MODELS

Should allow simulation in a larger circuit

- based on equations
- based on measurement data
- based on EM simulations

Photonics: Nothing really standardized

- No standardized simulation method
- No standard model description
- No standard signals

mec

GHEN

OPTICAL VS. ELECTRICAL CIRCUIT SIMULATION

optics = electric... at very high frequency

- ultra-small time steps (fs)
- ultra-long simulations (10¹² time steps)
- high-bandwidth signals (200THz)

impractical.

mec

GHEN1

UNIVERSITY

Solution: analytic signal

= complex amplitude on carrier

PHOTONIC CIRCUIT SIMULATIONS

Same as electronics? No. Photonics does not fit in Spice

Effort-flow systems

ElectricalVoltageCurrentFluidicPressureFlowThermalTemperatureHeat Flow*MechanicalForceMotionPhotonic?E-fieldH-field			
ThermalTemperatureHeat Flow*MechanicalForceMotion	Electrical	Voltage	Current
Mechanical Force Motion	Fluidic	Pressure	Flow
	Thermal	Temperature	Heat Flow*
Photonic? E-field H-field	Mechanical	Force	Motion
	Photonic?	E-field	H-field

Not the best formalism for photonics (too high frequency, much more than an RF wave)

Wave scattering formalism ≠ Effort Flow Formalism

electrical and optical is not the same

optical:

GHENT

UNIVERSITY

ports

electrical:

- nets with a voltage potential
- current flowing through terms

solve with SPICE

LINEAR PHOTONICS: SCATTER MATRICES

Generalized reflections of a propagating wave

GHENT

UNIVERSITY

unec

WHAT IS A PORT OF A WAVEGUIDE COMPONENT?

Orthogonal states

- Physically separated waveguides
- Each mode in the waveguide

Example: 6 "ports" 6x6 S-matrix

In practice:

unec

GHEN

UNIVERSITY

Only use the relevant modes (rest is "loss")

FREQUENCY DOMAIN OPTICAL CIRCUIT SIMULATOR

Frequency domain

- Linear systems ٠
- Described by scatter matrices (S-parameters) ٠

Circuit is solved as a single matrix (similar as RF)

FREQUENCY DOMAIN SIMULATIONS

Frequency domain simulations are very useful for calculating

- **Insertion** losses ullet
- **Backreflections** ullet
- Dispersion (wavelength dependent behavior) ullet
- Wavelength filter response ullet

and can also be extended to model

Slowly varying effects •

mec

Certain optical nonlinearities ullet

TIME DOMAIN OPTICAL CIRCUIT SIMULATION

Calculate time response of a circuit

- to a stimulus (or combination of excitations)
- at certain output monitors
- using discrete time steps

Pro:

• Fast

mec

• Large circuits

Con:

GHENT

UNIVERSITY

- Slower than frequency domain
- Only response to specific stimulus

TIME-DOMAIN OPTICAL CIRCUIT SIMULATION

Nodes

- connected by signal lines (bidirectional)
- an internal state
- an algorithm to calculate output from inputs and internal state (differential equations, coupled-mode theory, custom code)

every time step, in each node:

- Input signals of last time step are read
- Internal state is updated
- Output signals are generated

GHENT

UNIVERSITY

71

OPTICAL SIGNALS: EXAMPLE

Example: Single- λ link

- One direction \bullet
- One wavelength •
- **On-off-keying:** power •
- One mode: TE \bullet

unec

GHENT

UNIVERSITY

 $1 \times 1 \times 1 \times 1$

not all simulators support all combinations

mode/polarization: M modes

two directions

complex number

wavelength:

N channels

Optical Signals: Example

two directions

Example: WDM bidirectional link

- two directions
- QPSK modulation: phase
- 32 wavelength channels
- one mode

unec

GHENT

UNIVERSITY

 $2 \times 2 \times 32 \times 1$

complex number

wavelength:

N channels

power

phase

mode/polarization: M modes

OPTICAL SIGNALS: EXAMPLE two directions

Example: DWDM multimode link

- two directions
- QAM64 modulation: phase
- 512 wavelength channels
- 4 modes

unec

GHENT

UNIVERSITY

 $2 \times 2 \times 512 \times 4$

complex number

wavelength:

N channels

power

mode/polarization: M modes

Real system: photonics + electronics

Example: optical link

Circuit has optical and electrical parts:

Some components overlap

75

Simulating everything in electrical simulator (SPICE – MNA)

- Use native, verified models for electronics
- Build Verilog-A models for photonics

PHOTONICS IN VERILOGA

Encode time signals as 'analytical' signals (complex numbers) (a)

Bus of two lines for bidirectionality

Modulation on an optical wavelength

Simulate everything in a photonics simulator (Interconnect, Caphe, OptSim)

- Optimized models and formalisms for photonics
- Electronics models need to be mapped. No verified fab models

Co-simulate with waveform exchange

- Photonics and electronics in optimized model, executed sequentially
- Output of one simulation = input of next simulation

True cosimulation (photonics and electronics in lockstep)

- Both photonic and electronic simulators run in parallel ullet
- Photonic and electronic model exchange data at each step •

CO-SIMULATION

Optical and electrical co-design in Virtuoso Schematic

Photonic simulation in Lumerical Interconnect

Clumerical **C ā d e n C e** A. Farsaei, APC 2016, JTu4A.1

FROM FUNCTION TO LAYOUT

I GHENT

UNIVERSITY

unec

design flow

82

LAYOUT

Geometric patterns

- Originally drawn by hand
- Now drawn by computer
- or programmed using scripts

Different layers

- correspond to process steps: Mask layers
- or to logical operations (e.g. Boolean operations)

Different purposes

unec

GHENT

UNIVERSIT

• Intent of the drawn shape: process, exclusion, annotation, ...

LAYOUT: CIRCUITS

Organized in (reusable) Cells

- placement
- transformations

Hierarchy: Cells contain other cells

Routing

unec

GHEN1

UNIVERSITY

- Optical connectivity with waveguides
- Electrical connectivity with metal wiring
- Avoid crossings/shorts/disconnects

PARAMETERIZED CELLS

(Or PCells)

Consists of

- Parameters
 - that the user can supply
- Evaluators
 - piece(s) of code that generate the content based on the parameters

Layout, model, symbol, netlist, ...

Languages:

GHEN1

UNIVERSITY

- Open: Tcl, Python, Ruby
- Proprietary: SKILL, Ample, SPT, ...

from ipkiss3 import all as i3

class RingResonator(i3.PCell):

class Layout(i3.LayoutView):

```
ring_radius = i3.PositiveNumberProperty(default=20.0)
wg_width = i3.PositiveNumberProperty(default=0.45)
coupler_gap = i3.PositiveNumberProperty(default=0.3)
```

def _generate_elements(self, elems):
 r = self.ring_radius
 g = self.coupler_gap
 w = self.wg_width

return elems

SCHEMATIC DRIVEN LAYOUT (SDL)

design flow

time

SCHEMATIC DRIVEN LAYOUT (SDL)

Derive the physical layout from the schematic

- Generate the Layout (P)Cells
- Place the Layout Cells
- Connect the layout cells together

Not trivial to fully automate

- What is the optimal placement?
- Is the topology possible?
- Constraints for length matching?
- On which layer to route?
- Waveguide bends and crossings?

OFC 2018 – Short Course SC454

PLACEMENT AND ROUTING

Photonic-specific constraints

- 'optical length' and phase control
- minimal bend radius
- waveguide spacing
- matching port direction
- single routing layer!

unec

GHENT

UNIVERSITY

PHOTONIC SDL TOOLS ARE EMERGING

Pure photonics or based on EDA tools

- define connections
- place components
- route waveguides

Luceda, Phoenix, Mentor Graphics,

unec

Cadence ...

GHENT

UNIVERSITY

IS THE LAYOUT VALID?

design flow

Design Rule Checking meets the fabrication

- minimum features
- layer combinations

time

pattern density

IIII GHENT unec **UNIVERSITY**

91

DESIGN RULE VIOLATIONS: EXAMPLES

PHOTONIC PROBLEMS WITH DRC?

DRC techniques were designed for electronics: 90-degree angles...

Silicon Photonics:

- All-angle waveguides discretized...
- Nanometer scale sensitivities
- Arbitrary geometries (e.g. slot waveguides, PhC)

What is bad?

What is intentional?

PATTERN DENSITIES

Pattern density must be sufficiently uniform

- Etch rate control
- Avoid CMP dishing

Tiles are added

There must be sufficient room to add tiles

- Slab areas (AWG)
- Dense waveguide arrays

. . .

IS THE LAYOUT VALID?

design flow

Design Rule Checking meets the fabrication rules of the fab?

- minimum features
- layer combinations

time

- overlaps
- pattern density

An iterative process

IIII GHENT unec **UNIVERSITY**

95

OFC 2018 – Short Course SC454

REAL-TIME DRC

Layout is checked on DRC errors as it is being generated

Real-time feedback in editor

Much faster to a DRC-clean design

FUNCTIONAL VERIFICATION

IIII GHENT

UNIVERSITY

unec

design flow

97

FUNCTIONAL VERIFICATION: LAYOUT VERSUS SCHEMATIC

Check Connectivity

Are the correct components placed?

Are they properly connected?

GHEN

UNIVERSI

mec

Check functionality

Did we use the right parameters?

Does the layout perform the correct function?

e.g. does the waveguide have the correct width (i.e. optical length)

FUNCTIONAL VERIFICATION

99

time

design flow

FABRICATION

"no plan survives contact with the enemy" H. von Moltke (misquoted)

time

design flow

THE ACTUAL FABRICATION PROCESS

Layer depositions

Pattern definition (lithography)

Pattern transfer (etch)

Planarization

unec

. . .

GHENT

UNIVERSITY

Thermal treatment

Doping and implantation

example: IMEC silicon Photonics

and each step with imperfections and variability

LITHOGRAPHY: NOT PERFECT

Spatial low-pass filter

- Minimum feature size
- Minimum pitch
- Pattern rounding

Example: Bragg grating

unec

GHENT

UNIVERSITY

103

OPTICAL PROXIMITY CORRECTIONS (OPC)

Overcome rounding: add OPC

- serifs
- cutouts

Makes mask more complex (and costly)

unec

GHENT

UNIVERSITY

Not always possible without violating DR

FABRICATION: IN-LINE DATA

time

IN-LINE PROCESS DATA

Collect data from wafers as they are being processed

- Line width
- Etch depth
- Layer thickness

Feed in design process

- FRONT-END: Predict behavioural change
- BACK-END: Adjust layout

C9 1_FEOL STI_WG_PATTERNING WG_Etch cd [][SIPP-WG-STI-ETCH-IL450][KLA8100XP]

STATISTICS!

THERE ARE MANY SOURCES OF NON-UNIFORMITY

VARIABILITY: PREDICTING CIRCUIT YIELD

IIII GHENT

UNIVERSITY

umec

DESCRIBING VARIABILITY AT DIFFERENT LEVELS

process conditions

• • •

GHENT

UNIVERSITY

exposure dose resist age plasma density slurry composition

unec

silicon

silicon dioxide

device geometry

...

w1

line width layer thickness sidewall angle doping profile

optical device properties

effective index group index coupling coefficients center wavelength

...

circuit properties

• • •

νπ

optical delay path imbalance tuning curve

^Lring

system performance

...

insertion loss crosstalk noise figures power consumption

LEVELS OF VARIABILITY: CAREFUL WITH MAPPING

unec

UNIVERSITY

INTRA-DIE VARIABILITY

Variability has causes with different properties...

Optical extraction of linewidth and thickness

VARIABILITY EFFECTS WORK ON DIFFERENT SCALES

VARIABILITY \neq VARIABILITY

- Wafer to wafer variability
- Die to die variability
- Intra-die variability
- mask-related
- distance related
- stochastic

TESTING

design flow

115

time

OFC 2018 – Short Course SC454

How to test?

Electrical, optical, or both?

Wafer-scale testing -> grating couplers

Testing after packaging?

Need statistics?

unec

depends

IIII GHENT

UNIVERSITY

CHALLENGE: DEFINING GOOD TESTS

You need to think about tests during the design stage

- Which structures are representative?
- How can I isolate them?
- What parameters do I want to measure?
- How will I analyse/fit the data?

Parameters for your component models!

- What makes a good model?

GHENT

UNIVERSITY

mec

Example: waveguide model

- $n_{eff}(\lambda)$ -> polynomial?
- loss(λ) -> polynomial?
- nonlinearities?

How to measure n_{eff} ?

OUR SIMPLE DESIGN FLOW

IIII GHENT

UNIVERSITY

ເກາຍc

design flow

time

OUR SIMPLE DESIGN FLOW

I GHENT

UNIVERSITY

unec

design flow

time

EXCHANGE OF INFORMATION

Files

- Layout: GDSII and OASIS
- Netlist/Schematic: Spice, EDIF
- Models: Spice, VerilogA, C++, Python
- PCell code: Skill, Python , Tcl
- Data: Touchstone, XML

Databases

GHENT

UNIVERSIT

- proprietary

unec

- EDA standard: OpenAccess

DESIGNING IN CODE VERSUS GUI

Designing in Code

```
from ipkiss3 import all as i3
class RingResonator(i3.PCell):
    class Layout(i3.LayoutView):
       ring_radius = i3.PositiveNumberProperty(default=20.0)
       wg_width = i3.PositiveNumberProperty(default=0.45)
       coupler_gap = i3.PositiveNumberProperty(default=0.3)
       def _generate_elements(self, elems):
            r = self.ring_radius
            g = self.coupler_gap
            w = self.wg_width
            elems += i3.CirclePath(layer=i3.Layer(2),
                                   radius=r,
                                  line_width=w)
            elems += i3.Line(layer=Layer(2),
                             begin_coord=(-r, -r-w-g),
                             end_coord=(+r, -r-w-g),
                             line_width=w)
            return elems
```

Designing in GUI

DESIGNING IN CODE VERSUS GUI

Designing in Code

Pro:

- Easy to reuse
- Easy to upgrade design
- Easy to share and version
- Easy to parametrize
- Easy to document and make examples
- Everything is numerically correct
- Automate repetitive work

Con:

GHENT

UNIVERSITY

• Harder to learn

unec

No immediate visual feedback

Designing in GUI

Pro:

- Intuitive quick start
- Visual feedback
- WYSIWYG
- Quick point and click

Con:

- Difficult to make complex things
- No calculations
- A lot of manual work
- Easy make small (invisible) mistakes

DESIGNING IN CODE VERSUS GUI

Designing in Code

- parameter sweeps
- calculated geometries
- circuit models
- automatic placement and routing

Designing in GUI

- schematic connectivity
- layout positioning (floorplanning)
- fixing the last DRC errors
- quick manual routing

OFC 2018 – Short Course SC454

DESIGN ABSTRACTIONS

I GHENT

ABSTRACTIONS IN A CIRCUIT DESIGN FLOW

ABSTRACTIONS IN A CIRCUIT DESIGN FLOW

PDK: INTERFACE FROM FAB TO DESIGNER

GHENT

SUMMARY

(Silicon) Photonics is growing towards a circuit platform

- Technology supports larger circuits
- A circuit-oriented design flow is emerging (similar to electronics)
- Fabs are building PDKs

Challenges

mec

GHEN1

- Schematic-driven Layout for photonics
- Variability: fabrication, performance, models
- Verification: DRC and LVS
- Design for manufacturability
- Photonic-electronic-software stacks

PRACTICAL SETUP

JUPYTER NOTEBOOKS

interactive notebook

- text, figures
- formulas
- python code

simulation and design

• built-in IPKISS

THE IPKISS DESIGN FRAMEWORK

Design framework for Photonic Integrated Circuits

- Parametric design
- Focus on reuse and automation

History

- Developed at Ghent University imec in 2000-2014
- Spin-off into Luceda Photonics in 2014
- Currently hundreds of users worldwide

OFC 2018 – Short Course SC454

THE IPKISS DESIGN FLOW

Python script based

class RingResonator(i3.PCell): """A generic ring resonator class."""

```
bus = i3.ChildCellProperty(doc="bus waveguide")
ring = i3.ChildCellProperty(doc="ring waveguide")
```

```
def _default_ring(self):
    return i3.Waveguide(name=self.name+"_ring", trace_template=self.wg_template)
```

- def _default_bus(self):
 return i3.Waveguide(name=self.name+"_bus", trace_template=self.wg_template)

def _default_bus(self):

GHENT

UNIVERSITY

def _generate_instances(self, insts):
 insts += i3.SRef(name="ring", reference=self.ring)
 insts += i3.SRef(name="bus", reference=self.bus)
 return insts

e python powered

- extremely flexible
- easy-to-read
- powerful engineering libraries
- industry standard

THE PICAZZO LIBRARY

A large library of photonic components

- waveguides and routing
- crossings, splitters and couplers
- wavelength filters
- grating couplers and mode converters
- generic modulator blocks
- Parametric and technology aware

Validated on the IMEC technology platform

OFC 2018 – Short Course SC454

OFC 2018 – Short Course SC454

ADVANCED SPECTRAL FILTER DESIGN

Arrayed Waveguide Gratings

Echelle Gratings

GHENT

- Fully parametric
- Design from specifications
- Integrated layout and simulation
- Validated on fabricated devices

IPKISS NOTEBOOKS

FIRST NOTEBOOKS

Unfamiliar with Python?

/0_1_python_getting_started: basic Python tutorial /0_2_ numpy_and_plotting: Numpy and Matplotlib

Check if everything works and if you find your way around the notebook interface.

PRACTICAL

- 1. Connect WIFI / Ethernet
- 2. Open web browser (Chrome, Firefox, Opera)
- 3. Connect to Jupyter server

(address will be provided on-site)

4. Log in with your personal ID/password

NOTEBOOK: INTERACTIVE ENVIRONMENT

Text and explanations

Variables

A name that is used to denote something or a value is called a variable. In python, variables can be declared and values can be assigned to it as follows,

OFC 2018 – Short Course SC454

NAVIGATING

GHENT UNIVERSITY

Files Running Clusters	Click here to go back to start	
Select items to perform actions on them.		Upload New 🗸 📿
• *		
circuit_design		
circuit_simulation		
Component_design		Cuesta blan
design_flows	Folders with notebooks	Create blan notebook he
General dfm		
filter_design		
intro_ipkiss		
intro_python		
Iayout		

NAVIGATING

💭 Jupyter		
Files Running Clusters		
Select items to perform actions on them.		Upload New -
□ ▼		
۵		
images_source	Notebook:	
□ □_tex	click to start	
images		
Ø0_Introduction.ipynb		
01_Basics_and_Built-in_Functions	.ipynb	Running
02_String		
03_Data Structures-		
04_String_and_Dicts.ipynb	Running	
05_Control_Flow.ipynb	Notebook	
Ø 06_Functions.ipynb		
Ø7_Classes.ipynb		
RSITY INNEC		

PRESS H FOR 'HELP'

Useful menu and toolbar

Keyboard shortcuts are extremely powerful

File	dit View Insert Cell Kernel Help	
B +	※ ② ➡ ▲ ▲ ■ C Markdown ■ CellTool	bar
	Keyboard shortcuts	
	The Jupyter Notebook has two different keyboard input modes. Edit mode allows you to type code/text into a cell and is indicated by a green cell border. Command mode binds the keyboard to notebook level actions and is indicated by a grey cell border with a blue left margin.	
	Command Mode (press Esc to enable)	
	F: find and replace Shift-J: extend selected cells below	
	Ctrl-shift-P : open the command palette A: insert cell above	
	Enter : enter edit mode B : insert cell below	
	Shift-Enter : run cell, select below X : cut cell	
	Ctrl-Enter : run selected cells C: copy cell	
	Alt-Enter : run cell, insert below Shift-V	
	Y: to code V: paste cell below	
	M: to markdown Z: undo cell deletion	
	R: to raw D, D: delete selected cell	
	1: to heading 1 Shift-M: merge selected cells, or current	
	2: to heading 2cell with cell below if only one cell	
	Image: selected	
	4 : to heading 4 Ctrl-S : Save and Checkpoint	
	5: to heading 5 S: Save and Checkpoint	
	Close	

IIII GHENT

TAKE CARE OF MEMORY

Interactive plots consume resources.

Close them when ready.

C:\luceda\ipkiss_311\python\envs\ipkiss3\lib\site-packages\matplotlib\pyplot.py:516: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed an d may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). max_open_warning, RuntimeWarning)

Getting Started...

- connect to the internet
- open browser (Chrome, Firefox)
- connect to notebook server: https://wsjupyler.intec.ugent.be
- notebook login / password

Launch a notebook

Step 1: Copy the notebook

unec

GHENT

UNIVERSITY

📁 jupyter 02. IPKISS Layout elements Last Checkpoint: 6 hours ago (autosaved File Edit View Insert Help Cell Kernel С CellToolbar New Notebook Markdown 2002 Open... Make a Copy.. Rename... S Layout elements Save and Checkpoint Revert to Checkpoint) ptebook we give an overview of predefined Layout elements in IPKISS. Th the user work a lot of common primitives are already provided. Print Preview Download as ► Trusted Notebook tup Close and Halt

BUILDING CIRCUITS IN A NOTEBOOK

Define schematics in python code

- List building blocks (or subcircuits)
 - gc, splitter, wg
- List internal connections
 - gc:out⇔splitter:in, splitter:out2⇔wg:in
- List external ports

GHENT

UNIVERSITY

• in ↔gc:vertical_in, out1 ↔ splitter:out1, out2 ↔wg:out

BUILDING CIRCUITS: AUTOPLACEANDCONNECT

Circuits with direct connections: no waveguide generation

BUILDING CIRCUITS: PLACEANDAUTOROUTE

USE HIERARCHY: YOU CAN USE A CIRCUIT AS A BUILDING BLOCK

Circuits can be nested

Break up circuits into reusable parts

THE SMALL PRINT ON COPYRIGHT

The material on the server is copyrighted

- The IPKISS toolset
- The addon libraries
- The notebooks

Please do not download the material to your own PC. It will probably not work as the server has a specific set of pre-configured utilities.

If you interested in using IPKISS, contact info@lucedaphotonics.com If you are interested in using the course material, contact wim.bogaerts@ugent.be

You can continue to use the server until 30 June 2018.

Further reading

Abstract Silicon Photonics technology is rapidly maturing as a platform for larger-scale photonic circuits. As a result, the associated design methodologies are also evolving from componentoriented design to a more circuit-oriented design flow, that makes abstraction from the very detailed geometry and enables design on a larger scale. In this paper, we review the state of this emerging photonic circuit design flow and its synergies with electronic design automation (EDA). We cover the design flow from schematic capture, circuit simulation, layout and verification. We discuss the similarities and the differences between photonic and electronic design, and the challenges and opportunities that present themselves in the new photonic design landscape, such as variability analysis, photonic-electronic co-simulation and compact model definition.

Silicon Photonics, Circuit Design: Methods, Tools and

Challenges

GHENT

UNIVERSITY

Wim Bogaerts^{1,2,*} and Lukas Chrostowski³

Lasers and Photonics Reviews

unec

OFC 2018 – Short Course SC454

PHOTONICS RESEARCH GROUP

Wim Bogaerts

- **Professor in Silicon Photonics**
- E wim.bogaerts@ugent.be
- T +32 9 264 3324

@PhotonicsUGent

www.photonics.intec.ugent.be

N FACULTY OF ENGINEERING

