
A Graph-based Design and Programming Strategy
for Reconfigurable Photonic Circuits

Xiangfeng Chen and Wim Bogaerts
Ghent University - IMEC, Photonic Research Group, Department of Information Technology, Gent, Belgium.

Center of Nano and Biophotonics, Ghent University, Belgium.
Email: xiangfeng.chen@ugent.be

Abstract—We have developed a graph representation of pro-
grammable photonic mesh circuits that can be used by pathfind-
ing algorithms. We modified the Dijkstra algorithm to observe
only physically possible connections in the graph, demonstrating
flexible rerouting in case of node malfunction.

Index Terms—Programmable Photonics, Graph Theory, Cus-
tomized Dijkstra,

I. INTRODUCTION

Graph theory forms the basis of cost managements in
a wide range of fields such as transportation scheduling,
logistics planning, network flow assignments. Among these,
it stands out by playing an substantial role in architecture
designs of integrated electronic circuits [1]. Designers of field-
programmable gate arrays (FPGA) employ graph theory to
solve placement and routing issues. In photonic integrated
circuits, we encounter similar, but still significantly different,
connection and arrangement problems of photonic building
blocks. And in the new field of programmable photonic
circuits, the problem shifts from laying out circuits to pro-
gramming the circuit connectivity in an optical mesh. A
graph representation of a (programmable) photonic circuit
makes it possible to leverage decades of research in graph
theory [2]. By abstracting interactions of photonic building
blocks to a graph network, well-developed algorithms for
graph analysis can enable us to solve placement, routing and
programming dilemmas. In this paper, we report our work in
progress towards a graphing implementation for programmable
photonic meshes which takes into account the particularities
of optical waveguides, such as the directional flow of light.

II. PHOTONIC GRAPH IMPLEMENTATION: MAPPING

There are many topology designs for reconfigurable optical
circuits, which can be separated into feed-forward (’left-to-
right’) topologies [3] and feed-back (’loops’) topologies with
square or hexagonal meshes [4]. For demonstration purpose
we will use a hexagonal mesh in our graph abstraction, which
consists of vertices and edges. A possible implementation of
the hexagonal mesh consists of repeatable unit cells which
have 3 programmable 2 × 2 couplers with 3 phase shifters
to interconnect them. The mapping onto a graph is guided
by preserving the connectivity and performance properties of

This work has received funding from the European Research Council
through grant agreement No 725555 (PhotonicSWARM).

photonic building blocks. Thus waveguide ports are chosen to
be vertices in our photonic graph. As shown in Fig. 1, every
coupler of this unit cell has 4 ports, namely ”in1”, ”out1”
, ”in2” and ”out2”. The edges between the nodes represent
connections either between building blocks, or port-to-port
coupling within a building block, and each connection has
a different influence on the circuit performance, expressed in
figures of merit like propagation loss, crosstalk, and power
consumption. Thus edges are assigned with attributes which
are translated into weights. For example, in our mapping,
we assign different propagation loss weights for different
connections (10 for coupler cross connections, 5 for coupler
bar connections, 4.5 for phase shifters and 1 for waveguides).
This edge weight is used as a penalty in the routing algorithm.
The result is the path with the lowest propagation loss, as
shown in section III. For state of a tunable 2 × 2 coupler is
initially left undecided, and the cross or bar state is chosen
when the coupler is first used in a light path. Partial coupling
can be realized by solving subgraph routing problems, but in
this paper, we limit the scope to pure cross and bar states for
the couplers.

Graphs can be characterized as undirected graphs, directed
graphs and multi-graphs. Due to the reciprocal nature of
waveguides, an undirected graph is chosen, but as we discuss
further, this generates problems in the graph representation of
the couplers. While a graph can be multi-dimensional, for vi-
sualization purposes we project our photonic graph network on
a plane and assign vertices with coordinates that correspond to
a real hexagonal mesh. We used the python package NetworkX
for graph visualization and algorithm customization [5].

PS

WG

CP

Fig. 1. Green boxes highlight the mapping steps from the hexagonal mesh to
photonic graph by abstracting subgraph representation of the repeatable unit
cells

978-1-7281-0597-0/19/$31.00 ©2019 IEEE

III. PHOTONIC GRAPH TRAVERSAL: DIJKSTRA

A key function of programmable photonic circuits is rout-
ing, i.e. guiding light from one port to another. For this, we
can use established pathfinding algorithms, such as the Dijkstra
algorithm [6]. We can use this sequentially for multiple paths
by updating the graph when a path is added, by removing all
used edges. In the case of the 2× 2 coupler, we also need to
remove the edges of the states that are no longer possible. If
a ’cross’ edge used, the only other available edge remaining
is the other ’cross’ edge, and ’bar’ edges are removed.

A. Flexibility

This same approach can be used for flexible rerouting.
It is reasonable to assume that in large photonic circuits
individual elements can malfunction for various reasons such
as fabrication defects. In our photonic graph, we then update
the graph to remove vertices and edges blocked by malfunc-
tions. This way, we can flexibly bypass malfunctioning nodes
in circuits. Figure 2(b) shows a rerouting of a connection
after malfunctioning nodes. We can identify multiple types
of malfunctions, caused by broken paths or by couplers stuck
in a cross or bar state.

B. Eliminating Nonphysical Solutions

While reciprocal circuit elements can propagate light in two
directions, and thus the graph cannot be directional, light is
still restricted to directional paths. In the middle of Fig. 2,
green edges represent valid states of the subgraph of a 2× 2
directional coupler, whereas red edges denote connections that
are not physical. This is illustrated in Fig. 2(b), where the
blue route shows the result of the standard Dijkstra algorithm.
The routing in the red-highlighted coupler is logically allowed,
but nonphysical: light cannot just reverse direction, and it is
also not allowed to use the ’bar’ edges and the ’cross’ edges
at the same time. Removing nonphysical connection choices
by choosing the state of the coupler upfront solves this, but
then requires an additional selection algorithm. This becomes
unpractical for scaling up to multiple pathfinding. A similar
reasoning holds for changing the edge weights upfront for
extra penalty. Therefore, we chose to customize the original
algorithm.

C. Customized Dijkstra Pathfinding

In the standard Dijkstra algorithm, the current node can
be routed to all adjacent nodes which have not been visited.
Recursively, weights for neighboring edges are dynamically
recalled and compared. In order to filter out nonphysical path
choices within one source-target pair, a third node is added
to be dynamically recalled in each recursion of our algorithm.
This third node is the predecessor of the current node in the
shortest path. By applying a Boolean condition between the
predecessor and every adjacent node of the current node, our
customized Dijkstra thus eliminates the chance of having a
path with three nodes of the same 2×2 coupler. The blue route
in Fig. 2(c) shows that, for the same source-target assignment
in Fig. 2(a) and (b), the customized algorithm chooses the

In2

In2

In2

In2

In1

In1

In1

In1

Out2

Out1

Out2

Out1

Out2

Out1

Out2

Out1

(a) (b)

(d)(c)

Fig. 2. (a) and (b) are route examples that compare routing condition with and
without malfunctioning nodes by Dijkstra algorithm; (c) and (d) are sequential
routing results by customized algorithm for the same two source-target pairs
with different order: blue path is routed first, and yellow path is routed with
removal of prohibited edges given routing result of the blue path

correct shortest path without losing the flexibility in mesh with
malfunction blocks. Couplers highlighted in green emphasize
that the algorithm does yield valid connections. The sequence
routing in Fig. 2(c) and (d) further validates our customized
algorithm for routing in a programmable photonic circuit,
irrespective of the circuit topology.

IV. SUMMARY

We abstracted a hexagonal programmable photonic mesh to
a graph implementation. We demonstrated that the standard
Dijkstra pathfinding algorithm results in nonphysical paths, so
we customized algorithm to capture the directionality of the
light flow, inheriting the flexibility regarding to malfunctioning
elements from the original algorithm. As meshes scale up,
Dijkstra has to take the whole mesh as a search space to
find solutions. We need to tailor this search space. Heuristic
algorithms such as A* are better suited for this task. Also,
algorithms for simultaneously resolving multiple paths are
needed for congestion negotiation. Statistical analysis of such
paths would help us draw a blueprint for mesh sizes, channel
numbers, input-output assignments, power and latency man-
agement and would provide design guidance on architectures
for programmable photonics.

REFERENCES

[1] V. Betz and J. Rose, “Vpr: a new packing, placement and routing tool for
fpga research,” in Field-Programmable Logic and Applications. Berlin,
Heidelberg: Springer, 1997, pp. 213–222.

[2] M. C. Golumbic and I. B. Hartman, Eds., Graph Theory, Combinatorics
and Algorithms. Springer US, 2005.

[3] D. A. B. Miller, “Self-configuring universal linear optical component,”
Photon. Res., vol. 1, no. 1, pp. 1–15, Jun 2013.

[4] D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable lattice
mesh designs for programmable photonic processors,” Opt. Express,
vol. 24, no. 11, pp. 12 093–12 106, May 2016.

[5] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of the
7th Python in Science Conference, Pasadena, CA USA, 2008, pp. 11 –
15.

[6] D. E. Knuth, “A generalization of dijkstra’s algorithm,” Information
Processing Letters, vol. 6, no. 1, pp. 1 – 5, 1977.

