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ABSTRACT

Tuneable all-optical signal processing has been the holy grail of information photonics; it has been pursued
for many years but has proven to be very challenging. In this contribution, we present our recent work in
developing an all-optical signal processing device called a photonic reservoir computer (PhRC) which can be
tuned to perform a bespoke task. The PhRC is inspired by how the brain handles and process information.
We demonstrate that a chaotic micro-resonator is a suitable platform for the optical implementation of such an
artificial neural network.

Keywords: All-optical signal processing, photonic reservoir computer, integrated photonics, micro-resonator,
mid-infrared spectroscopy.

1. INTRODUCTION

Rapid progress in Mid-Infrared (MIR) optics in the last decade has led to commercial MIR optical components,
including low-loss chalcogenide-fiber (1.5-10 µm), fiber combiners/splitters (1.5-6.5 µm) (IRflex Corp), mercury-
cadmium-telluride (MCT) photodetectors (2-11 µm) (ThorLabs), source pigtailing, etc. MIR integrated photonic
technology such as silicon-on-sapphire,1 germanium-on-silicon (Ge-on-Si),2 sub-wavelength suspended silicon,3

and so on have opened a way of fabricating low loss compact MIR optics in planar technologies.

Artificial intelligence and machine learning have provided headline-making success in the diagnosis of cancer
based on image processing.4,5 Furthermore, MIR imaging6 and spectroscopy7,8 based on supercontinuum and
narrow-band sources epitomize a new era in healthcare and clinical diagnostics. MIR investigation provides
additional rich chemical analysis based on the specific spectral fingerprints of molecular species. It relies on
the recognition of molecular-signatures in MIR radiation after tissue-interaction for distinguishing healthy and
non-healthy tissue. Fourier-transform infrared (FTIR) based spectro-microscopy technology combines the spatial
resolution of optical microscopy with the spectral selectivity of vibrational spectroscopy. Multivariate statistical
analysis of such FTIR spectra7 shows that the differences in the responses of diseased and healthy tissues are often
subtle and may involve hundreds of important spectral fingerprints. Thus, rapid and high-volume information
processing is required to perform the necessary spectral pattern recognition if the significant potential of MIR
spectroscopy is to be realized as a clinical evidence-based diagnosis aid. The ambitious challenge is to use
spectroscopic imaging provide surgeons with an on-the-spot molecular-pathology as a chemical tissue-map. Here
we demonstrate that integrated photonics optics is promising exploratory ground for the physical implementation
of an Artificial Neural Network (ANN) concept called a Reservoir Computer (RC).9–14 The Photonic Reservoir
Computer (PhRC) discussed in this paper can be trained to undertake bespoke information processing tasks. It
thus provides an important and timely means by which to achieve the signal processing tasks required by MIR
spectro-microscopy all-optically using existing and emerging integrated MIR photonics technology platforms.
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2. PHOTONIC RESERVOIR COMPUTING

2.1 Introduction to Photonic Reservoir Computing

This paper demonstrates the application of a chaotic microcavity structure to serve as reservoir-neuron kernel in
a Reservoir Computer (RC) algorithm that mimics the complex interconnections of a biological neural network,
see Fig. 1. In principle, the RC algorithm exploits the chaotic and echo characteristics of complex neural
networks to allow separation in the higher-dimensional parameter space, in the present context it helps achieve
the desired separation and identification of the subtle difference in the fingerprint spectra of diseased and healthy
tissue. The RC differs from a traditional Recurrent Neural Network (RNN) by embracing randomness. In the
RC approach, a distinction is made between the systems kernel and the read-out layer. In the RC approach, the
training phase finds the optimum read-out weights only whilst retaining the characteristic of the RCs kernel as
a randomly interconnected recurrent neural network. Consequently, typical RC implementations allow a high
degree of freedom in the complicated topology of the neuron kernel. Moreover, integrated optics implementations
of the read-out weighting process can be envisioned.15 A RC not only provides a distinct approach, but its
performance is comparable to, or for some applications even better than, other ANN approaches.9–13 We refer
the reader to [9,13] for a detailed comparison between Reservoir Computing and Recurrent Neural Networks, and
the implementation of the RC optimization algorithm based on Tikhonov regularization with a cross-validation
method

Photonic implementations of a Reservoir Computer (RC) have become popular in recent years. The unique
training approach in the RC offers two principal benefits: (1) a feasible physical implementation of an ANN and
(2) task-specific training that is done exclusively at the Read-Out layer; this is significantly simpler than the
whole system optimization of a Recurrent Neural Network (RNN). Notable Photonic RC developments in differ-
ent topologies include chains of Semiconductor Optical Amplifiers (SOAs),13 chains of micro-ring resonators,16

non-linear delay-coupled photonic systems,17 and quarter-billiard cavities,11 for spoken-digit and bit pattern
recognition.
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Figure 1. Schematic illustration of photonic reservoir computer. (a) a chaotic photonic crystal microcavity as reservoir
kernel, (b) schematic of the recurrent read-out layer of the reservoir computer. In (b), the signal flow direction in solid
red coloured line are performed during training session which optimise the read-out weight W1···Np and feedback weight
WF . TF denotes the feedback time-delay parameter.



2.2 Illustrative example studied

The example studied employs a D-shaped integrated optics cavity as the neuron kernel to perform temporal signal
fingerprinting, targeting MIR bio-chemical spectral fingerprint recognition. It operates at MIR wavelengths and
so takes advantage of the rapid developments in MIR photonics technologies. The new diagnostic Photonic
Reservoir Computer approach explored is performed directly on temporal signals, instead of the indirect spectral
finger-printing as for example in.18 Before describing the temporal-signal diagnostic approach used, we shall first
describe the sensing element and our implementation of a physical neuron kernel. The results of time-domain
simulations based on a commercial implementation of the Finite-Difference Time-Domain (FDTD) method19

provide the training dataset. These simulations were performed in two-dimensions with an out-of-plane principal
electric field polarisation, i.e. TM-polarised in a conventional two-dimensional problem sense.

Fig. 1(a) illustrates the sensor and the D-shaped optical cavity which serves as the photonic neuron kernel. In
order to illustrate of the disease-healthy tissue discrimination concept, a reference ‘normal’ sample is embedded
within some of the air holes on one channel and a test (either normal or contaminated) sample on the other
channel. In this illustrative example photonic crystal (PhC) waveguides act as our sensor element; in principle
one can use any type of sensor available. The D-shaped cavity is a chopped-circle structure with a radius of 20
µm with input ports connected to the sensor and 22 output ports. In detail, both structures are implemented
within a triangular lattice of an air-hole PhC on a silicon material base whose refractive index is taken to be
n = 3.5. For 2.5 to 2.7 µm operation, we use a lattice constant of r = 0.48a, where the lattice constant a = 1.3
µm and r is the radius of the air hole, noting that the PhC has a full TM band-gap region over the wavelength
range from 2.42 to 2.7 µm.

FDTD simulations were used to model the reservoir kernel and calculate the signal transmission of the
structure in Fig. 1(a). The incident signal used was a continuous-wave (CW) at 2.6 µm superimposed on
which were CW-modulated-Gaussian pulses centred at different wavelengths and peaking at different time, see
Fig. 2(a). The spectrum of the incident signal, in Fig. 2(b), depicts eight narrowband non-overlapping Gaussian
profiles and a Dirac delta function at the 2.6 µm wavelength of the constant CW signal. The incident signal was
launched simultaneously from both sensor channels and its temporal signal transmission was recorded during
the FDTD simulation. Considering future implementation of such a system in practice, the photodetectors of
the reservoir activation signal (i.e. the temporal transmitted signal of the D-shaped cavity and interconnected
waveguide network) will have a sampling capacity limited by their bandwidth and a limitation in the detection
of fluctuation in intensity imposed by noise. Therefore, we performed Hilbert transformations on these signals to
obtain signal envelopes and allowed for a down-sampling due to sensor sampling bandwidth, here is assumed to
be an ambitious 100 Gbps. An example of such reservoir activation states and its envelope is shown in Fig. 2(c).

To obtain the appropriate weight of the read-out layer, these signals (the envelope and the down-sampled
reservoir activation signal) and the target signal (i.e. the teacher) were fed into an optimisation algorithm based
on Tikhonov regularisation regression with cross-validation method. The reader is referred to10,14 for details of
the reservoir computer algorithm and the implementation of regression approach. The target signal is determined
a priori depending on the sample object placed in the test chamber. If the test chamber is filled with a normal or
healthy sample, the target signal is a constant signal of unit amplitude one. In the presence of a contaminated
or diseased sample in the test chamber the target signal is set to be a Gaussian pulse biased at one, whose peaks
are separated temporarily to correspond with the fingerprint wavelength of the contaminant i.e. at 2.56 and
2.63 µm in this illustrative example, see Fig. 2(d). In principle, one has the freedom to choose the target signal;
another appropriate target signal function may lead to a better performance and this will be part of our future
investigations.

Due to the feedback characteristic of the read-out layer, and the freedom of choosing the target signal, during
the training session two tuning parameters namely (i) feedback delay time TF and (ii) target signal time-shift
parameter TT were optimized to minimise error. The target signal time-shift parameter TT shifts the temporal
position of the target signal with respect to the incident signal, see Fig. 2(d). Here, the Normalised Means Square
Error (NMSE) is used as the error figure,

NMSE =
〈(yobtained − ytarget)2〉

〈y2target〉
(1)
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Figure 2. (a,b) Incident signal as function of (a) time and (b) wavelength; (c) typical example of the reservoir kernel
activation signal (D-shaped cavity) output, which exhibits strong transient response of the cavity; (d) target signal with
and without time-delay parameter TT .
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Figure 3. (a) NSME figure of the photonic reservoir computer as a function of the feedback time-delay TF and target
function time-shift TT parameters. The ensemble average along the TF direction is plotted as a solid line on the face of
the plot (a); for clarity this is re-plotted as subplot (b). (c) NSME plot as function of the TF parameter at TT = 7.7 ps.

where 〈·〉 it the ensemble average operation, ytarget and yobtained denote the target signal and the obtained
reservoir output signal, respectively.

Figure 3(a) shows the NSME as function of the two tuning parameters. The NSME is observed to fluctuate
weakly in the feed-back time-delay parameter TF direction in comparison to the target function time-shift
parameter TT . To find the optimum tuning parameters, we followed a two-stage parameter sweep procedure.
First, we performed a parameter sweep of TT for several different values of TF and averaged the NSME as
depicted in Fig. 3(b). The inset to Fig. 3(b) shows the slowly varying NSME; with minimum NSME within the
range 0 < TT < 20 ps is found at 7.7 ps. Using the optimum target function time-shift parameter TT = 7.7
ps, a second parameter sweep was then performed for the feedback time-delay parameter TF . The NSME as
function of TF , in Fig. 3(c), shows that there exist multiple optimum TF values. Although Fig. 3(c) shows
that the general trend of NMSE is decreasing and plateauing to a certain value of NSME, we believe that this
trend will no longer be the case for large values of TF . It seems rationale that at very large TF (far beyond the
transient response of the reservoir) the feedback will either have no contribution (has zero weight) or at least an
immaterial contribution. We are, currently, investigating the relationship between the tuning parameter TF and
the decay time of the reservoir kernel.
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Figure 4. Target signal (left side) signal for (a,e) normal-normal and (c,g) normal-diseased samples and (right side)
the signal obtained (b,f) in the presence of normal-normal and (d,h) normal-diseased samples. Subplots (a,b,c,d) are
obtained using randomly picked tuning parameters TF = 0.12 ps and TT = 6 ps that are non-optimal. They show an
NMSE = 21%. On the other hand, subplots (e,f,g,h) are obtained using the optimum parameters TF = 0.1 ps and
TT = 7.7 ps and this results in a NMSE of only 0.22%.

2.3 Validation and the impact of tuning parameters

To demonstrate the impact of tuning parameters, Fig. 4 shows the validation results of the photonic reservoir
system to predict the sample in the test channel. In the validation session, the read-out layer is supplied with
a new set of reservoir activation signals by introducing a random white noise to the original FDTD signal. For
present demonstration purposes 1% noise with respect to the reservoir activation signals mean is numerically
introduced. Figure 4 shows (left side) the target signal for (a, e) normal-normal and (c, g) normal-diseased
samples and (right side) the signal obtained for (b, f) in the presence of normal-normal and (d, h) normal-
diseased samples. Subplots (a, b, c, d) are obtained using randomly picked tuning parameters TF = 0.12 ps
and TT = 6 ps that are non-optimal and yield an NMSE=21%. On the other hand subplots (e, f, g, h) are
obtained using the optimum parameters TF = 0.1 ps and TT = 7.7 ps which result in a NMSE of only 0.22%.
We emphasise once again that further optimisation can be performed, for example by using other target signal
functions, temporal-separation between Gaussian pulses of the incident signal, or by engineering the size of the
D-shaped cavity to provide a high-Q factor cavity (i.e. long-decay time).

3. CONCLUSIONS

There is a need to develop an objective, accurate test that would allow screening and diagnosis of disease in a
rapid, non-invasive and reliable way. The Photonic Reservoir Computer (PhRC) discussed in this paper can be



trained to undertake bespoke information processing tasks. Simlulaitons have shown that the PhRC provides an
important and timely means by which to achieve, all-optically, the demanding signal processing tasks required
by MIR spectro-microscopy using existing and emerging integrated MIR photonics technology platforms; the
present simulations showed that a chaotic micro-resonator is a suitable platform for the optical implementation
of such an Artificial Neural network. The prospect of discriminating the subtle differences in temporal light
signals in real-time brings hopes for a real-time diagnostic tool closer to reality.
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