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Summary: GaAs-based hybrid-cavity VCSELs integrated onto silicon by ultra-thin DVS-

BCB adhesive bonding are presented. The hybrid-cavity implies that the optical field extends 

over both the GaAs- and the Si-based parts, which could allow a fraction of the light in the 

vertical-cavity to be coupled into an in-plane waveguide. Surface-emitting devices are 

demonstrated at ~860 nm with up to 2.3 mW optical output power and 12 GHz modulation 

bandwidth, providing error-free large signal data transmission up to 25 Gb/s. 

1. Introduction 

An efficient integrated short-wavelength light source on silicon would be a technological enabler for 

applications in life sciences, bio-photonics, and optical interconnects. An attractive route is the heterogeneous 

integration of a GaAs-based “half-VCSEL” onto a silicon-based reflector. This forms a hybrid-cavity, implying 

that the standing-wave optical field extends over both the GaAs- and the silicon-based parts. This concept has 

previously been pursued at longer wavelengths using InP-based materials [1], [2]. The hybrid-cavity allows for 

coupling a fraction of the light in the resonator to an in-plane waveguide [2], e.g. by using a weak diffraction 

grating [3], see Fig. 1(a). 

As a step in this direction we have demonstrated surface-emitting VCSELs without the weak diffraction 

grating providing in-plane emission [4], see Fig. 1(b). By optimizing the bonding interface thickness between 

the “half-VCSEL” and the dielectric DBR, optical output powers up to 2.3 mW were achieved at room 

temperature [5]. 

Figure 1: Schematic cross-section of (a) hybrid vertical-cavity laser with in-plane emission, and (b) hybrid-cavity VCSEL. 

2. VCSEL design and fabrication 

The design and fabrication of the silicon-integrated hybrid-cavity VCSEL have been outlined in detail in 

[4]. In short, the GaAs-based “half-VCSEL” epitaxial structure contains an epitaxial p-AlGaAs DBR with a 

high-aluminum content layer for the formation of an aperture by selective wet oxidation, an intra-cavity n-

contact layer, and an active region consisting of five strained InGaAs quantum wells. The bottom mirror is a 

SiO2/Ta2O5 dielectric DBR deposited on silicon. The “half-VCSEL” structure was attached to the dielectric 

mirror using ultra-thin (40 nm) DVS-BCB adhesive bonding, followed by GaAs substrate removal. Devices 

were fabricated using standard processing steps for oxide-confined VCSELs. An SEM micrograph of a focused 

ion beam (FIB) cross-section and an optical micrograph of a fully fabricated VCSEL are shown in Fig. 2. 

 

Figure 2: Fully fabricated hybrid-cavity VCSEL shown by (a) an SEM micrograph of a FIB cross-section, and (b) an optical 

micrograph of the chip surface. 



3. Measurements 

The light-current-voltage characteristics measured at ambient temperatures ranging from 15 to 100°C in 

steps of 5°C for a 10-µm oxide-aperture diameter silicon-integrated hybrid-cavity VCSEL with emission 

wavelength at ~860 nm are shown in Fig 3(a). This emission wavelength and the corresponding bonding 

interface thickness was  chosen to obtain good performance at both room temperature and elevated temperatures 

[5]. The maximum output power is 2.3 mW (0.7 mW) at 25°C (85°C). 

As the maximum power is limited by an early thermal rollover caused by the high thermal impedance 

bottom dielectric DBR, the achievable photon density in the cavity is also limited. Since a high photon density is 

desirable for high-speed modulation, a smaller 5-µm oxide-aperture diameter device was used for the dynamic 

experiments as a smaller device is capable of reaching higher photon densities already at lower currents. 

The optical output power for the 5-µm device vs. current is shown in Fig. 3(b), while the small-signal 

modulation response at a few bias currents is shown in Fig. 3(c). The maximum 3 dB modulation bandwidth of 

the 5-µm oxide-aperture hybrid-cavity VCSEL is 12 GHz. Finally, the large signal capabilities were evaluated 

with a PRBS7 test pattern. Error-free data transmission was achieved up to 25 Gb/s (10 Gb/s) at 25°C (85°C), 

see Fig. 3(d). 

 

Figure 3: (a) Optical power and voltage vs. current for a 10-µm oxide-aperture diameter hybrid-cavity VCSEL at ambient 

temperatures ranging from 15 to 100°C in steps of 5°C. (b) Optical power and voltage vs. current for a 5-µm oxide-aperture 

diameter VCSEL at 25°C and 85°C. (c) Small-signal modulation response at 25°C for a 5-µm aperture diameter VCSEL at 

indicated bias currents. (d) Bit error ratio (BER) vs. received optical power for a 5-µm device operating at 10 and 25 Gb/s at 

25°C, and 10 Gb/s at 85°C. Insets: Corresponding eye diagrams. 

4. Conclusions 

A silicon-integrated short-wavelength hybrid-cavity VCSEL with up to 2.3 mW optical output power at 

25°C is demonstrated. Using a smaller oxide-aperture VCSEL, up to 12 GHz modulation bandwidth is achieved 

at 25°C, which is enough to support error-free data transmission up to 25 Gb/s at 25°C and up to 10 Gb/s at 

85°C. These results indicate that heterogeneous integration of a “half-VCSEL” may be a viable route towards an 

efficient integrated in-plane waveguide light source. 
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