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Hybrid modeling approach 
for mode‑locked laser diodes 
with cavity dispersion 
and nonlinearity
Stijn Cuyvers1,2*, Stijn Poelman1,2, Kasper Van Gasse1,2 & Bart Kuyken1,2

Semiconductor-based mode-locked lasers, integrated sources enabling the generation of coherent 
ultra-short optical pulses, are important for a wide range of applications, including datacom, optical 
ranging and spectroscopy. As their performance remains largely unpredictable due to the lack of 
commercial design tools and the poorly understood mode-locking dynamics, significant research 
has focused on their modeling. In recent years, traveling-wave models have been favored because 
they can efficiently incorporate the rich semiconductor physics of the laser. However, thus far such 
models struggle to include nonlinear and dispersive effects of an extended passive laser cavity, which 
can play an important role for the temporal and spectral pulse evolution and stability. To overcome 
these challenges, we developed a hybrid modeling strategy by unifying the traveling-wave modeling 
technique for the semiconductor laser sections with a split-step Fourier method for the extended 
passive laser cavity. This paper presents the hybrid modeling concept and exemplifies for the first time 
the significance of the third order nonlinearity and dispersion of the extended cavity for a 2.6 GHz 
III–V-on-Silicon mode-locked laser. This modeling approach allows to include a wide range of physical 
phenomena with low computational complexity, enabling the exploration of novel operating regimes 
such as chip-scale soliton mode-locking.

Semiconductor-based Mode-Locked Lasers (MLLs), emitting coherent ultrashort1–4 optical pulses, are an impor-
tant class of chip-scale comb generators with numerous applications in fundamental science and technology5–8. 
While a number of such devices have already been demonstrated1–3,9–15, their design remains challenging as it 
is largely based on simple rules of thumb and hence lacks predictability4. It is evident that advanced modeling 
techniques are therefore indispensable to facilitate the development process and advance the understanding of 
the complex mode-locking dynamics16–20. Ideally, such a model can provide a set of design rules to acquire some 
targeted device parameters such as pulse duration, output power and comb shape. Furthermore, it is desirable 
that the MLL model not only incorporates the necessary physical details, but also minimizes the computational 
workload in order to serve as a design aid and enable parametric studies.

In the past decades, a wide variety of modeling techniques for MLLs have been presented, which, as proposed 
in21, can be categorized in two distinct classes: distributed models and discrete models. Distributed models aver-
age the effects on the circulating pulses so that a single partial differential equation can be employed to describe 
the MLL. It is often based on the Haus’s master equation22, the cubic quintic Ginzburg–Landau equation23 or 
the Swift–Hohenberg equation16,24. Although these models allow for analytical solutions and enable the study of 
pulse dynamics, they assume that the pulse is near equilibrium and only undergoes mild changes when traveling 
inside the laser cavity25,26. MLLs with strong gain and high losses in each roundtrip can therefore not be appro-
priately represented. Moreover, these equations employ generic formalisms to describe gain and absorption and 
are hence unable to grasp complex semiconductor physics that can greatly affect the gain and saturable absorber 
characteristics20,21. In contrast, discrete models can be seen as an approach where each component of the laser 
cavity is modeled separately. This does not necessarily mean a different set of equations is utilized for the various 
laser components, rather it often implies the parameters in the equations are distinct for different components. 
In other words, the gain, saturable absorption, etc. happen in different sections of the device and the assumption 
that the pulse is near equilibrium is therefore eliminated21. Such discrete models are typically based on delay 
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differential equations25–27, a finite difference time domain description of the electromagnetic field28, the full 
Maxwell–Bloch equations16,29–31, or traveling-wave models19,20,32–34.

In recent years, Traveling-Wave Models (TWMs) have mostly been favored for semiconductor-based MLL 
modeling because they can incorporate the rich physics of semiconductors while limiting the computational 
workload under to the slowly-varying envelope approximation17,19,32. However, existing TWMs are not geared to 
incorporate nonlinear and dispersive effects of a long extended passive laser cavity18,19,32. Although recent work 
successfully included Kerr-nonlinearity and chromatic dispersion in a TWM20, these computationally intensive 
models target single-section diode mode-locked lasers and are consequently not suitable to aid the design of 
extended cavity semiconductor MLLs or to perform parametric studies. This is particularly troublesome when 
simulating low-repetition-rate MLLs, which have a long extended passive cavity as compared to the length of 
the active semiconductor section. For these devices, dispersive and nonlinear effects of the passive waveguides 
can become important. Moreover, low-repetition-rate integrated mode-locked lasers are becoming increasingly 
relevant in the pursuit of lower repetition rates and low noise performance4,9,10. Yet the ability to efficiently model 
such devices while including relevant nonlinear and dispersive effects of the long extended passive cavity has not 
been demonstrated by existing traveling-wave models. On the other hand, the well-established split-step Fourier 
method is well-suited to rapidly simulate pulse evolution in passive waveguides with arbitrary dispersion and 
nonlinearity35–37. It could therefore be advantageous to combine a TWM for the semiconductor laser sections 
with a split-step Fourier approach for the extended passive laser cavity.

In this work, we demonstrate a first implementation of such a hybrid simulation strategy and include non-
linear and dispersive effects of the extended passive laser cavity with low computational penalty. Furthermore, 
the method is used to simulate a 2.6 GHz III–V-on-Silicon Mode-Locked Laser. In particular the impact of the 
Kerr nonlinearity, dispersion, two-photon and free-carrier absorption of the extended passive laser cavity on 
the laser performance is discussed.

Results
Traveling‑wave model equations.  The TWM proposed here is applied to model a previously demon-
strated III–V-on-Silicon anti-colliding MLL with a 2.6 GHz repetition rate10,38. The laser consists of a 14  mm 
long silicon waveguide cavity, a 850µ m Semiconductor Optical Amplifier (SOA) gain section and a 60µ m Satu-
rable Absorber (SA) separated with an unbiased 30µ m ISOlation section (ISO) from the gain region. Although 
several elaborate TWMs have been proposed in literature for semiconductor quantum well and quantum dot 
lasers, such as20 and the open source model Freetwm19, a simpler TWM is adopted here to demonstrate the 
hybrid modeling concept. It is nevertheless straight forward to extend the presented approach to any other 
TWM in order to include more physical details. Assuming the MLL pulse width is significantly larger than the 
intraband relaxation time of the semiconductor medium, one can describe the temporal and spatial evolution of 
two counterpropagating waves with amplitudes A± (units of 

√
W/m2 ) in the semiconductor laser sections as32,39

where vg represents the group velocity of light, Ŵ the Multiple Quantum Well (MQW) optical confinement fac-
tor, neff  the effective modal index, c the speed of light, ω0 the angular frequency of operation and χ the electrical 
susceptibility. Furthermore, the spatial variable z was divided by the group velocity to yield a dimension of time. 
The term containing β models the internal losses in the semiconductor material. Furthermore, the carrier density 
N can be approximated as32,39

where I is the injected current, q is the electron charge, V is the active volume and τ represents the carrier lifetime. 
Assuming a parabolic band structure, low temperature, charge neutrality within the quantum well, and k-vector 
independent intraband relaxation rates, one can express the frequency-dependent electrical susceptibility as17,18,40

where Nt is the transparency carrier density, �g is the bandgap offset, γ is the intraband relaxation rate, �T is the 
angular frequency of the top of the energy band and χ0 is a material gain parameter. To eliminate the frequency-
dependency of the susceptibility, one can approximate the susceptibility as a frequency-independent quantity 
χ(ω = ω0,N(z, t)) by adding a separate spectral filter to the model. This approximation can be motivated by 
noting that Bragg gratings are utilized as cavity mirrors in the MLL under consideration, causing strong spectral 
shaping. Here, a Lorentzian filter is incorporated at the output facet of the laser, in correspondence to what was 
proposed in previous work32. In case a more accurate model for gain dispersion is desired, the lumped filter could 
be replaced by a distributed implementation, similar to what has been demonstrated in41,42. This is particularly 
important for laser topologies without narrowband reflectors where the gain dispersion of the semiconductor 
medium plays a salient role41.

In order to solve the aforementioned set of equations, a numerical scheme is used where the semiconductor 
section is discretized into K segments of normalized length �z = �t , where �t is the time required for light 
to travel over one segment and �z is the physical length of the segment normalized with the group velocity of 
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light. A schematic of the TWM numerical scheme is depicted in Fig. 1. Combining Eqs. (1) and (3), the wave 
solutions in each segment zk ≤ z ≤ zk+1 are given by32

The integrals can be evaluated numerically by using a simple trapezoidal approximation. Furthermore, an 
expression for the carrier density can be formulated based on Eq. (2) and a first order Euler scheme

The stimulated recombination term was chosen to scale with the local field intensity |A+ + A−|2 rather than 
the photon density |A+|2 + |A−|2 , as was experimentally observed from gain-coupled DFB lasers43,44. Further-
more, for this first demonstration of a hybrid modeling approach, a large TWM step size is chosen compared 
to the optical wavelength, leading to an averaging effect. Coupled-wave equations, carrier diffusion and carrier 
gratings are therefore not included here and will be addressed in future work. Finally, a boundary condition 
can be defined for the left laser facet by convolving the backward propagating wave with the Lorentzian spectral 
filter f(t)32

where r1 describes the left facet reflectivity and M is here taken as 
⌈

10 ps
�t

⌉

 . Alternatively, the convolution can be 
implemented using a first-order IIR filter of the form A+(t +�t, 0) = √

r1
[

a · A+(t, 0)+ b · A−(t +�t, 0)
]

 . 
The right boundary condition (corresponding with the right mirror of Fig.  1) is simply defined as 
A−(t +�t, L) = √

r2 · A+(t, L) and is imposed by the passive laser cavity model.

Passive waveguide model equations.  The active laser sections are modeled with the aforementioned 
TWM, whereas the extended passive laser cavity is modeled either with a split-step Fourier method or a simple 
delay with loss, as is schematically illustrated in Fig.  2. The split-step Fourier method has been used exten-
sively in literature and consists of a nonlinear- and dispersion operator that act alternately upon the propagating 
field36,37,45. Here we concisely describe the implementation used in our model, for further details we refer to the 
literature35,37,46–48. In this work, the linear losses, nonlinear losses due to two-photon and free-carrier absorption, 
second- and third-order dispersion, the Raman effect and third order nonlinear interactions stemming from the 
Kerr nonlinearity of the silicon waveguide are included through a generalized nonlinear Schrödinger equation 
of the form35,37,46–48

where E(z,t) is the slowly varying pulse envelope (units of 
√
W  ), z is the spatial variable and has the dimension 

of distance, βn represents the n-th order dispersion term and α denotes the linear losses. Furthermore, the non-
linear parameter is defined as γ = n2ω0

Aeff c
+ j βTPA2Aeff

 , where n2 is the material nonlinear coefficient, Aeff  is the effective 
mode area, c is the speed of light in vacuum, and βTPA is the two-photon absorption parameter. Furthermore, 
free-carrier absorption and dispersion are included through the free-carrier absorption coefficient σ , the free-
carrier dispersion kc , and the auxiliary equation that governs the time dependence of the free-carrier density Nc
47,48
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Figure 1.   Traveling-wave model numerical scheme for the mode-locked laser’s active semiconductor sections. 
The sections are discretized in segments of optical length �z = �t . A Lorentzian filter is used at the output facet 
to model the gain bandwidth and spectral shaping of the gratings. SA saturable absorber, A± : amplitudes of the 
counterpropagating waves in the cavity.
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where τFCA is the free-carrier lifetime in the waveguide and �ω0 is the photon energy. Furthermore, the 
integral in Eq.  (8) accounts for intrapulse Raman scattering through the nonlinear response function 
R(t) = (1− fR)δ(t)+ fRhR(t) with fR the fractional contribution of the delayed Raman response to the nonlinear 
polarization and hR(t) the Raman response function, which can be approximated by an analytical function35,49,50

where τ2 = 1/ŴR , τ1 = 1/(ω2
R − Ŵ2

R)
1/2 , and ŴR/π ≈105 GHz and ωR/2π=15.6 THz respectively determine the 

Raman-gain bandwidth and Raman shift in the silicon waveguide50.
Equation (8) can be solved using the well-known split-step Fourier method35,37,46. For the computation of 

the nonlinear term with the integral, a Runge-Kutta method can be employed, as elaborated in35,49. However, as 
pulses in semiconductor mode-locked lasers usually contain many optical cycles (i.e. pulse widths> 100 fs ), it is 
acceptable to simplify Eq. (8) using a Taylor-series expansion, leading to37

where TR ≡
∫∞
0 tR(t)dt and a frame of reference moving with the pulse at the group velocity was introduced, 

i.e. T=t-z/vg . This equation can be rewritten in the form ∂E
∂z = (D̂ + N̂)E where D̂ is the operator that accounts 

for dispersion and losses and N̂  accounts for nonlinearity35,37. The propagation over one step δz can than be 
computed as

where the D̂ operator can be evaluated in the Fourier domain using a Fast-Fourier-Transform (FFT)37. A step 
size around 100µm was employed for the split-step Fourier method, which is similar to earlier reported discre-
tization steps49.

Hybrid modeling strategy.  To effectively propagate the output of the TWM in the passive waveguide 
model, a custom algorithm was developed. For the passive waveguide, a so-called reservoir and a queue data 
array are defined with a size equal to twice the propagation delay of the passive waveguide cavity divided by the 
TWM time stepsize, resembling respectively the forward and backward traveling waves in the passive cavity. 
In other words, the length of these arrays is in correspondance with the delay �T (in this case 359 ps) between 
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Figure 2.   Mode-locked laser simulation flow, consisting of a traveling-wave model for the active region and 
a split-step Fourier propagation algorithm for the extended passive waveguide cavity. (a) In case no pulses are 
observed, e.g. at laser start-up, the split-step Fourier algorithm is not employed and the extended cavity is simply 
represented by a delay with some loss. (b) When pulses are observed, the split-step Fourier method is used and 
dispersive and nonlinear effects are accounted for.
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light leaving the amplifier at the right side (see Fig. 2), and reaching the amplifier again at the right side after a 
roundtrip propagation through the silicon spiral waveguide cavity.

The forward propagating envelope of the TWM gradually fills the reservoir of the cavity, i.e. every iteration 
the last sample of the forward propagating envelope A+ at the interface with the passive cavity (see Fig. 2) is sent 
to the reservoir. Simultaneously, a sample from the queue is concatenated to the backwards traveling envelope 
A− at the same interface. The forward propagating envelope A+ hence continuously feeds the reservoir whereas 
the queue feeds the backward propagating envelope A− . When the reservoir is full, the split-step Fourier method 
is activated to propagate (a number of) the reservoir samples. The split-step Fourier method is hence not called 
with every TWM iteration. The propagated samples are subsequently stored in the queue for continuation in 
the TWM.

To propagate the pulse, an appropriate time window has to be chosen to center the pulse, ensuring that 
energy is centralized in the window to comply with the periodic boundary conditions of the split-step Fourier 
method37,51. This avoids unphysical results and numerical instabilities37. A peak search algorithm is employed 
to detect any pulse-like patterns in the reservoir of the extended passive cavity. In case no peaks are detected, 
one can conclude that the laser either operates in continuous wave or is in a noisy (start-up) state. In these cases 
where no pulses are detected, the cavity is simply modeled with loss and a delay, as is shown in Fig. 2a. In case 
a single pulse is detected, a time slice is taken from the reservoir data and subsequently used as an input for the 
passive waveguide model. The slice is taken in such a way that the pulse is centered and can be readily propagated 
using the split-step Fourier method. Once the pulse is propagated, the resulting output is added to the queue. 
Finally, in case multiple pulses are detected in the reservoir, a time slice with one or more pulses is selected from 
the reservoir in a way that centralizes the signal energy in the slice as much as possible. This certifies that the 
intensity vanishes near the boundaries and warrants valid usage of the FFT in the split-step Fourier method. 
The resulting output is then again added to the queue that feeds the backward propagating wave of the TWM. 
As such, when pulsed behavior is observed, nonlinear and dispersive effects of the laser cavity are accounted for.

As expected, simulations confirm that after start-up the time slice used for split-step Fourier propagation 
is nearly equal to the entire reservoir size, i.e. the delay �T=359 ps. Only during the start-up phase of mode-
locking, a slightly smaller time slice can be observed (typically between 200 ps and 300 ps). Furthermore, the 
number of samples employed for the split-step Fourier propagation is equal to the number of samples selected 
from the reservoir as this avoids the need for interpolation. As such, the propagated signal samples in the queue 
can simply be concatenated to the backward propagating wave A− after applying a scaling factor to convert the 
field envelope in units of [ 

√
W ] to units of [ 

√

W/m2].
It is observed that once steady-state mode-locking is reached, the split-step Fourier method is consistently 

employed for all pulses, as is conceptually shown in Fig. 2b. Moreover, simulations confirm that in case disper-
sion and nonlinearity of the passive waveguide are omitted, the hybrid model yields results identical to the 
TWM without the split-step Fourier approach. In case the cavity dispersion is anomalous, it can be worthwhile 
to consistently use the full reservoir for split-step Fourier propagation instead of a simple delay with loss. This 
allows one to account for the breakup of (quasi)-CW light or the amplification of noise through modulation 
instability. However, the current model is not optimized for continuous-wave-like operating points. Moreover, 
modeling pulsed regimes with nonvanishing backgrounds is currently outside the scope of the hybrid model 
owing to the periodic boundary conditions of the FFT.

Figure 3a–d show the hybrid model results for the 2.6 GHz anti-colliding III–V-on-Silicon MLL. A simulation 
time of 100 ns (260 roundtrips) was used with a 20 fs stepsize. The model parameters are based on earlier 
work48,52,53 and are listed in Table 1. The real part of the nonlinear coefficient γNL = n2ω

Aeff c
≈ 69m−1W−1 , with 

n2 the material nonlinear coefficient and Aeff  the effective mode area. The dispersion parameters β2 = 1.3 ps2 /m 
and β3 = 0.0042 ps3 /m were acquired using Lumerical54 based on the silicon waveguide dimensions specified 
in38.

An injection current of 45 mA was found to correspond with fundamental mode-locking. At this operating 
point, the pulse train converges after approximately 40 ns (100 roundtrips), as can be seen in Fig. 3a. The black 
arrow in Fig. 3a indicates the time instant used to acquire the carrier density profiles, shown in Fig. 3b, and 
the individual pulse profile, shown in Fig. 3c. The output pulse has an energy of 2.11 pJ and a full-width at half 
maximum (FWHM) of 3.68 ps. These values are in in line with experimental results where pulses with energies 
on the order of 1 pJ are observed and autocorrelation measurements indicate pulsewidths around 3 ps38,55. The 
carrier densities were normalized with respect to the transparency carrier density and were monitored in the 
middle of the amplifier, saturable absorber and isolation sections. The carrier density in the saturable absorber 
quickly saturates with the incoming pulse but recovers fast compared to the SOA. Furthermore, as the SOA is 
close to the output facet, the pulse propagates twice through the SOA with a short delay in between, resulting in 
two subsequent dips in the SOA carrier density, as can be seen in Fig. 3b. The comb spectrum, shown in Fig. 3d, 
exhibits a dip around 1571 nm caused by the cavity third-order nonlinearity. In addition, part of the comb spec-
trum is slightly red-shifted resulting from the Raman effect. The line spacing between the comb teeth is 2.6 GHz, 
corresponding with the pulse repetition rate of the laser.

Figure 3e shows a comparison of the hybrid model and a dummy TWM without split-step Fourier propaga-
tion of identical complexity for different MLL repetition rates. In the dummy TWM case, the field propagation 
through the passive waveguide cavity is calculated in a traveling-wave fashion to emulate the incorporation of 
dispersive and nonlinear effects. However, actual dispersive and nonlinear effects are omitted in the dummy 
TWM as it solely serves as a reference for the simulation time. Note that if one does not desire to include disper-
sion and nonlinearity in practice, one can use a traveling-wave model with a simple boundary condition for the 
passive waveguide cavity, leading to a simulation time comparable to that of the hybrid model. The MLL was 
simulated for 100 ns with a timestep of 20 fs on a standard desktop with an i5-6600 Central Processing Unit 
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Figure 3.   Mode-locked laser simulation example and benchmark. (a–d) Hybrid model output with a 20 fs 
stepsize and a 100 ns (260 roundtrips) duration. (a) Signal build-up at the output facet of the mode-locked laser. 
The arrow indicates the time instant of the corresponding normalized carrier densities (b) and pulse profile 
(c). (d) The optical comb spectrum corresponding with the generated pulse train. (e) Comparison of a dummy 
TWM and a hybrid model for a 5 GHz, 2.6 GHz and 1 GHz repetition rate. The hybrid model computation time 
is approximately invariant to the extended passive waveguide cavity size as it is not modeled by a slow TWM.

Table 1.   Parameters used. SOA semiconductor optical amplifier, SA saturable absorber, ISO isolation region 
in between the SOA and SA.

Meaning Symbol Value Units

Wavelength � 1.57 µm

Group index ng 3.85 –

Effective index neff 3 –

Transparency carrier density Nt 8.7× 1017 cm−3

MQW confinement factor Ŵ 0.075 –

MQW mode area AMQW 0.54× 10−12 m2

Carrier lifetime τSOA ; τSA ; τISO 1; 10−2 ; 1 ns

Gain constant χ0,SOA ; χ0,SA ; χ0,ISO 0.07; 0.48; 0.07 –

Intraband relaxation rate γSOA ; γSA ; γISO 4× 1012 ; 8× 1012 ; 8× 1012 s−1

Filter bandwidth �f 2 THz

Section length LSOA ; LSA ; LISO 850; 60; 30 µm

Top band frequency �T 90× 1012 rad s−1

SA Bandgap offset �g 5 THz

Active region internal losses rate β 2.56× 1011 s−1

Injection current I 45 mA

Silicon waveguide mode area ASi 0.29× 10−12 m2

Second-order dispersion β2 1.3 ps2/m

Third-order dispersion β3 0.0042 ps3/m

Silicon Kerr nonlinearity n2 5× 10−18 m2W−1

Silicon waveguide losses α 0.7 dB/cm

Two-photon absorption silicon βTPA 0.6 cm/GW

Free-carrier dispersion silicon kc 1.35× 10−27 m3

Free-carrier lifetime silicon τFCA 1 ns

Free-carrier absorption silicon σ 1.45× 10−21 m2

Facet reflectivity r1 ; r2 0.5; 0.99 –
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(CPU). The MATLAB script of the hybrid model takes around 20 minutes to complete, almost independently 
of the passive cavity size. Note that the considered hybrid model is solely prototyped in MATLAB and does not 
rely on any custom memory allocation or parallelization. Switching to a low-level programming language could 
therefore provide for a massive speed-up, as was also exploited by earlier work19,20. As the TWM dominates the 
total simulation time of the hybrid model, the split-step Fourier algorithm for the passive cavity only margin-
ally increases the computation time with decreasing repetition rate. The classical TWM on the other hand, in 
which also the passive laser cavity is modeled with a traveling-wave method, requires significantly more time, 
as is indicated in Fig. 3e. Moreover, the simulation time of the classical TWM rapidly increases with decreasing 
repetition rate because the TWM complexity directly scales with the laser cavity size. This drawback highlights 
the benefits of a hybrid modeling strategy: it allows to include complex dispersive and nonlinear effects of the 
extended passive laser cavity with minimal computational penalty. This is particularly valuable for integrated 
MLLs with a low repetition rate4,10,12, as the impact of nonlinear and dispersive effects of the cavity becomes 
apparent in these devices and the simulation time with existing TWMs can become impractically long.

Figure 4 depicts a map of the output pulse energy (left) and the output pulse width (right) as a function of 
the traveling-wave discretization step and the split-step Fourier step. One finds that the stability of the TWM 
model degrades gradually without an abrupt transition to a numerically unstable regime. For a TWM step below 
approximately 100 fs, the model yields no discernible differences and convergence is achieved. However, when 
the TWM stepsize is further increased, the amplitude of the pulse train acquires an oscillatory fluctuation. Fur-
thermore, for very large stepsizes, approaching 500 fs, the amplitude fluctuations appear to be chaotic and the 
pulse train becomes unstable, as can be seen from the inset on the right of Fig. 4. Moreover, due to the coarse 
TWM grid, the pulse envelope is poorly sampled, leading to strongly distorted pulse shapes with sharp edges. 
Finally, it is observed that the model is robust with regard to the split-step Fourier (SSF) step size. Although the 
pulse energy and pulse width remain nearly identical for increasing SSF steps, the comb spectrum starts to devi-
ate when the step size exceeds several millimeters. For all simulations in the manuscript, a step of approximately 
100µm was employed for the split-step Fourier method.

Impact of dispersion, third‑order nonlinearity and nonlinear losses.  It is well known that the 
complex interplay of dispersion and nonlinearity can greatly affect the pulse generation of MLLs. Even more so, 
careful management of these properties has lead to various types of soliton lasers, where the balance between 
quadratic56,57 or higher-order dispersion58 with nonlinearity have allowed for stable ultrashort pulse generation. 
Although solitons have traditionally been produced with fiber MLLs, they can also arise in chip-scale devices58. 
Furthermore, even for existing integrated MLLs which do not target solitary operation, dispersive and nonlinear 
effects of the passive waveguides can significantly affect the properties of the pulse train, in particular for long 
waveguide cavities.

A map of the pulse energy and the FWHM pulse duration as a function of Kerr nonlinearity and group-
velocity dispersion of the passive cavity is shown in Fig. 5a and b respectively. The injection current of the 
III–V-on-Silicon MLL model was fixed at 45 mA. Stable fundamental mode-locking can primarily be observed 
at low nonlinearities, while fundamental mode-locking ceases for anomalous dispersive and/or highly nonlinear 
operating points.

The output pulses under normal dispersion β2 = 1.3 ps2/m and Kerr nonlinearities γNL = 0m−1W−1 , 
γNL = 69m−1W−1 and γNL = 150m−1W−1 are depicted in Fig. 5c. By introducing a positive nonlinear coeffi-
cient n2 , the Self-Phase Modulation (SPM)-induced chirp leads to a spectral red-shift for the leading edge of the 
pulse and a blue-shift for the trailing edge. Under normal dispersion, this leads to enhanced pulse broadening, 
as can be observed in Fig. 5c and in the map Fig. 5a. Furthermore, the SPM-induced chirp in combination with 
normal dispersion in the silicon waveguide shapes the pulse as such that it becomes rectangularly shaped with 
sharper leading and trailing edges, a phenomenon known as optical wave breaking59. This cavity pulse shaping 
is however not apparent from the output pulse plot as the pulse shape is also strongly affected by the amplifier 
and absorber sections, smoothing the sharpened pulse edges. In contrast, under anomalous dispersion the pulse 

Figure 4.   Stability analysis of the hybrid mode-locked laser model for an injection current of 45 mA. Map of 
the pulse energy (left) and of the pulsewidth (right) as a function of the discretization step of the TWM and the 
stepsize of the split-step Fourier propagation.
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duration reduces with increasing SPM. For sufficiently strong SPM, the pulseshape is distorted and experiences 
a temporal oscillation around the pulse peak, eventually leading to an unstable pulse train as is the case for 
γNL = 150m−1W−1 in Fig. 5c. The output pulses for different Group-Velocity Dipsersion (GVD) values and for 
a nonlinearity γNL = 69m−1W−1 are shown in Fig. 5d. The cases β2 = 1.3 ps2/m and β2 = 4 ps2/m lead to stable 
mode-locking and yield a nearly identical pulse train. On the other hand, changing the β2 = −4 ps2/m results 
in a chaotic pulse train with varying pulse amplitudes and the emergence of satellite peaks.

Figure 5e and f depict the pulse width and pulse energy for the case (1) where all aforementioned cavity 
effects are considered, in case (2) two-photon- and free-carrier absorption are neglected and for case (3) only 
dispersion is considered without nonlinearity, Raman effect or nonlinear absorption. Stable fundamental mode-
locking is achieved for injection currents between 42 and 60 mA. For lower injection currents, the MLL operates 
in a noisy or Q-switched state, whereas at high injection currents, satellite peaks arise in the trailing edge of the 
pulse, leading to chaotic or seemingly harmonicly mode-locked operation. Omitting the nonlinearity leads to a 
slight enhanced stability range, ranging from 42 to 62 mA. For the considered operating point, the Kerr nonlin-
earity hence slightly deteriorates the stability of the MLL and advances the transition to an unstable pulse train 
regime. As a simulation time of 100 ns was used, it is feasible that some stable fundamental operating points lay 
outside the depicted region but require long convergence times. Furthermore a number of stable attractors are 
potentially not accessible by self-starting the mode-locked laser and may require some form of excitation such 
as a pulse injection.

For case (1) and (2) the pulsewidth increases up to an injection current around 47 mA, after which the pulse 
width monotonically decreases. As the pulse peak power is observed to be approximately invariant with the 
injection current, the pulse energy follows a similar trend as the pulsewidth, reaching the maximal pulse energy 
at an injection current around 47 mA. As can be expected, the incorporation of two-photon- and free-carrier 
absorption leads to a reduced output power, on average resulting in a 5% lower pulse energy. As for the example 
considered here the effective mode area Aeff  is relatively large and the pulse energies are low (< 2.2 pJ), it is pre-
sumed that nonlinear losses play a salient role in chip-scale mode-locked lasers with a silicon waveguide cavity. 
Switching to a silicon-nitride platform could hence be a valuable alternative to eliminate the detrimental effects 
of two-photon- and free-carrier absorption altogether60. In case (3), the pulse width and peak power respectively 
decrease and increase with injection current. Moreover, although the pulse is significantly shorter compared to 
cases (1) and (2), the pulse energy is greatly reduced as well, leading to a lower average output power compared 
to the cases where the third-order nonlinearity is included.

The temporal and spectral evolution of the pulse in the laser cavity is depicted in Fig. 6. The pulse and the 
corresponding spectrum are shown at 6 locations along the laser cavity to visualize the impact of the SA, SOA and 
extended silicon waveguide cavity. The spectrum after split-step Fourier propagation is strongly broadened and 
red-shifted and reveals a subtle oscillatory structure at the peak, as can be expected based on the SPM-induced 

Figure 5.   Impact of nonlinearity and dispersion of the extended passive laser cavity on the MLL performance 
and stability. Map of the pulse width (a) and pulse energy (b) as a function of GVD and Kerr nonlinearity. 
Stable fundamental mode-locking is predominantly observed for sufficiently small nonlinearities and normal 
dispersion. Output pulse for different nonlinearities and β2 = 1.3 ps2/m (c), and for different cavity dispersions 
with γNL = 69m−1W−1 (d). The corresponding operating regions on the maps (a,b) are indicated. Output pulse 
width (e) and pulse energy (f) as a function of injection current for γNL = 69m−1W−1 and β2 = 1.3 ps2/m (e).
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nonlinear phase shift61. Furthermore, the spectral filter turns out to significantly affect the pulse spectrum and 
hence plays an essential role for stabilization.

Conclusions
We have demonstrated a hybrid modeling strategy for semiconductor-based MLLs that combines the traveling-
wave modeling technique for the semiconductor laser sections with a split-step Fourier method for the extended 
passive waveguide cavity. This novel approach paves to way to include a wide range of physical phenomena, 
such as the semiconductors physics of the SOA and SA as well as the dispersive and nonlinear properties of the 
extended passive laser cavity while simultaneously minimizing the model’s computational workload. The impact 
of dispersion, third-order nonlinearity and nonlinear losses on the pulse train and stability of a 2.6 GHz III–V-
on-Silicon MLL was shown, hereby highlighting the importance to include these effects. We believe such a hybrid 
modeling strategy is particularly valuable to study low-repetition-rate MLLs, as for these devices dispersive and 
nonlinear effects of the long extended cavity can become dominant.

Figure 6.   Temporal and spectral pulse evolution in the laser cavity. Pulse before the SA, after the spectral 
filter (a); after propagating through the SA and isolation section (b); before split-step Fourier propagation (c); 
after the SA, before the spectral filter and mirror (d); after amplification (e) and after propagation through the 
extended silicon cavity (f).
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Compared to mode-locked laser models based on delay differential equations (DDEs)25–27, the traveling-wave 
approach does not presume a ring-cavity geometry with unidirectional propagation. Unidirectional ring-cavity 
mode-locked lasers do not exist in practice and are hence merely an idealization. Furthermore, in some cases 
it might be desirable to account for reflections at various interfaces in the semiconductor sections of the mode-
locked laser. Moreover, DDEs do not incorporate spatial effects such as spatial hole burning, whereas TWMs 
naturally include such phenomena19,20. In addition, the split-step Fourier method easily incorporates other 
potentially relevant effects of the extended passive waveguide such as the Raman effect. Mode-locked laser models 
based on DDEs have yet to demonstrate this ability. While DDE-based models can offer a powerful alternative, 
they hence exhibit a slightly reduced physical accuracy62,63. We believe a hybrid model therefore offers a valuable 
complementary modeling technique to DDE-based approaches.

Furthermore, given the low computational complexity, the presented approach allows to conduct extensive 
parametric studies and the exploration of novel operating regimes such as chip-scale soliton mode-locking. 
Such studies could advance the understanding of the mode-locking dynamics and lead to a new generation of 
improved chip-scale MLL devices.

Data availability
All MATLAB code of the hybrid mode-locked laser model can be found on GitHub: https://​github.​com/​stijn​
cuyve​rs/​Hybri​dMLLm​odel-​Scien​tific​Repor​tsPap​er.
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