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Demonstration of a High-Efficiency Short-Cavity
III-V-on-Si C-Band DFB Laser Diode

Javad Rahimi"”, Joris Van Kerrebrouck
Gunther Roelkens

Abstract—In this paper we demonstrate a high wall-plug effi-
ciency and low threshold current for heterogeneously integrated
III-V-on-Silicon distributed feedback (DFB) lasers. Above 12%
wall plug efficiency is achieved for a 200 pum long DFB laser diode
at 25 °C. Up to two times 6 mW of optical power is coupled into the
silicon waveguide and more than 40 dB side-mode suppression ratio
is obtained. We also discuss the non-return-to-zero on-off keying
modulation at 20 Gb/s and the transmission over a 2 km long optical
fiber.

Index Terms—Heterogeneous integration, direct modulation,
distributed feedback lasers, wall-plug efficiency.

1. INTRODUCTION

S SILICON photonics is penetrating in different mar-

ket segments, efficient heterogeneously integrated light
sources are desirable. Especially in the context of datacom,
wall-plug efficiency is critical. In addition, small footprint inte-
grated transmitters have attracted much attention to decrease
the final package size and cost of the transceivers [1], [2].
Heterogeneous integration of I1I-V semiconductors on a silicon-
on-insulator (SOI) wafer provides a solution to combine the
best of both worlds. In this approach, the III-V material can
be first bonded and then processed into active components
such as lasers or it can be first processed on its own III-V
substrate as coupons and then micro-transfer-printed to the
pre-patterned SOI circuits [3], [4]. In recent years, there have
been dedicated efforts either in academia or industry to improve
the performance of various light sources on Si [5]-[7]. Among
the demonstrated integrated light sources, edge emitting laser
diodes such as distributed feedback (DFB) lasers or distributed
Bragg reflector (DBR) lasers are the transmitter of choice when
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fabricating low-cost integrated transmitters for O-band and
C-band wavelength division multiplexing (WDM) systems. In
addition, they exhibit high modulation bandwidth and output
power.

In order to improve the performance of these integrated lasers,
the optical mode inside the cavity has to be engineered. Since
the III-V material is highly absorbing due to the intervalence
band absorption [8], [9], pushing down the hybrid mode into
the Si waveguide can result in a reduction of the internal loss
and an increase in internal efficiency. On the other hand, the
resulting decrease of the optical confinement in the active region
can increase the threshold current and degrade the modulation
bandwidth. Considering this trade-off in designing the laser
cavity, there have been several demonstrations on improving the
efficiency and performance of heterogeneously integrated DFB
lasers in recent years. In [10], a III-V-on-silicon DFB laser based
on adhesive bonding with a wall-plug efficiency of about 9%
has been achieved at room temperature considering the output
power of both facets. The reported DFB laser structure is based
on a 680 pum long quarter-wave shifted second-order grating. In
order to couple the light to the silicon waveguide underneath,
two 185 pm long spot-size converters are incorporated at both
ends of the cavity. [11], [12] demonstrated high modulation
speed of III-V-on-silicon lasers with large confinement factor
in the ITI-V active region with both direct and electroabsorption
modulation approaches. Low-threshold short-cavity DFB hy-
brid silicon lasers fabricated with a low temperature molecular
bonding process have been reported in [13], [14]. Wall-plug
efficiencies up to 3% and 2% were achieved at 1 mW output
power for the 100 pm and 200 pm long lasers, respectively
[14]. Similar work [15] demonstrated other improvements on
III-V-on-silicon C-band DFB lasers, the summary of which can
be found in Table I.

Characterization of a heterogeneously integrated DFB laser
operating at O-band is demonstrated by Intel in [16]. Lasing
is reported up to 150 °C and a wall-plug efficiency of 15% is
achieved at 80 °C. However, direct modulation has not been
demonstrated with these devices.

To achieve a short cavity length with a large confinement
factor in the active region, a combination of direct bonding and
epitaxial regrowth has been applied for fabricating membrane
lasers on a SiO,/Si substrate [17]. High performance either in
terms of power consumption or modulation bandwidth has been
achieved, but at the expense of more complex fabrication [18],
[19].
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TABLE I
STATIC AND DYNAMIC CHARACTERISTICS OF III-V-ON-SOI C-BAND DFB LASERS
Group Cavity Threshold | Maximum Maximum on- Slope SMSR | Direct Modulation | Year | Ref.
length Current W.P.E (%) chip output Efficiency (dB) speed (Gbit/s)
(um) (mA) power (mW) (WA
Ghent University-IMEC 680 35 9 14 0.135 50 - 2013 | [10]
UCSB 200 8.8 >3 >7 =0.1 >55 12.5 @ 62 mA 2014 | [14]
UCSB 400 7.5 ~ >5 =0.06 >55 - 2016 | [13]
Ghent University-IMEC 340 32 ~3.3 >7 0.072 45 56 @ 110 mA 2017 | [11]
II-V Lab 600 35 - - 0.12 >50 32 @ 100 mA 2018 | [15]
This work 200 10.5 12 >12 0.185 44 20 @ 70 mA 2021
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Fig. 1. Schematic structure of the heterogeneously integrated DFB laser diode
on the Si waveguide.

In this paper, we demonstrate a high-efficiency, short-cavity
heterogeneously integrated C-band DFB laser on a Si waveguide
realized using adhesive bonding. In the coming sections, we first
discuss the simulation results regarding the integrated cavity
design. Then the fabrication technology is explained. After that
the experimental results of the fabricated device are presented.
The static characteristics of the device operating in the C-band
show single mode behavior with a side mode suppression ratio
(SMSR) up to 44 dB and a wall-plug efficiency up to 13%
at 20 °C. In addition, the dynamic response is described by
measuring the small signal modulation response followed by
a data transmission experiment at 20 Gb/s over a 2 km long,
single mode fiber. Finally, the paper ends with a conclusion.

II. DESIGN AND FABRICATION
A. Short Integrated Cavity Design

Fig. 1 shows the simplified schematic of the heterogeneously
integrated DFB laser on a pre-patterned SOI circuit. The SOI
platform consists of a 400 nm thick Si device layer on a 2 um
buried oxide (BOX) layer. The 200 psm long cavity is determined
by a 1 pm wide, first order, quarter-wave shifted grating in the
Si with a 60 nm etch depth. The 60 nm etched Si waveguide
is then connected to a 180 nm etched Si waveguide in which
the 180 nm etched grating couplers are incorporated. In the
III-V section, the epitaxial layer stack consists of a 200 nm
thick highly-doped p-InGaAs contact layer, a 1.5 pm thick
p-InP cladding layer, an InGaAsP multi-quantum well (MQW)
active region with 6 quantum wells surrounded by 100 nm thick
separate confinement heterostructure (SCH) layers, and a n-InP

InGaAs & )
MQW
p-InP active region

n-InP

4 pm 2 pm
—

60 nm etch S1 waveguide 180 nm etch Si waveguide

Fig. 2. Optical mode profile in the III-V/Si cross-section. (a) Mode profile in
the laser cross-section. (b) Mode profile at the III-V taper tip.

contact layer with a thickness of 190 nm. The laser mesa is 2 ym
wide and consists of two short spot-size converters at the ends.
As we discussed in the previous section, the key element
in designing an integrated III-V-on-SOI cavity is to accurately
analyze the optical mode profile in the III-V/Si cross-section.
In order to make a short cavity, the mode has to be sufficiently
confined to the active region to provide sufficient gain for lasing.
On the other hand, as the optical mode is more confined in the Si
waveguide underneath, it will experience lower optical absorp-
tion loss since there are no doped layers in the Si device. In ad-
dition, the impact of the sidewall scattering loss also decreases.
The hybrid optical mode profile is shown in Fig. 2(a). As can
be seen, the optical mode is more confined to the Si waveguide.
The simulated confinement factor in the MQW active region is
about 4% and the effective index of the fundamental mode is
3.2480. The DFB grating period A is then estimated by [20]:

Azkg/Qneff (1)

where A, is the Bragg wavelength (1550 nm) and n.g denotes
the effective index of the fundamental optical mode in the
cavity. In this structure, we designed the MQW active region
to be wider than the III-V mesa in order to reduce surface
recombination and decrease the effect of the sidewall scattering
loss caused by the etching of the active region. In addition,
in order to suppress the oscillation of higher order transverse
modes in the cavity, the Bragg grating is etched only in the
center of the silicon waveguide. The alternative approach to
have single mode operation is via proton implantation to define
a current channel in a wide III-V mesa [17], [21]. Finally, as
Fig. 2(b) depicts, the optical mode profile at the short taper tip
is predominantly in the Si waveguide. This design enables the
efficient coupling of the light from the III-V/Si laser into the Si
waveguide circuit just by incorporating a 10 pm long taper.
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Fig. 3. FIB cross-section of the fabricated device. (a) Longitudinal cross-
section of the laser. (b) Transversal cross-section close to the taper tip.

B. Device Fabrication

The SOI circuit is fabricated by a Voyager electron beam
lithography (EBL) system. First, the shallow-etched waveguide
and first order grating are patterned. Fig. 3 shows the focused ion
beam (FIB) longitudinal cross-section image of the fabricated
device. The quarter wave shift grating with a grating period of
243 nm is depicted beneath the bonded I1I-V material. The cavity
length determined by the 60 nm etch-depth quarter-wave shifted
DFB grating section is 200 um. In a second etch step, a 180 nm
deep Si waveguide is defined by writing 5 um trenches at the
sides, together with the fiber-to-chip grating couplers.

After the preparation of the SOI circuit, the III-V epitaxial
layer is bonded upside-down onto the SOI waveguide wafer
using an adhesive bonding approach. A 25 nm thick divinyl-bis-
benzocyclobutene (DVS-BCB) is used as an adhesive bonding
layer in this fabrication. After completion of the bonding, the
InP substrate is removed by a selective wet etching process in
HCI. The laser processing starts with the deposition of a 200
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Fig.4. Waveguide-coupled optical output power (single-sided) versus DC bias
current (left), and I-V curves (right) at various operating temperatures.

nm thin SiN layer as a hard mask for the mesa definition using
i-line optical lithography. The mesa is created by etching the
SiN by means of a reactive ion etching (RIE) tool as well as
etching of the InGaAs contact layer and InP cladding layer
using inductively coupled plasma (ICP). Unlike in our previous
fabrications [11], [22], we avoid using wet etching of the InP
cladding in HCI to make a V-shaped mesa. Instead, we etch
down the whole InP layer with ICP which results in lower
sidewall roughness compared to the case where we use HCI
for etching the mesa. Fig. 3(b) depicts the cross-section image
of the fabricated device at the taper section. After this step, we
again deposit SiN not only to protect the side-wall of the mesa
but also to use it as a second hard mask for making a wide
active region. The active region is etched using mostly ICP etch
followed by a short selective wet etch with a HoO:H3PO4:H204
solution. Afterwards, another optical lithography is carried out
to deposit the Ni/Ge/Au/Ti n-contact. Subsequently, the device
is passivated with SiN and BCB before depositing the Ti/Au
p-contact with the same process. Finally, GSG pads with a
pitch of 100 pm are created to enable the static and dynamic
characterizations.

III. STATIC CHARACTERISTICS

The static characterization of the DFB lasers is done by
placing the fabricated chip on a temperature-controlled stage.
The laser is biased with a Keithley 2400 current source and the
laser emission is collected through a standard single mode fiber
coupled to the on-chip grating coupler structures. The coupling
efficiency of the grating couplers is determined by the separate
reference structures on the chip and a 10 dB fiber-to-chip loss is
measured at 1563 nm.

The DFB laser L-I curve is measured at different stage tem-
peratures and the results are depicted in Fig. 4. The measured
threshold current at 20 °C is 10.5 mA and it increases up to
14.5 mA by increasing the operating temperature to 40 °C. A
waveguide-coupled optical power up to 6.5 mW is obtained from
a single facet. Due to the symmetrical configuration, the same
results are obtained from the other output of the laser. In addition,
the measured I-V curve in Fig. 4 shows that the voltage remains
below 2 V over operating temperatures. As it can be seen, there
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Fig. 5. Optical spectrum at 20 °C at various bias currents. 3 nm redshift in the

lasing mode is observed by increasing the bias current from 20 mA to 70 mA and
the corresponding SMSR improves from 39 dB to 44 dB. The inset represents a
closer look at the lasing wavelengths.

are ripples or kinks in the L-I curves due to the reflections from
the grating coupler. The phase of these reflections changes with
current due to the heating of the device.

Fig. 5 illustrates the optical spectrum for various bias currents
at 20 °C. The laser operates at 1560 nm at a bias current of 20
mA and shifts to 1561 nm and 1563 nm as the current increases
to 40 mA and 70 mA, respectively. Stable optical lines with
no hopping in the lasing wavelength are observed at 40 mA
and 70 mA which are close to the kinks in the L-I curve. A
SMSR of about 44 dB is obtained at 70 mA of bias current
and the measured stop band width is 4 nm, which corresponds
with kL = 1 for the 200 pm long cavity. Assuming a thermal
dependence of the effective index of 2x 10%/K [23], the shift
of the laser wavelength with the increased current corresponds
with a heating by 30K when the current is increased from 20
to 70mA. The wall-plug efficiency of the laser as a function of
the bias current at different operating temperatures is shown in
Fig. 6(a). As can be seen, more than 12% wall-plug efficiency
is achievable at room temperature. For a better understanding
of the device performance, in Fig. 6(b) the wall-plug efficiency
is plotted versus total optical output power collected from both
output facets. At the semi-cooled operation (40 °C), up to 9%
wall-plug efficiency is measured.

IV. DYNAMIC CHARACTERISTICS

Small-signal measurements were carried out using an Agilent
N5247A vector network analyzer (VNA) to provide radio fre-
quency (RF) electrical signals. Using a bias tee, the RF signal is
combined with a DC bias current to modulate the laser by means
of a Cascade Infinity GSG RF probe with 100 zm pitch. Then, the
laser light is sent to a Discovery DSC-10H photodetector (PD)
with a bandwidth of 43 GHz and the output electrical signal is
sent back to the VNA to measure the small signal S parameters.
Fig. 7 depicts the small signal So; parameter, measured at room
temperature at various bias currents. At a bias current of 60 mA
the modulation bandwidth of the device is found to be around
15 GHz. The main limiting factor of the modulation bandwidth
in our design (and the similar ones) is the confinement factor of
the optical mode in the MQW active region. As we mentioned
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Fig. 7. Small signal modulation characteristics at various bias currents.

earlier, the optical mode in this design is mostly confined in the
Si waveguide. This can be beneficial in decreasing optical loss
and increasing the internal efficiency, whereas the consequence
is the degradation of the modulation bandwidth.

The large signal intensity modulation of the laser is investi-
gated by carrying out a data transmission experiment. Fig. 8
describes the block diagram of the setup used for this mea-
surement. The modulation signal is generated using a Keysight
MS8196A arbitrary waveform generator (AWG). An SHF807 RF
amplifier is used to amplify the output signal of the AWG. Then,
the amplified modulation signal is combined with a DC current
via a bias tee and the corresponding output signal drives the laser
by using the GSG RF probe. The laser optical output signal is
directly sent to the photodetector, of which the output is fed
to a Keysight 70 GHz sampling oscilloscope without using any
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Block diagram of the experimental setup for the data transmission.

Fig. 9. Data transmission experiment; (a) and (c) eye diagram for the back to
back configuration at 10 Gb/s and 20 Gb/s, respectively. (b) and (d) eye diagram
after transmission over a 2 km fiber at 10 Gb/s and 20 Gb/s, respectively.

RF amplifiers. The large signal characterization results are illus-
trated as eye diagrams in Fig. 9. Non-return-to-zero (NRZ) data
transmission with a Pseudo-Random-Binary-Sequence (PRBS)
pattern length of 27-1 are verified. Open eyes can be observed
at 10 Gb/s and 20 Gb/s after transmission over a 2 km long
non-zero dispersion-shifted-fiber (NZ-DSF). A 4 dB extinction
ratio is obtained at 20 Gb/s. These results are achieved at a
bias current of 70 mA without using any optical or electrical
amplifiers at the receiver, nor equalization.

V. CONCLUSION

We discussed the design, fabrication and static and dy-
namic characterization of high-efficiency, short-cavity DFB
laser diodes, heterogeneously integrated on SOI, based on adhe-
sive bonding. In order to decrease the optical loss inside the cav-
ity, we designed a configuration where the optical mode inside
the laser cavity is predominantly confined to the Si waveguide
underneath. In the static characterization of the fabricated DFB
laser diode, the experimental results show above 12% wall plug
efficiency at 25 °C. In addition, stable single mode operation
with a SMSR up to 44 dB is achieved. We also reported the
dynamic characteristics of the laser diode by measuring the
small-signal and large-signal modulation responses. Up to 15
GHz modulation bandwidth is obtained at the bias current of 60
mA. The data transmission experiment with NRZ modulation
depicts open eye diagrams up to 20 Gb/s without using any
equalization. The same design concept can also be applied to
O-band lasers to serve the datacom market.

8200406

ACKNOWLEDGMENT

J. Rahimi would like to thank M. Muneeb for supporting in
preparation of the SOI circuit using EBL and L. V. Landschoot
for FIB images.

REFERENCES

[1] S. Matsuo and T. Kakitsuka, “Low-operating-energy directly modulated
lasers for short-distance optical interconnects,” Adv. Opt. Photon., vol. 10,
no. 3, pp. 567-643, 2018, doi: 10.1364/a0p.10.000567.

[2] L. Chen et al., “Silicon photonics in optical coherent systems,”
in Proc. 23rd Opto-Electron. Commun. Conf., 2018, pp.1-2,
doi: 10.1109/0ECC.2018.8730067.

[31 A. W. Fang et al, “Electrically pumped hybrid algainas-silicon
evanescent laser,” Opt. Exp., vol. 14, no. 20, 2006, Art. no. 9203,
doi: 10.1364/0e.14.009203.

[4] J. Zhang et al., “lI-V-on-Si photonic integrated circuits realized
using micro-transfer-printing,” APL Photon., vol. 4, no. 11, 2019,
Art. no. 110803, doi: 10.1063/1.5120004.

[5] D. Liang and J. E. Bowers, “Recent progress in heterogeneous III-V-on-
silicon photonic integration,” Light Adv. Manuf., vol. 2, no. 1, pp. 1-25,
2021, doi: 10.37188/lam.2021.005.

[6] D.J. Blumenthal, “Photonic integration for UV to IR applications,” APL
Photon., vol. 5, no. 2, 2020, doi: 10.1063/1.5131683.

[71 A. Malik et al., “Low noise, tunable silicon photonic lasers,” Appl. Phys.
Rev., vol. 8, no. 3, 2021, Art. no. 031306, doi: 10.1063/5.0046183.

[8] A. R. Adams, M. Asada, Y. Suematsu, and S. Arai, “The temperature
dependence of the efficiency and threshold current of inl —xGaxAsyP1—y
lasers related to intervalence band absorption,” Jpn. J. Appl. Phys., vol. 19,
no. 10, pp. L621-L624, 1980, doi: 10.1143/JJAP.19.L621.

[9] 1. P. Marko et al., “Optical gain in GaAsBi/GaAs quantum well diode
lasers,” Sci. Rep., vol. 6, pp. 1-10, 2016, doi: 10.1038/srep28863.

[10] S.Keyvaninia et al., “Heterogeneously integrated III-V/silicon distributed
feedback lasers,” Opt. Lett., vol. 38, no. 24, 2013, Art. no. 5434,
doi: 10.1364/01.38.005434.

[11] A. Abbasi et al., “Direct and electroabsorption modulation of a III-V-on-
silicon DFB laser at 56 Gb/s,” IEEE J. Sel. Top. Quantum Electron., vol. 23,
no. 6, pp. 1-17, Nov./Dec. 2017, doi: 10.1109/JSTQE.2017.2708606.

[12] M. Shahin et al., “80-Gbps NRZ-OOK electro-absorption modulation of
InP-on-Si DFB laser diodes,” IEEE Photon. Technol. Lett., vol. 31, no. 7,
pp- 533-536, Apr. 2019, doi: 10.1109/LPT.2019.2900518.

[13] C. Zhang, S. Zhang, J. D. Peters, and J. E. Bowers, “8 x 8 x 40 gbps
fully integrated silicon photonic network on chip,” Optica, vol. 3, no. 7,
pp. 785-786, 2016, doi: 10.1364/optica.3.000785.

[14] C. Zhang et al., “Low threshold and high speed short cavity distributed
feedback hybrid silicon lasers,” Opt. Exp., vol. 22, no. 9, p. 10202, 2014,
doi: 10.1364/0e.22.010202.

[15] A. Gallet et al., “Hybrid III-V on silicon integrated distributed feedback
laser and ring resonator for 25 Gb/s future access networks,” J. Light. Tech-
nol., vol.36,no. 8, pp. 1498-1502, 2018, doi: 10.1109/JLT.2017.2782012.

[16] R. Jones et al., “Heterogeneously integrated InP/Silicon photonics: Fab-
ricating fully functional transceivers,” IEEE Nanotechnol. Mag., vol. 13,
no. 2, pp. 17-26, Apr. 2019, doi: 10.1109/MNANO.2019.2891369.

[17] S. Matsuo et al., “Directly modulated buried heterostructure DFB laser
on SiO_2/Si substrate fabricated by regrowth of InP using bonded
active layer,” Opt. Exp., vol. 22, no. 10, pp. 12139-12147, 2014,
doi: 10.1364/0e.22.012139.

[18] S. Yamaoka et al, “Directly modulated membrane lasers with
108 GHz bandwidth on a high-thermal-conductivity silicon car-
bide substrate,” Nat. Photon., vol. 15, no. 1, pp.28-35, 2021,
doi: 10.1038/s41566-020-00700-y.

[19] N. P. Diamantopoulos et al., “47.5 Ghz Membrane-lii-V-on-Si directly
modulated laser for Sub-Pj/Bit 100-Gbps transmission,” Photonics, vol. 8,
no. 2, pp. 1-11, 2021, doi: 10.3390/photonics8020031.

[20] G. P. Agrawal and A. H. Bobeck, “Modeling of distributed feedback
semiconductor lasers with axially-varying parameters,” IEEE J. Quantum
Electron., vol. 24, no. 12, pp. 2407-2414, 1988, doi: 10.1109/3.14370.

[21] T. Komljenovic et al., “Heterogeneous silicon photonic integrated
circuits,” J. Light. Technol., vol. 34, no. 1, pp.20-35, 2016,
doi: 10.1109/JLT.2015.2465382.

[22] B. Hagq et al., “Micro-transfer-printed III-V-on-silicon C-band distributed
feedback lasers,” Opt. Exp., vol. 28, no. 22, pp. 32793-32801, 2020.


https://dx.doi.org/10.1364/aop.10.000567
https://dx.doi.org/10.1109/OECC.2018.8730067
https://dx.doi.org/10.1364/oe.14.009203
https://dx.doi.org/10.1063/1.5120004
https://dx.doi.org/10.37188/lam.2021.005
https://dx.doi.org/10.1063/1.5131683
https://dx.doi.org/10.1063/5.0046183
https://dx.doi.org/10.1143/JJAP.19.L621
https://dx.doi.org/10.1038/srep28863
https://dx.doi.org/10.1364/ol.38.005434
https://dx.doi.org/10.1109/JSTQE.2017.2708606
https://dx.doi.org/10.1109/LPT.2019.2900518
https://dx.doi.org/10.1364/optica.3.000785
https://dx.doi.org/10.1364/oe.22.010202
https://dx.doi.org/10.1109/JLT.2017.2782012.
https://dx.doi.org/10.1109/MNANO.2019.2891369
https://dx.doi.org/10.1364/oe.22.012139
https://dx.doi.org/10.1038/s41566-020-00700-y
https://dx.doi.org/10.3390/photonics8020031
https://dx.doi.org/10.1109/3.14370
https://dx.doi.org/10.1109/JLT.2015.2465382

8200406

[23] E. Gini and H. Melchior, “Thermal dependence of the refractive index
of InP measured with integrated optical demultiplexer,” J. Appl. Phys.,
vol. 79, no. 8, pp. 4335-4337, 1996, doi: 10.1063/1.361742.

Javad Rahimi received the bachelor’s degree in electrical engineering from the
Tabriz University, Tabriz, Iran, and the master’s degree in electronics engineering
from the Tarbiat modares Univerity, Tehran, Iran, in 2015. He was a Research
Fellow with the Politecnico di Torino, Turin, Italy during 20162017, working
on single section comb semiconductor lasers. In 2018, he joined the Photonics
Research Group, with the Ghent University where he is currently working
toward the Ph.D. degree on heterogeneous integration of III-V-on-Si lasers for
telecommunication applications.

Joris Van Kerrebrouck was born in Ghent, Belgium, in 1989. He received
the M.Sc. and Ph.D. degrees in electrical engineering from Ghent University,
Ghent, Belgium, in 2014 and 2020, respectively. He is currently a Postdoctoral
Researcher with IDLab Design Group, Department of Information Technology
(INTEC), Ghent University, Belgium. His research interests include radio-over-
fiber, point-to-point optical links, and nonlinear electro-optical systems.

Bahawal Haq Graduated from Masdar Institute in the master’s program in
microsystems engineering. Afterwards, he completed Ph.D. degree from the
Ghent University-IMEC in Photonics Engineering. He is currently working as
a Sr. Integration Engineering with the Globalfoundries, Dresden, Germany. His
research interests include micro-transfer-printing of III-V-on-Si devices and III-
V-on-Si heterogenous integration.

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 28, NO. 3, MAY/JUNE 2022

Johan Bauwelinck (Senior Member, IEEE) received the Ph.D. degree in applied
sciences and electronics from the Ghent University, Ghent, Belgium, in 2005.
Since October 2009, he has been a Professor with the INTEC Department, Ghent
University, and since 2014, he has been Leading the Internet Technology and
Data Science Lab Design Group. He has promoted 18 Ph.D.s and coauthored
more than 150 publications and ten patents in the field of high-speed electronics
and fiber-optic communication. He was and is active in the EU-funded projects
GIANT, POWERNET, PIEMAN, EuroFOS, C3- PO, Mirage, Phoxtrot, Spirit,
Flex5Gware, Teraboard, Streams, and WIPE conducting research on advanced
electronic integrated circuits for next generation transport, metro, access, data-
center and radio-over-fiber networks. His research interests include high-speed,
high-frequency (opto-) electronic circuits and systems, and their applications on
chip and board level, including transmitter and receiver analog front-ends for
wireless, wired and fiber-optic communication or instrumentation systems. He
is a member of the ECOC Technical Program Committee.

Gunther Roelkens (Senior Member, IEEE) received the degree in electrical en-
gineering from Ghent University, Ghent, Belgium, in 2002, and the Ph.D. degree
from the Department of Information Technology (INTEC), Ghent University,
Ghent, Belgium, in 2007. He is currently a Full Professor with Ghent University.
In 2008, he was a Visiting Scientist with IBM TJ Watson Research Center, New
York, NY, USA. His research interests include the heterogeneous integration of
III-V semiconductors and other materials on top of silicon waveguide circuits
and electronic/photonic co-integration. He was a holder of an ERC starting grant
(MIRACLE), to start up research in the field of integrated mid-infrared photonic
integrated circuits.

Geert Morthier (Senior Member, IEEE) received the degree in electrical
engineering and the Ph.D. degree from Ghent University, Ghent, Belgium, in
1987 and 1991, respectively. Since 1991, he has been a member of the permanent
staff of imec and since 2001 he is part-time Professor with Ghent University.
He has authored or coauthored more than 200 papers in the field and holds
several patents. He is also one of the two authors of the Handbook of Distributed
Feedback Laser (Artech House, 1997). His main interests include the modeling
and characterization of optoelectronic components. From 1998 to end of 1999,
he was the Project Manager of the ACTS Project ACTUAL dealing with the
control of widely tunable laser diodes, from 2001 to 2005, he was the Project
Manager of the IST Project NEWTON on new widely tunable lasers, and from
2008 to 2011, he was the Project Manager of the FP7 Project HISTORIC on
microdisk lasers.


https://dx.doi.org/10.1063/1.361742


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


