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ABSTRACT

Multiple photonic systems show great promise for providing practical yet powerful hardware substrates for
neuromorphic computing. Among those, delay-based systems offer -through a time-multiplexing technique - a
simple technological implementation route. We discuss our advances in the development of passive coherent
fibre-ring cavities and semiconductor lasers with integrated delay for reservoir computing. Time-multiplexed
systems are also highly suitable for coherent Ising machines as they allow to implement a fully interconnected
large scale system with few components. We have recently proposed a system based on opto-electronic oscillators
subjected to self-feedback with improved calculation time and solution quality.

Keywords: neuromorphic computing, reservoir computing, delayed feedback, semiconductor laser, photonic
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1. TIME MULTIPLEXING FOR INTEGRATED RESERVOIR COMPUTERS

Artificial neural networks (ANN) have played a significant role in the current AI boom, especially with the
invention of ImageNet1 as catalyst. ANNs may be efficient and versatile during operation, nevertheless they
require complex and time-consuming algorithms to train the connection weights in the large network that forms
the ANN. When interested in processing tasks and data where the temporal evolution is key, standard feed-
forward ANNs are not sufficient and one needs to turn to recurrent neural networks (RNNs). The training of
RNNs is a nonlinear problem due to feedback loops in the network and is far more involved than the training
algorithms of feed-forward networks. Reservoir computing (RC) is paradigm that solves the training issue of
RNNs in an efficient way.

RC offers a framework to exploit the transient dynamics within a RNN for performing useful computation.
It has been demonstrated to have state-of-the-art performance for a range of tasks that are notoriously hard to
solve by algorithmic approaches, e.g., speech and pattern recognition and nonlinear control. RC simplifies the
training procedure for RNNs considerably. Its training procedure only acts on the output layer which consists
of a linear combination of network states to generate the desired output signals. The connections of the RNN
itself, which is now referred to as reservoir, remain fixed. During training, only the connections from the network
to the output layer are adjusted. Due to this simplification, RC is very suited as framework for neuromorphic
computing activities in photonics. Today, multiple photonic RC systems exist that can provide a practical yet
powerful hardware substrate for neuromorphic computing.2 Some examples include a network of semiconductor
optical amplifiers, an integrated passive silicon circuit forming a very complex and random interferometer, with
nonlinearity introduced in the readout stage and a semiconductor laser network based on diffractive coupling.2,3

All these implementations have one thing in common: they rely on a network of photonic nodes that are spatially
distributed and can be measured simultaneously.
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However, the reservoir is not required to be a networked structure. In fact, any dynamical system with a high
dimensional state space can be considered as reservoir substrate. We consider here specifically a semiconductor
laser with delayed feedback as reservoir substrate. The concept of delay-based RC, using only a single nonlinear
node with delayed feedback, was introduced some years ago by Appeltant et al. 4 Delay-based RC offers a
simple technological route to implement photonic neuromorphic computation. Its operation boils down to a
time-multiplexing with the delay arising from propagation in the external feedback loop, limiting the resulting
processing speed. The system is easily scaled by tuning the delay length and only has one single physical node
reducing the hardware complexity in photonic systems. The first working prototype was developed in electronics
in 2011 by Appeltant et al. and studied many configurations.5 Several performant optical systems followed
quickly after that.6–8 Brunner et al.9,10 employed of-the-shelf telecom equipment to experiment with a single-
mode semiconductor laser subjected to optical feedback. The delay time in his experiments was around 80ns,
which translates to a few meters of fiber. As most optical setups end up to be bulky employing long fiber loops
or free-space optics, the processing speeds are limited in the range of kSa/s to tens of MSa/s.7,9 To increase the
processing speed of delay-based reservoir computing using a semiconductor laser with delayed optical feedback,
one can integrate the laser and the delay both on the same photonic chip. In this way, by using a waveguide
structure with a compact footprint, an external cavity structure can be implemented which is small enough
to reach high processing speeds, yet still long enough to have sufficient dimensionality for good computing
performance. In the long term, this integrated approach will lead to a robust and low-cost design. Recently,
Takano et al.11 have presented a photonic integrated circuit consisting of a distributed-feedback semiconductor
laser, a semiconductor optical amplifier (SOA), a phase modulator, a short passive waveguide, and an external
mirror for optical feedback. The external cavity length in this system reached 10.6mm, corresponding to a
round-trip delay time of 254ps. However, only six virtual nodes could be stored within the delay line with
node-spacings of 40 ps, not enough for good computational performance. This necessitated the authors to use
masks with duration of multiple delay times, which slows down the computation speed. Several other types of
semiconductor laser have been considered such as semiconductor ring lasers using the two available directional
modes12 and vertical-cavity surface-emitting employing the two polarization modes13,14 and multi-mode lasers
employing longitudinal modes.15 In this paper, we will only focus on single-mode Fabry-Péro type quantum-well
semiconductor lasers.

The information processing performance of a semiconductor laser-based RC system is related to its dynamical
behaviour both in the absence of external input and in the presence of said input. After the very first experiment
by Brunner et al.,9 other works have focused on understanding the fundamental properties of semiconductor
laser-based RC for non-linear prediction tasks. In Ref. 16, it has been shown that the conditions to achieve good
predictive performance are given by the injection locking, consistency, and memory properties of the system.
More specifically, Bueno et al. found that the lowest prediction error for a non-linear prediction task occurs at
the injection locking boundary. Note that in this work the laser was operating below or close to the solitary
lasing threshold. Consistency, the ability of a system to have a similar response for the similar input signals, is
widely regarded as key for good reservoir computing performance.16,17

Our goal is to show that a delay-based reservoir computer can be built using an indium-phosphide PIC, that
combines active and passive elements and is built on the JePPIX platform.18 The PIC integrates a semiconductor
laser with an external cavity of 5.4 cm, which corresponds to a round trip time of 1170 ps. This allows for 23
nodes and a processing speed of 0.87 GSa/s. The longer waveguide based external cavity will also have more
loss associated to it. Therefore, we will address in this work the question if amplification in the external cavity
is needed or not. Contrary to other works,9,11,16 the semiconductor laser itself will be driven far above solitary
lasing threshold to benefit from a better signal to noise ratio in the read-out, as well as faster internal dynamics.
Finally, we will introduce post-processing schemes that do not penalize computational speed

A schematic of our integrated device is shown in Fig. 1. It consists of a distributed Bragg reflector (DBR)
laser structure and two spiral waveguides comprising the delay line. Two semiconductor optical amplifiers (SOA)
are placed along the delay line to tune the feedback strength. A phase modulator is available to tune the feedback
phase. We have not used this phase modulator due to setup complexity. Nevertheless, the phase is expected to
play an important role.19 At the end of the delay line a DBR element completes the feedback loop by reflection.
This on-chip feedback loop has a round-trip time of τ = 1170 ps.
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Figure 1. Schematic depiction of our InP-based photonic integrated circuit (PIC). The PIC consists of a laser structure
followed by a delay line of 5.4 cm. DBR: Distributed Bragg Reflector, SOA: Semiconductor Optical Amplifier, PM: Phase
Modulator.

The device covers the whole 6mm width of the chip and has one optical input/output port on each side.
The ports are angled with respect to the chip edge to minimize reflection. We employed lensed fibers to send
optical signals in/out of these ports and a total of five electrical DC probes to operate the device. The first probe
(IDBR1) was placed on the left DBR of the laser structure, in order to tune the spectral output of the laser.
The second probe (IL) acted to supply the pump current to the laser. The following two probes (ISOA1, ISOA2)
supplied current to the SOAs along the feedback line and the last probe (IDBR3) tuned the reflection spectrum
of the DBR at the end of the feedback line. The active and SOA sections could be pumped up to a current of
40 mA, whereas the tuning currents of the DBRs could only be driven up to 10 mA.

The DBR laser has a threshold current of 15 mA. The free running lasing wavelength is centered at 1546.91 nm.
In our setup, the on-chip laser can lock on the injection at the free running lasing wavelength or one of the side-
modes, depending on the injected wavelength. It turned out that the RC performance is best when the injected
field’s wavelength is close to a side mode. Targeting the side mode allows for a higher injected power as the
reflection of DBR1 is lower at the wavelength of the side-mode. Furthermore, DBR2 has a higher transmission
for side modes than for the free running lasing wavelength. Injection locking on the side-mode is achieved at a
wavelength of 1549.60 nm and the following DC probes configuration: IDBR1 = 8.28 mA, IDBR3 = 1 mA, and
IL = ISOA1 = ISOA2 = 40 mA. The on-chip spectral parameters are not changed hereafter, meaning that the
current supply to the two DBRs is not changed throughout the paper.

To test the RC performance of the laser integrated with a feedback loop, the setup shown in Fig. 2 is used.
We use a wavelength tuneable CW laser to create the optical injection signal. The wavelength of this laser is set
close to 1549.6 nm, but we still allow for a small detuning between the injection wavelength and the wavelength of
the targeted side-mode of the laser. The CW light beam of the tunable laser is modulated using a 40GHz Mach-
Zehnder modulator (iXblue MX-LN-40). This modulator is driven electrically by a 25GHz Arbitrary Waveform
Generator (Keysight M8195A) set at a sample speed of 60 GSa/s.

We employ the time-multiplexing scheme, where the duration of one data sample matches the 1170 ps delay
time. Note that there have been numerical and experimental studies, where the duration of a data sample does
not match the delay time.7,20 We, however, do not target this working regime.

Any input data sample ui, in our case originating from a discrete timeseries, is held constant for the duration
of one delay time τ . We then multiply this piecewise constant stream U(t) with a piecewise constant mask M(t)
(that is periodic with a period of τ) to obtain the masked input stream J(t). The piecewise constant levels
of stream J(t) define the position of the virtual nodes equally spread over the delay line. It has been shown
numerically21 that the node separation, when using a semiconductor laser with delayed feedback, can be as short
as a few tens of ps. As the sample rate of the AWG is set to 60 GSa/s, we use three AWG samples to define one
mask node, leading to a mask node separation of θM = 50 ps such that 23 nodes fit within one round-trip in the
delay loop. We thus generate a random mask with NM = 23 mask nodes with three possible values [0, 0.5, 1].
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Figure 2. Schematic depiction of the setup used to measure the performance of our integrated delay-based reservoir
computer. The device under test (DUT) is the PIC shown in Fig. 1

In our case the length of the mask is 20 ps shorter than the delay time, which is hard to match in practice. We
believe this desynchronization will not adversely affect the performance of the RC scheme, since the mismatch
is smaller than the node separation and we can accurately split the reservoir output in the readout layer.22

The modulated optical signal is next amplified in Fig. 2 using an Erbium doped fiber amplifier (Keopsys
CEFA-C-BO-HP-B203). The broadband spontaneous emission noise, added to the optical signal by the amplifier,
is removed by sending the light beam through an optical bandpass filter, that is centered around the injection
signal’s wavelength. The filtered signal is then fed into the laser using a circulator connected to a lensed fiber.
The response of the laser is collected at the third port of the circulator and measured using an opto-electronic
detector connected to a 63GHz real-time oscilloscope. The sampling rate of the oscilloscope was set to 40 GSa/s.
This means that each mask node, with a duration of 50 ps, has 2 corresponding samples in the read-out signal.

We have studied the performance of a delay-based reservoir computer, which is designed on a photonic
integrated chip. The integrated approach leads to a compact design as well as high computation speeds. We
have studied the performance through the Santa-Fe timeseries benchmarking task.

With a conventional reservoir computing scheme, where the mask-imposed nodes coincide with the virtual
nodes, we get a performance (best NMSE = 0.135) which is slightly worse than those found in other works
(NMSE around 0.1). However, we are working in different regimes. While previous works, such as,9,11,16,21

operate in sub- or near threshold regimes, we operate our laser at pump currents well above the threshold current.
We achieve a significant speed up compared to others,6,9 who achieved speeds in the order of kSa/s and MSa/s
respectively. The computation speed of our setup is 0.87 GSa/s, which is comparable to what Takano et al.
achieved with additional pre- and post-processing steps.

We were able to improve the performance of the reservoir computer by using different post-processing routines.
The first routine is using both readout samples within one mask-imposed node to form the output layer, unlike
the conventional routine where we utilize one sample per mask-imposed node. The availability of extra states
in the output layer, causes the reservoir computer to perform better. The extra states are not redundant in
comparison with the rest, but rather enhance the state space. Since the mask-imposed node has a slightly longer
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duration than the timescale of the laser, we get two different state values from the transient response on the
input. The best performance we achieved here is NMSE = 0.062.

The second post-processing routines takes the reservoir output for a duration of two delay times. This way
we have a richer state space to perform the task and furthermore have access to a longer temporal memory inside
this state space, since the last two input data points are present in the two delay times. This post-processing
routine has consistently been the best performing out of the three and reaches an NMSE as low as 0.049.

We have seen that the best performance for Santa Fe timeseries prediction was found when we the injected
signal’s wavelength was close to a side-mode, with zero detuning between the injected wavelength and side-mode.
We also observed that delay-based RC using semiconductor lasers can achieve very good performances at pump
currents well above threshold, where most studies have focused on near-threshold operation. Lastly, we studied
the memory capacity of our RC setup as the feedback in the setup is increased and we see a clear increase. Even
when the SOAs in the delay line are turned off, we get a linear memory capacity around 8, which suggests that
there is enough feedback already in the system without extra amplification.

2. TIME MULTIPLEXING FOR ISING MACHINES

Motivated by the exponentially increasing energy consumption of high-performance computing and the looming
end of Moore’s law, there has been a very active search for new non-von-Neumann computing architectures that
are both faster and more energy efficient than conventional digital computers. Ising machines have emerged as a
promising concept, that specializes in solving resource intensive optimization problems, such as route planning,
crew scheduling, protein folding or training of neural networks. Ising machines solve these difficult problems by
mapping the problem’s cost function to a network of coupled Ising spinsσi = {−1,+1}, whose energy is described
by the Ising Hamiltonian

HIsing = −1

2

∑
ij

Jijσiσj (1)

By implementing this spin system with bistable analog oscillators, the natural tendency to evolve to its
lowest energy configuration is then used to efficiently find optimal solutions at significantly improved speeds
compared to digital computers. However, it is still a challenge to find suitable analog oscillators that provide
both high analog bandwidths as well as low energy consumption. Quantum annealing hardware23 and photonic
Ising machine based on coupled lasers, SLMs,24 degenerate optical parametric oscillators (DOPOs)25,26 and
polariton condensates27–29 have emerged in recent years and demonstrated potential performance gains over
digital hardware. Yet, these systems rely on complex physical systems to realize the Ising spins, which can result
in large footprints and high energy consumption.30,31

Optoelectronic oscillators32 (OEOs) are a promising alternative to these complex Ising machines. With their
compact and inexpensive layout, they can be easily fabricated from off-the-shelf components or as integrated
photonic circuits.33 Furthermore, they utilize components which are also used in optical data communication and
that yield high analog bandwidths of 40 GHz. Fig. 3a shows a schematic of an OEO used as an Ising machine.

The OEO consists of a laser diode, a Mach-Zehnder intensity modulator and a photodiode. The output of
the photodiode is fed back into the RF input of the modulator to create a closed feedback loop. By removing
the DC component of the photovoltage and adjusting the feedback gain and the bias voltage of the modulator,
the OEO is driven into a symmetrically bistable configuration. In this configuration, the system possesses two
stable fixed points x∗{1, 2} with x∗1 = −x∗2 and an unstable trivial fixed point x∗0 = 0 that lies in between the
stable fixed points. Fig. 3b shows the temporal dynamics of 100 isolated OEOs when the system is initialized
in the trivial fixed point x∗0. When the gain is high enough, the OEOs will bifurcate into one of the two stable
fixed points with a corresponding probability of 50 percent. This binary behavior is exploited to implement Ising
spins by associating the fixed points with the spin up and spin down configuration respectively. An isolated
OEO can thus implement a single Ising spin. To implement large Ising models, a time-multiplexing approach
as depicted in Fig. 3a is employed. Here, spins are sequential circulated in the feedback line of a single OEO
to implement a large number of spins. An FPGA in the feedback loop is used to multiplex the input to the
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Figure 3. (a) Experimental scheme of the coherent Ising machine. (b) Time evolution of the amplitude for 100 isolated
OEOs for two different feedback gain levels α. For small feedback gain (α = 0.8), the spins are randomly fluctuating
around the trivial fixed point x∗0. For large feedback gain (α = 1.3), the spins are bifurcating into the two bistable fixed
points x∗{1, 2} that are then associated with the spin up and spin down configuration. The distribution of spins (right
panel) reveals that there is an equal probability to end up in either of the two fixed points.

Figure 4. (a) Success rate in MaxCut optimization problems for Moebius ladder graphs as a function of the problem size
N for the OEO-based Ising machine in comparison to a DOPO-based Ising machine (data from34). (b) Success rate for
randomly generated graphs with varying edge numbers d for an OEO-based Ising machine and a quantum annealer (data
from35).

modulator, demultiplex the detected signal and couple the spins according to the coupling topology Jij in Eq.(1).
This setup thus allows to implement arbitrary Ising models with any number of spins.

To assess the ability of OEO-based Ising machines to solve difficult optimization problems, we perform
benchmarks based on NP-hard MaxCut problems.33 Fig. 4 shows the success rate, which reflects the probability
of reaching the optimal solution for two exemplary benchmarks. Fig. 4a depicts the success rate as a function
of the size of the Ising model N for Moebius ladder graphs. We compare the performance of the OEO system
with that of an DOPO-based Ising machine34 and find that even for the largest problem size, the OEO system
is able to achieve a higher success rate. In Fig. 4b, we perform a benchmark against a quantum annealer using
randomly generated graphs Jij with a varying number of edges d. We find that even for dense graph structures,
the OEO is able to converge to an optimal solution, while the quantum annealer is unable to find the solution.
These performance differences demonstrate that the compact and inexpensive OEO setup can achieve similar or
even improved performance compared to other state- of-the-art Ising machines.

We further investigate the performance difference between DOPO-based and OEO-based Ising machines by
considering their respective nonlinear transfer functions. DOPOs employ a polynomial transfer function due to
the Kerr nonlinearity while OEOs employ a periodic transfer function due to the Mach-Zehnder interferometer.
In addition, we also consider other types of transfer function that can induce the required bistability, namely
sigmoid functions and clipped linear functions. We implement the equations of motions with the different
nonlinearities, simulate their behavior and measure the success rate and the convergence time while solving
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Figure 5. Time-to-solution (TTS) to reach 98 percent of the best known solution for the SparseSuite matrix collection
of Ising machines with sigmoid, periodic and clipped transfer functions relative to Ising machines based on polynomial
transfer functions

optimization problems. As a benchmark task, we consider MaxCut problems contained in the SuiteSparse
matrix collection.

To assess the performance, we calculate the time-to-solution (TTS), which reflects the time required to reach a
given solution with a probability of at least 99 percent. In Fig. 5, we assess the TTS to reach at least 98 percent
of the best-known solution. The TTS is shown relative to the polynomial model to indicate the differences
between the different types of Ising machines. We observe that for a large range of problems, all models achieve
very similar TTSs, which indicates that they are equally capable of encoding and solving Ising models. This is
to be expected since the different models have been shown to well approximate the polynomial model. However,
for some specific hard instances, we can observe significant differences in the TTS. Compared to the polynomial
model, the other models achieve speed-ups of up to three orders of magnitude. For these specific cases, we
observe that the success rate for the polynomial model is significantly reduced, so that optimal solutions are
found with a much lower probability.

We link these differences to the saturable nature of the different transfer functions. While the amplitude of
the polynomial is unbound and grows continuously with the feedback gain, the transfer function for the other
models saturates for large gain and thus limits the maximal amplitude. We find that this saturation ensures
that the analog amplitude for each spin is narrowly distributed around the fixed points, while the amplitudes are
broadly distributed for the polynomial model. It is well known that such broad amplitude inhomogeneity leads
to an incorrect mapping to the Ising Hamiltonian, which in turn leads to convergence to suboptimal solutions.36

We observe a direct correspondence between the amount of inhomogeneity and the success rate, so that the
periodic, sigmoid and clipped transfer functions achieve higher success rates. This indicates that OEO-based
Ising machines, along with Ising machines based on other saturable transfer functions, have an inherent advantage
over DOPO-based Ising machines for specific problems. Furthermore, this demonstrates how the transfer function
can be used as an efficient way of mitigating amplitude inhomogeneity, which is still an essential challenge for
analog Ising machines.
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