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Abstract—We seek to improve nonlinear fiber distortion mit-
igation for wavelength multiplexed telecommunications in terms
of both processing speed and energy efficiency. We propose a pho-
tonic reservoir computing hardware implementation maximizing
the chip footprint to processing power ratio by employing a single
readout for all wavelengths.

Index Terms—photonics, reservoir computing, signal equaliza-
tion, wavelength division multiplexing

I. INTRODUCTION

Reservoir computing (RC) employs a randomly initialised
fixed recurrent neural network (RNN), called the reservoir,
which is left untrained and to which a simple linear read-
out layer is added. We show that a single-readout photonic
reservoir system can perform with < 10−3 BER on several
wavelength division multiplexing (WDM) channels in parallel
for nonlinear fiber distortion mitigation. There are many poten-
tial photonics-based reservoir computing hardware implemen-
tations. Among those investigated are systems consisting of a
single non-linear node with feedback and free-space reservoir
systems [1]–[10]. The former use only a single node, which
limits data bandwidth, while the latter is not as compact, fast
or cost-efficient as integrated systems. Here, we will focus
on a multi-node waveguide-based integrated RC system. Such
systems have been proven to perform well for various tasks
such as bit-level tasks, nonlinear dispersion compensation
and isolated spoken digit recognition [11]–[14]. However,
the footprint of waveguide-based photonic reservoirs, where
waveguides form the interconnects and nodes consists of
optical elements such as multimode interferometers [10], is
typically on the order of one to a few tens of mm2. This
large footprint translates into added cost, which negatively
impacts economic viability. In this paper we make more
efficient use of a given chip area by exploiting wavelength
division multiplexing. Similar ideas have been explored in e.g.
[15]–[17], although using different reservoir architectures and
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technologies. We want to use a single set of weights for all
wavelengths, as having a separate sets of weights for each
wavelength would eliminate all the chip area savings.

II. OVERVIEW MEASUREMENT SETUP AND RESERVOIR

The measurement setup is shown in figure 1. The reservoir
nodes are optically probed and detected by a photodiode one
at a time. The signal is repeated in time entirely for each node
to accomplish this. These electrical time traces are saved on a
computer and the linear combination of these traces is done in
post-processing on a computer. The amplifier in front of the
fiber is an artificial means of increasing nonlinear distortion
effects in the fiber and thus specifying the difficulty of the task
to be solved by our reservoir computer. For these experiments
the input power to the fiber ≈ 5dBm.

Fig. 1. Schematic illustration of the setup used in the experiment.

The architecture that is used is the four-port architecture
[18]. It refers to the four ports of each node that are con-
nected to other nodes in the reservoir, following the network
connection scheme, as shown schematically in figure 2. The
nodes consist of 3x3 multimode interferometers (MMIs). The
nonlinearity required for nonlinear tasks is supplied by the
inherent nonlinearity of the photodetector.

P5

978-1-6654-8655-2/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 S
ili

co
n 

Ph
ot

on
ic

s C
on

fe
re

nc
e 

(S
iP

ho
to

ni
cs

) |
 9

78
-1

-6
65

4-
86

55
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

SI
PH

O
TO

N
IC

S5
59

03
.2

02
3.

10
14

18
96

Authorized licensed use limited to: University of Gent. Downloaded on October 20,2023 at 13:50:20 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. four-port architecture schematic

III. WDM WITH SINGLE READOUT

The main reason why reservoir performance depends on
input wavelength is the resulting variation in phase shifts in
the waveguide interconnections. This leads to altered signal
mixing for which the readout was not trained, leading to an
incorrect weighting and recombination of node outputs. It is
thus necessary to include all different target wavelengths in
training. The training of the weights consists mainly of a ridge
regression algorithm [19] in which normalization is allowed.
The labels used for training are the digital on-off keying bit
stream [20]. We investigate 2 wavelengths seperated by a
standard dense WDM frequency spacing of 12.5 GHz in the
C band. Results are shown in figure 3.

Fig. 3. a) distorted signal b) result for single wavelength training c) result
for 2 wavelength training

Note that the number of test bits used, 105, limits the
statistically relevant BER resolution to roughly 10−3.

IV. CONCLUSION

we demonstrated experimentally that a single-readout pho-
tonic RC system can perform nonlinear fiber distortion mit-
igation with < 10−3 BER at several wavelength channels
for nonlinear fiber distortion mitigation. This clears the way
toward commercial viability of photonic RC systems for
nonlinear fiber distortion mitigation of WDM signals as the
same chip footprint now has significantly increased processing
power and reliability.
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