
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 18, SEPTEMBER 15, 2023 5807

An Automated Router With Optical
Resource Adaptation

Ferre Vanden Kerchove , Xiangfeng Chen , Student Member, IEEE, Didier Colle , Member, IEEE,
Wouter Tavernier, Wim Bogaerts , Fellow, IEEE, and Mario Pickavet , Senior Member, IEEE

Abstract—Photonic Integrated Circuits are rapidly becoming
more reconfigurable using tunable waveguide elements, coming
closer to realizing ‘general purpose’ programmable waveguide
meshes. To utilize the full potential of such circuits, special software
routines need to be developed to determine the optical paths inside
the mesh. Right now, current methods either scale exponentially in
problem size or are severely lacking performance-wise, largely un-
able to find solutions, especially in recirculating waveguide meshes
with square or hexagonal unit cells. We present an algorithm that
computes an efficient configuration that correctly routes all given
signals. Whereas similar papers look at meshes containing 7 to
20 hexagonal cells, in this article, meshes of up to hundreds of
hexagonal cells are considered. We compare the results of our
algorithm to an earlier proposed algorithm and to an optimal
solution. Several parameters are introduced in the algorithm. These
are studied and an optimizer is implemented to determine effective
values for them.

Index Terms—Graph theory, optical routing, photonic
integrated circuits, programmable photonics.

I. INTRODUCTION

OVER the last decade, numerous advancements have
cleared a path for programmable photonics to advance

from a mere concept to a practical platform for new advance-
ments and applications, especially in neuromorphic computing
and machine learning [1]. The flow of light is controlled through
electronics and software in order to project a set of optical ports
at the input to a set of ports at the output. While this demonstrates
large-scale integration and programmability, most of these cir-
cuits are still very much application-specific photonic integrated
circuits (ASPIC). Like most other photonic integrated circuits
(PIC), these have to be custom designed and fabricated. In turn,
this leads to long design times and high development costs,

Manuscript received 18 November 2022; revised 15 March 2023 and 27
April 2023; accepted 4 May 2023. Date of publication 11 May 2023; date
of current version 19 September 2023. This work was supported in part by
the Flemish Research Foundation (FWO-Vlaanderen) under Grants G020421
(GRAPHSPAY) and 11O0923N, and in part by the European Research Council
(ERC) under Grant 725555 (PhotonicSWARM). (Corresponding author: Ferre
Vanden Kerchove.)

Ferre Vanden Kerchove, Didier Colle, Wouter Tavernier, and Mario Pickavet
are with the IDLab, the Department of Information Technology, Ghent Univer-
sity - IMEC, 9052 Ghent, Belgium (e-mail: ferre.vandenkerchove@ugent.be;
didier.colle@ugent.be; wouter.tavernier@ugent.be; mario.pickavet@ugent.be).

Xiangfeng Chen and Wim Bogaerts are with the Photonics Research Group,
Department of Information Technology, Ghent University - IMEC, 9052 Ghent,
Belgium (e-mail: xiangfeng.chen@ugent.be; wim.bogaerts@ugent.be).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JLT.2023.3275385.

Digital Object Identifier 10.1109/JLT.2023.3275385

Fig. 1. Programmable photonic circuits: (a) the circuit connects inputs, out-
puts, and functional blocks (modulators, detectors). (b) internally it has couplers
that can be put in different states. The topology can be feed-forward (c) or use
feedback rings, these can be organized and tiled in different shapes, e.g., squares
(d) or hexagons (a).

slowing down the exploration of novel optical applications [2].
As a result, general-purpose programmable photonic chips are
now touted as the next logical step in the development of PICs,
providing a chip where the flow of light can be arbitrarily pro-
grammed to perform a variety of functions, which can accelerate
prototyping and developments. The programmable flow of light
enables dynamic manipulation over the course of light and thus
a programmable control of the functionality of the circuit. The
most commonly used architecture is a mesh where light flows
in one direction [3] as seen in Fig. 1(c). A forward-only mesh
is easy to understand but does not completely utilize the full
potential of programmable photonics. Alternative architecture
tiles the chip with waveguides organized in triangular, square,
or hexagonal loops, the latter two can be seen in Fig. 1(a) and
(d). Here, light can be folded onto itself, creating resonances.
This enables the implementation of a broad range of different
wavelength filters. These meshes can also contain specialized
function blocks inside the mesh, with dedicated input and output
ports.

Right now, a popular and potent mesh topology uses hexag-
onal tiling, offering significant advantages over other regular
tiling [4], as an example, only a hexagonal mesh can implement
Sagnac loops. In this article, we consider only this architecture.

0733-8724 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 30,2023 at 12:32:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3673-3874
https://orcid.org/0000-0003-2931-8269
https://orcid.org/0000-0002-1428-0301
https://orcid.org/0000-0003-1112-8950
https://orcid.org/0000-0001-5817-7886
mailto:ferre.vandenkerchove@ugent.be
mailto:didier.colle@ugent.be
mailto:wouter.tavernier@ugent.be
mailto:mario.pickavet@ugent.be
mailto:xiangfeng.chen@ugent.be
mailto:wim.bogaerts@ugent.be
https://doi.org/10.1109/JLT.2023.3275385

5808 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 18, SEPTEMBER 15, 2023

However, the proposed algorithm does not depend on the exact
architecture, and can easily be used with other architectures.

The functionality of a waveguide mesh that offers recircula-
tion is twofold. Firstly, it provides the connections between all
possible pairs of ports, including the different high-performance
photonic blocks, essentially acting as an all-to-all switch. Sec-
ondly, it enables the synthesis of the aforementioned optical
filters inside the mesh, such as interferometers and ring res-
onators. This article only focuses on the first functionality, but
the proposed algorithm is left as much room as possible to allow
for an extension to the placement and synthesis of filters.

Given a set of signals with their source ports and correspond-
ing destination ports, the main problem is deciding the exact path
for every signal. These paths cannot share waveguides, severely
limiting what is physically possible. On smaller meshes, a path
for every signal can still be manually constructed. On larger
meshes, this becomes a challenging task to perform for humans.
A logical step is to use specialized routing algorithms. How-
ever, for photonic purposes, these algorithms are still largely
in their infancy. They either assume one-directional flow in
forward-only meshes [3], or focus on small-scale recirculating
meshes [5], [6]. Correctly modeling all constraints imposed by
the physics of light proves to be a real hurdle, which leads to
algorithms that do not manage to properly explore all possible
configurations.

We base our work on [5], [6], [7], focusing on meshes
that contain an order of magnitude more unit cells. While the
aforementioned papers look at meshes that consist of 7 to 20
hexagonal cells, in this article, meshes of hundreds of hexagonal
cells are considered. This article is an in-depth extension of [8].

Section II defines the problem and gives the relevant physical
constraints. We then translate this problem into a problem on
graphs. Section III provides a general overview of our algorithm.
Section IV gives a complexity analysis and Section V describes
the integer program that is used to obtain an optimal solution.
In Section VI, we briefly talk about the test data that is used.
Afterward, in Section VII, we gauge the quality of the results.
The results are compared to solutions produced by an algorithm
similar to [6] and an optimal solution, the latter being only
obtainable on smaller meshes. We justify design and parameter
choices by showing performance data in Section VIII. At last, in
Section IX, we summarize our work and give areas where future
work is possible.

II. PROBLEM STATEMENT

Firstly, a broad description of the problem is given with
the relevant physical constraints and optimization goal. Then,
the problem is reformulated to a problem on graphs, and an
equivalent way to realize the constraints is given. This second
formulation is the basis of the Automated Router with Optical
Resource Adaptation (Aurora) and ensures that it is fully com-
pliant with the constraints.

A commodity in a mesh is a source-target connection pair,
where light needs to flow from source to target. The main
problem of this article is the following: given a mesh consisting
of waveguides and couplers, and a set of commodities, find a

Fig. 2. (a) A hexagonal mesh consisting of waveguides (WG), couplers (CP),
and phase shifters (PS). (b) a set of interconnected couplers. (c) a coupler as a
graph.

way to connect each source with its target through a path for the
light in the mesh. A path can only change from one waveguide to
another by utilizing a coupler. Here, this acts as a switch as seen
in Fig. 1(b). Either it lets the light continue in the waveguides,
or it switches the light from one waveguide to the other, and
vice versa. This is called bar and cross mode respectively.
There is a third mode, coupling mode, but this is only relevant
if there are multiple targets per source, or for the realization
of other optical functions like wavelength filtering. Neither is
considered in this article. The specific design of couplers leads
to the following physical constraints. A path using a coupler
cannot make a U-turn in this coupler, nor can a coupler be used
in both bar and cross mode at the same time. The following
set of constraints is an equivalent way to capture the physical
restrictions.

1) U-turns are not allowed in couplers.
2) No waveguide can be used by two different paths.
3) A single path cannot use a waveguide twice
Now, graphs are a natural framework to tackle this problem.

Recently, new developments [5] have shown an interesting graph
representation of couplers, enabling an abstraction of physi-
cal constraints that aids algorithm design. Graphs have been
extensively studied and a rich field of algorithms can now be
leveraged. Fig. 2(c) shows this graph representation.

Logically, a coupler could be modeled by 4 vertices where
light enters and exists. Doing so proves cumbersome because
this creates paths in the graph that are not physically possible
(such as back-coupling light from one input to the other input).
This simple model does not represent the underlying problem
well. As a consequence, the routing algorithm would need to
take care of this, adding additional complexity.

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 30,2023 at 12:32:55 UTC from IEEE Xplore. Restrictions apply.

KERCHOVE et al.: AUTOMATED ROUTER WITH OPTICAL RESOURCE ADAPTATION 5809

Instead, a directed graph is used. This type of graph has
directed edges, called arcs. Besides this, every vertex is separated
into an incoming vertex and an outgoing vertex, this immediately
disallows U-turns. See [5] for a more in-depth treatment. This
translation comes with drawbacks, as every waveguide and
coupler arm is now modeled by two arcs, each in one direction.
For every arc, there is a reverse arc that represents the same
waveguide or coupler arm, but going in the opposite direction. Of
the three earlier listed constraints, the second constraint, which
states that no waveguide can be used by two different paths is
thus not translated to “no arc can be used by two different paths”.
Instead, this becomes “no arc or its reverse arc can be used by
two different paths”. The third constraint is adapted similarly.
Notice that each node has either at most one incoming arc or
one outgoing arc.

Because of production imperfections, couplers differ in phys-
ical properties such as insertion loss and power consumption.
Waveguides have similar imperfections. To account for this, cou-
plers and waveguides are given a base weight connected to their
inherent physical properties. Since couplers and waveguides are
represented by arcs in a graph, every arc is given a base weight
corresponding to the characteristics of the physical structure it
represents. Weights are further explained in Section III-C.

The problem is now stated more rigorously as follows. Given
a weighted, directed graphG = (V,A) of vertices (or nodes) and
arcs, and a set of pairs of vertices, (s1, t1), . . . , (sn, tn) called
commodities, find a set S of paths {P1, . . . , Pn} = S, such that
Pi is a directed path from si to ti and that no arc is congested.

An arc a is congested in the following situations.
1) Two different paths use a
2) A path uses both a and its reverse arc
3) A path uses a and another path uses its reverse arc
If a path contains a congested arc, this path is said to have a

conflict or to be congested. This definition is slightly broader than
what one would normally consider congested in similar algo-
rithms, but a necessary adaptation nonetheless. If the congestion
definition was not extended with reverse arcs, there would be no
problem with one path using an arc and another path using the
reverse arc since these are distinct arcs. However, remember that
an arc and its reverse arc model the same physical waveguide,
thus violating the constraint that no waveguide can be used by
two different paths. A set of paths is a legal routing or a solution
to the problem instance if every source is connected to its target
by a conflict-free path. A problem instance is feasible if there
exists a solution.

The total weight of a solution S is equal to the sum of the
weights of the paths P in S. In turn, the weight of a path is the
sum of the weights ba of the arcs a in P .

Total weight of solution S =
∑

P∈S

∑

a∈P
ba.

Now, the problem is finding a solution where the total weight of
the solution is minimal, i.e., no other solution exists with a lower
total weight. Given two solutions, we call a solution better if it
has a lower total weight than the other solution. An example of a
problem instance and a legal routing is shown in Fig. 3. Here, on
the left of the figure, you can see 10 colored nodes and arrows,

Fig. 3. An example problem instance on the left and an optimal solution
regarding the total length of all paths on the right. There are ten colored nodes,
and of each color, there is a node with an outgoing and incoming colored arc.
These are the source and destination, respectively. The solution displays a path
for every commodity such that all physical constraints are respected.

with each color having one node with an outgoing arrow and one
with an incoming arrow. These represent the source and target
nodes respectively. The right figure displays a legal routing that
is optimal, in regard to the fact that every arc has a weight of 1.

III. THE ALGORITHM

We propose a negotiation-based algorithm, partially based
on Pathfinder [9] and additional improvements [10], [11], [12].
This is a logical choice, given the fact that modern routing
algorithms in electronic FPGA design tools are also based on
these principles [13]. Several modifications are incorporated,
some to take the physical constraints into account, and others
to improve performance. One example of such a modification
is the expanded definition of congestion, as mentioned in the
previous section.

A. Sequential Routing

A popular and straightforward way to tackle this problem
is with sequential routing [6]. This follows the principle that
one commodity is routed first along its shortest path. Then
the following commodity is routed but this path cannot use
the routing resources that are already used in the previous
commodity’s path. The path for the next commodity cannot use
the resources of the two paths that were routed before. This
continues until all commodities are routed, or until there does
not exist a path anymore between a source-target pair. When
there is a large number of commodities, the latter is quite likely.
This type of routing fails to account for the fact that certain
commodities could easily use an alternative path that does not
need crucial resources, whereas others cannot. As an example,
in Fig. 4, commodity A has as source As and as target At,
and commodity B has Bs and Bt. For this problem, the path
between the commodities can share nodes, but cannot share
edges. Neither commodity can have its shortest path, since that
would completely cut off the target of the other commodity, and
both commodities need to compromise.

If there are n commodities, then there are n! possible per-
mutations to route the commodities sequentially. Firstly, it is
infeasible to fully explore this search space even for n as small

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 30,2023 at 12:32:55 UTC from IEEE Xplore. Restrictions apply.

5810 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 18, SEPTEMBER 15, 2023

Fig. 4. The shortest path for commodity A is As −X − Y −At, indicated
by the arrows. However, this uses both edges (As,X) and (X,Y). There is now
no longer a path for commodity B possible. The situation is analogous when B
is routed by its shortest path. Instead, both need to take a longer path.

as 15. Secondly, as was just shown, there might not even be a
solution that is obtainable in this way.

This motivates us to use an iterative routing algorithm that
does not route sequentially, but simultaneously. The main idea
of iterative simultaneous routing is that, in every iteration, all
commodities are routed independently of each other. Instead of
being disallowed to use certain routing resources that others use,
it is possible to temporarily share them. To decide which routing
resources the paths use, the algorithm is guided by continu-
ously changing weights that represent the artificial cost to use
these resources. These weights cause shared routing resources
to become increasingly more expensive. This discourages the
usage of heavily sought-after routing resources by making them
prohibitively expensive, causing commodities to use a cheaper
detour. Commodities that do not have another option will still
use these expensive routing resources.

If sequential routing finds a solution, that solution is often
fairly good. This stems from the fact that everything is routed
through the shortest path that is still possible, which generally
leads to short solutions. As will be explained in Section III-E, our
algorithm sometimes switches between sequential and simulta-
neous routing, but the majority of the time it uses simultaneous
routing.

B. Aurora: An Automated Router With Optical
Resource Adaption

We now give an overview of our algorithm, accompanied by
the pseudo-code in Fig. 5. Basic variables are initialized on line 1
to 3 such as the number of solutions sol it has found so far and
the current best solution best. Besides this, the variable paths
stores the current path for each commodity, starting with having
no path for each commodity. At first, a round of preprocessing
is conducted which slightly modifies all weights. This is further
explained in Section III-D.

Given a graph G and a set coms of commodities containing
the source and target nodes of the commodities, the first round
of routing is conducted (line 8) with Dijkstra’s algorithm [14].
This routing is based on the weights of the arcs. After the initial
round of routing, every commodity has now a least-weighted
path, independent of the other commodities.

The main loop starts. Firstly, if there are congested arcs, the
congestion weight of these arcs is updated (line 10). This is
further specified in Section III-C and in general, depends on

Fig. 5. Pseudo-code for the Automated Router with Optical Resource Adap-
tation (Aurora).

how many paths use this arc and how many iterations this arc
has been congested so far. Now, if there are any congested paths,
the algorithm rips up these paths and reroutes them (line 12–
14), with the routing now based on the updated weights. On
line 15, our algorithm avoids repeating the same configurations
too many times, as explained in Section III-E. Thus, if deemed
necessary, a round of sequential routing is then conducted with
all commodities that have conflicts. This sequential routing is
based on the weights that the arcs have at that time, but after
every commodity, the weights are immediately updated, instead
of only being updated after all the conflicted commodities are
rerouted.

If a solution is found, it is recorded (line 18). This event is
called a convergence. Note that if another solution has already
been found, the choice of which solution is kept is made based
on the lowest total base weight. Now there are two possibilities,
either the algorithm immediately returns the solution and termi-
nates, or it continues to search for better solutions, i.e., solutions
with a lower base weight. For the latter, the algorithm is said to
be multi-convergent. If this is the case, the congestion term of
the congestion weight of the arcs is reset to 0 (line 22), and a
cost-based rip-up is initiated (line 23). For this, only the base
weights are considered. For every commodity, the base cost of
their path in the solution is compared to the cheapest (in terms
of base weights) possible path for this commodity. All paths
that are a certain percentage more expensive than their cheapest
possible path are artificially marked as congested so that they

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 30,2023 at 12:32:55 UTC from IEEE Xplore. Restrictions apply.

KERCHOVE et al.: AUTOMATED ROUTER WITH OPTICAL RESOURCE ADAPTATION 5811

are rerouted when the next iteration starts. See Section VIII-C
for an exact description. The congestion reset ensures that these
more expensive paths will try to take better routes than the route
they had in the last solution while a complete restart is avoided
in order to keep the good parts of the previous solution. This
continues until a certain number of iterations has passed or a
fixed number max_solutions of solutions are found (line 20).
When this happens, the algorithm either returns the best solution
it found or reports that it has failed to find a solution. This failure
is an indication that there might not be a solution at all, but not
a guarantee. In Section VIII-E, we study a good choice for this
maximum number of iterations.

C. Weights

A major difference from Pathfinder is the fact that we give
weights to the arcs, instead of the vertices. This enables us
to model more directly the intrinsic differences of waveguides
and couplers, such as insertion loss (IL), power consumption
(PC), and basic unit length (BUL). Every arc a has a base
weight ba which is a linear combination of these three proper-
ties, ba = c1 · ILa + c2 · BULa + c3 · PCa, where c1, c2, c3 are
scaling coefficients which can be chosen according to need. For
simplicity’s sake and without loss of generality, in this article,
we only focus on the basic unit length and assume that all arcs
have a BUL of exactly 1. Thus we put c2 = 1 and c1 = c3 = 0,
hence the base weight of every arc is 1. Since the base weight of
every arc is the same as its length, we minimize the total length
of the solution. The total length of a solution is the sum of the
lengths of the arcs in the paths of that solution. From here, when
we describe a solution as being longer than other solutions, we
mean that it has a higher total base weight compared to these
other solutions. Given solution a with a total length of 204 and
solution b with a total length of 200, solution a is said to be 2%
longer than solution b. In general, if la is the total length of a and
lb the total length of b, then la−lb

lb
calculates how much longer

solution a is than solution b. Negative numbers imply that a is
shorter instead.

The congestion weight wa of an arc a is now the following:

wa = (ba + εa + ha ·HI) · (pa + 1).

Here ba is the base weight. εa is either 0 or a small value ε,
depending on preprocessing, see Section III-D. ha keeps track
of the number of iterations that this arc was congested before,
whereas HI is a constant called history increase. Different
values for the history increase lead to varying performance
which we study in Section VIII-B. ha starts at 0 and increases
by one for each iteration this arc or its reverse arc is congested.
This makes the arc progressively more expensive and paths will
avoid arcs that are often congested. Instead, they will choose
detours.

For every path, pa is the number of other paths that used this
arc or its reverse arc in the previous iteration. The exact definition
of pa is motivated by the following observation. Firstly, when an
arc is heavily congested and used by many paths, it immediately
becomes more expensive, causing commodities to change their

path the next round. Besides this, it discourages other commodi-
ties to use this arc in the next round. We specifically add “+1”
in pa + 1 because otherwise, all unused arcs would cost 0. All
congested paths would always want to use unused arcs, causing
many commodities to completely change their path, irrelevant
of how much worse this new path is. Now pa is taken as the
number of other paths using this arc or reverse arc, noticeably
not counting the current path for which we are calculating the
weights. This follows similar reasoning. If we took all paths
into account, then a commodity would make its own path more
expensive as well. If there is any congestion on that path, it will
completely reroute and avoid the arcs that it uses in the previous
iteration, even though many of these might not be used by any
other path.

D. Preprocessing

Right now, the mesh architectures under investigation often
have many equal-cost least-weighted paths between two ver-
tices. The algorithm makes use of this property by calculating
all the least-weighted paths between a sink and its corresponding
target of a commodity. If two least-weighted paths between
two different source-target pairs use the same arc or reverse
arc, the cost of that arc is slightly increased by a value ε. If
a commodity has many least-weighted paths, it will prefer the
path that has no arcs shared with a least-weighted path of another
commodity.

E. Configuration Repetition Avoidance

The algorithm sometimes gets stuck, where one iteration it
suggests routingR1, the next iterationR2 and it keeps alternating
between these two. On one problem instance, a cycle of 4
configurations involving 3 different paths was found. Seemingly
this does not appear often, but enough to warrant a modification
that helps the algorithm avoid useless iterations consisting of
exploring the same sequence of configurations over and over
again. It is even vital to combat this issue, otherwise, on certain
problem instances, no solution is found at all. Various schemes
to resolve this issue have been tested, but the performance data
favors a basic rule in the end. After a fixed number of iterations,
one round of sequential routing is conducted in random order.
Schemes that try to detect when configuration repetition is
happening were outperformed both in time and solution quality
by this rule.

F. Cost-Based Rip-Up

Once a solution is found, the algorithm does not terminate.
Instead, it resets the congestion history term ha and looks at the
base weight of the paths. Paths that are R% more expensive than
their cheapest possible path are artificially marked as conflicted.
Now the algorithm restarts by immediately ripping up these
paths and the history increase is scaled as well by a factor v. This
continues until a maximum number of solutions, max_solutions,
is reached. We investigate the exact values for these parameters
in Section VIII-C.

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 30,2023 at 12:32:55 UTC from IEEE Xplore. Restrictions apply.

5812 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 18, SEPTEMBER 15, 2023

TABLE I
COMPLEXITY ANALYSIS

IV. COMPLEXITY

In this section, the complexity of the algorithm is studied.
This analysis comes with the caveat that a large part of the total
time complexity is hidden by constants and that the “difficulty”
of the problem instance has a large influence on the total time
needed. This is expected because this algorithm is a heuristic for
an NP-hard problem [15] which makes it generally hard to give
meaningful complexity analysis.

We characterize the complexity in two ways, firstly for general
graphs, and in terms of the number of edges |E|, vertices |V |,
and commodities |C|. And secondly, for the specific hexagonal
tiling that we use, which is in terms of the radius r and the
number of commodities |C|. Our implementation of Dijkstra’s
algorithm has a time complexity of O(|E|+ |V | log |V |). Now,
in the graph we use, for every node, the sum of the indegree and
outdegree is at most 3, and |E| ≤ 3|V |, thus this time complexity
simplifies to O(|V | log |V |). The number of nodes is a multiple
of the number of hexagons which, in turn, scales quadratically
with the radius r. This gives us a complexity O(r2 log r) for
Dijkstra’s algorithm, which is part of the main loop. Dijkstra’s
algorithm is called at most once1 for every commodity in the
main loop. This happens only for commodities that have a
conflict. Hence, the complexity becomes O(|C|r2 log r). As
discussed in Section VIII-E, the maximum number of iterations
of the main loop is a multiple of the number of commodities and
thus a total complexity of O(|C|2r2 log r). See Table I for the
description in terms of |E| and |V |.

V. INTEGER PROGRAM FOR AN OPTIMAL SOLUTION

We describe the integer program that we utilize to obtain an
optimal solution. This integer program is strongly dependent
on the graph representation that is used. As mentioned before,
every arc a has an opposite arc, aop. Now we introduce variables
xca ∈ B for every commodity c and every arc a, indicating that
the path for this commodity uses this arc. A commodity c has
a vertex cs and cd denoting the source and destination of that
commodity. The set of all commodities is denoted by C and the
set of all arcs by A. We use the set of all vertices V and let V ∗(c)
be the set of all vertices, without the source and destination of c,
thus V ∗(c) := V \ {cs, cd}. Let δ−(v) be the set of all incoming
arcs of a vertex v, and δ+(v) be the set of all outgoing arcs. The
integer program now becomes the following:

Minimize
∑

c∈C

∑

a∈A
baxca.

1Technically twice, because it can be called again in the sequential routing,
however, this only happens a fixed number of times. This does not change the
time complexity analysis.

Subject to
∑

a∈δ−(n)
xca =

∑

a∈δ+(n)

xca, ∀c ∈ C,

∀n ∈ V ∗(c),
∑

c∈C
xca + xcaop ≤ 1, ∀a ∈ A.

The objective function is as stated before, to minimize the total
base weight of the used arcs. The first constraint is Kirchhoff’s
law which makes sure that in every vertex, if a path enters the
vertex, it also leaves the vertex, except in the case that this is
the source or destination vertex for this commodity. The second
constraint states that for every arc, at most one commodity can
use this arc or its reverse arc.

For every commodity c, the following 4 constraints are also
added. This ensures that there is a path starting in the source cs
and going to the destination cd.

∑

a∈δ−(cs)
xca = 0,

∑

a∈δ+(cs)

xca = 1,

∑

a∈δ+(cd)

xca = 0,

∑

a∈δ−(cd)
xca = 1. (1)

Note that this fully captures the definition of congestion,
proposed in Section II. This integer program completely rep-
resents the problem, but largely because of the underlying graph
representation. To give an example of this dependence, we do
not need to specify that a path cannot pass through the source
of another commodity. This follows from the fact that a source
node is always chosen to have exactly one outgoing arc, and thus
that arc has to be used for the path of that commodity.

VI. TEST SETS

We use multiple test sets to benchmark our algorithm. One
test set consists of multiple related problem instances with the
same radius r, which is first explained. A mesh of radius r
has 1 + 3r(r + 1) hexagonal cells. One single hexagonal cell
is considered a mesh of radius r = 0. In Fig. 3, a mesh of radius
r = 1 can be seen. Most test sets are on a mesh of radius r = 8,
which consists of 217 hexagons. This radius is chosen because
it is the largest on which optimal solutions can still be found
systematically. For every problem instance in a test set, it is
exactly known if it is feasible or not. If it is feasible, the optimal
solution is also known. This is realized by the integer program
described in Section V.

Now, every test set is based on a radius r and a list of
commodity candidates (s1, t1), . . . , (sn, tn). The first problem
instance,P1, consists of routing the first commodity (s1, t1) on a
mesh of radius r. The second problem instance,P2, is routing the
first and second commodity (s1, t1), (s2, t2). Now at a certain
index m, it is possible to route commodity 1 through m, but

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 30,2023 at 12:32:55 UTC from IEEE Xplore. Restrictions apply.

KERCHOVE et al.: AUTOMATED ROUTER WITH OPTICAL RESOURCE ADAPTATION 5813

routing commodity 1 through m+ 1 is infeasible. Remember,
this infeasibility is shown by an integer program and thus proven
infeasibility. Then, commodity m+ 1 is not included in the next
problem instance, and the next commodity is added instead.
If this is feasible, problem instance Pm+1 becomes routing
(s1, t1), . . . , (sm, tm), (sm+2, tm+2). If this is again infeasible,
the process repeats itself and the next commodity is tried. This
gives a chain of related problem instances, where each problem
instance is more difficult than the previous one. Another advan-
tage is that the problem instances are ‘randomly’ generated. In
a solution of the last problem instance of a test set, the mesh is
often quite full, with little space for more commodities. We say
that the mesh is densely used then. As a consequence of this way
of generating problem instances, the number of commodities can
differ between problem instances, and having more commodities
does not necessarily mean that a problem instance is more
difficult. Nor that it is more densely used. Instead, there might be
a couple of commodities where the source and target are located
close to each other. This is often easier to route than when the
commodities are always located far away from each other and
many paths cross each other. The list of commodity candidates is
generated with the sources and destinations randomly distributed
through the mesh, but an emphasis is put on populating the outer
layers of the mesh, simulating the functionality of the mesh as
a switch box.

VII. COMPARISON OF AURORA TO SEQUENTIAL ROUTING AND

AN OPTIMAL SOLUTION

Here, we look at the performance of the algorithm, Aurora,
with optimized parameter values. To avoid the fact that the
parameters are overfitted to the problem instances that are used
to obtain the parameters, there are two sets of test sets. One on
which the optimized parameter values are obtained, and another,
larger one. All plots here are created from the performance of
Aurora on the second set of test sets, thus ensuring that the
parameters are not specifically adapted to the exact test sets that
were used to obtain the parameter values. The optimizer and the
exact parameter values are described and studied in the section
after this one, Section VIII.

We compare Aurora to a sequential routing algorithm, as
described in [6]. To improve the results of this algorithm, instead
of only trying one order, 50 random orders are tried, and the best
result is kept. As shown in Fig. 6, sequential routing fails on some
smaller instances and on almost all medium and larger instances.
This is not unsurprising as explained in Section III-A. Depending
on the exact location of commodities, it might not be possible
that a solution can be found, and the possible number of different
orders to try grows very quickly. However, this does not make it
impossible, but rather unlikely. For example, sequential routing
finds a solution at 21 and 22 commodities a couple of times.
This explains the fluctuations in the number of unsolved feasible
instances. In comparison, Aurora manages to solve 100% of
the feasible problem instances, thus outperforming sequential
routing by a wide margin when considering the number of solved
instances. If we only look at the subset of problem instances that
sequential routing can solve, its performance is similar to Aurora

Fig. 6. Percentage of unsolved feasible instances of sequential routing over
all test sets with radius r = 8 by the number of commodities.

Fig. 7. A comparison of sequential routing versus Aurora on all instances
for which sequential routing found a solution. They perform similarly for a
small number of commodities, but this degrades quickly with a rising number
of commodities.

on smaller instances. On the few larger instances that it manages
to solve, it has around 2–5% longer path results than Aurora,
see Fig. 7. In Fig. 8, the time needed for Aurora and sequential
routing is compared on the instances where sequential routing
finds a solution. Towards the higher number of commodities, this
happens only on a few instances. Aurora is much faster on the
entire range. Sequential routing only finds solutions on “easier”
problems with few commodities for the size of the mesh, hence
Aurora quickly finds solutions here as well.

Looking at the general performance of Aurora in Fig. 9, on
average, it stays well within 2% of the optimal length. Even at the
ninety-fifth percentile, the solutions are at most 4% longer than
optimal. The time needed for Aurora in comparison to an integer
program can be seen in Fig. 10 where Google OR-tools [16] is
used as the solver. Here we can see that Aurora scales signif-
icantly better, unsurprisingly given the exponential nature of a
solver for integer programs. We can see that it is several orders
of magnitude faster, which only becomes more apparent with

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 30,2023 at 12:32:55 UTC from IEEE Xplore. Restrictions apply.

5814 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 18, SEPTEMBER 15, 2023

Fig. 8. Average time needed of Aurora and sequential routing on all feasible
problem instances where sequential routing finds a solution. Sequential routing
barely finds solutions towards the higher number of commodities, hence the
jagged line towards the end.

Fig. 9. Performance of Aurora with parameter values according to differen-
tial evolution, see Section VIII. History increase: 0.053, ε: 0.335, maximum
convergence: 6, rip-up: 17.5%, history reduction: -0.27 (Lower is better.).

Fig. 10. Time comparison of an integer program and Aurora on 3 test sets.
Other test sets paint a similar picture. We have plotted single test sets because
of the large variation in the time needed between test sets.

Fig. 11. Number of commodities versus the time needed on a mesh of radius
r = 13.

larger mesh radii and more commodities. For radius r = 8, the
integer program solver often needs multiple hours to days to find
all solutions to the problem instances of one test set. For higher
radii, this is increased by another order of magnitude. Lastly, we
look at the time needed on a mesh of a larger radius as can be
seen in Fig. 11. The radius here is r = 13 and the mesh contains
546 hexagons. Besides a spike at 43 commodities, the algorithm
quickly finds a solution to all 48 problem instances in less than
50 seconds.

VIII. PARAMETER TUNING

A. Performance Metrics

In this section, we study more extensively the effect of pa-
rameter values and elaborate on how we optimize the parameter
values. In this article, we limit our scope to meshes that are based
on hexagons. However, this limitation is not used anywhere
in the algorithm. The mesh’s exact topology might impact the
optimal parameter values, but then these values can again be
found by the parameter tuning in this chapter. We do not expect
the effect of parameters such as history increase and restart to
change drastically.

The quality of a specific parameter setting is measured by 3
key factors. These are listed in order of importance.

1) Number of feasible problem instances solved
2) Percentage longer than the optimal length
3) Time
To explore the parameter space smartly, we use differential

evolution as described in [17]. Differential evolution spreads
agents in the parameter space, and each agent represents a
specific choice for every parameter. These agents then explore
the space by choosing to either keep their own values or change
to a linear combination of the parameter values of other agents.
Differential evolution was chosen for its simplicity in design and
the convincing performance as mentioned in [17]. We use the
recommended hyperparameter settings but limited the number of
agents to 10 and the number of differential evolution iterations to

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 30,2023 at 12:32:55 UTC from IEEE Xplore. Restrictions apply.

KERCHOVE et al.: AUTOMATED ROUTER WITH OPTICAL RESOURCE ADAPTATION 5815

8. This is a low number of agents and iterations and is chosen to
reduce computation time. Besides this, as seen in various plots,
there is a degree of randomness in the result for each parameter
value. There is little reason to try to find if the optimal value for
a parameter is 0.338 or 0.339 since this is more depending on
the exact problem instances we use to run differential evolution
on. We are more interested in general trends and good parameter
ranges, which we study here. The overall data used for the plots
that follow are taken from the data gathered during differential
evolution.

There are several parameters we study. These are history
increase (Section III-C), history vary (Section III-F), ε (Sec-
tion III-D), rip-up percentage and the maximum number of
convergences (Section III-F). Given a value for these, Aurora
runs on test sets each comprising several problem instances. We
then get the results produced by this version of the algorithm on
one test set and the fitness is calculated. This fitness is computed
with the following fitness function f : if u is the number of
unsolved feasible problem instances, lopt the sum of the optimal
lengths of all the problem instances in one test set, and lsol the
sum of the solution lengths in that test set:

f(u, lopt, lsol) = 10 · u+ 100 · lsol − lopt

lopt
.

Note that for this fitness function, lower is better, with fitness of
0 meaning optimal. This convention is chosen to agree with
the literature on differential evolution. This fitness function
largely focuses on solving all instances, and then afterward on
finding solutions close to optimal. We investigate the effect of
the parameters on the runtime, but it is not one of the objectives
we explicitly minimize for.

B. General Trends for History Increase

We extensively compare different parameter choices and their
effect on performance. Firstly, we look at the effect of history
increase. For history increase, we studied values ranging from
0.01 to 1. This coincides with being 1% to 100% of the base
weight of an arc. A couple of general trends are clear. Too small
of a value often leads to the algorithm not finding a solution as
seen in Fig. 12. It runs out of iterations since too little happens
with each iteration. For most values of history increase, there
are some unsolved feasible instances, indicating that a single
value for history increase might not be preferable. Fig. 13 is a
plot of how much longer the solution is than the optimal value
in function of history increase. An abundantly clear trend can
be seen, a higher history increase leads to longer and thus worse
solutions.

Secondly, we look at the effect of history increase on time.
Different test sets have a varying number of problem instances
and a different number of commodities for each problem in-
stance. Thus to have an insightful comparison, it is necessary to
normalize the time of each test set. Given a test set T , a specific
choice of parameter values psp and the set of all parameter values
P , the normalized time for the parameter choice psp on T is:

normalized time(T, psp) =
time(T, psp)

minp∈P time(T, p)
. (2)

Fig. 12. Number of unsolved feasible instances, one dot represents a result
on a test set, and every test set contains between 25 and 35 problem instances.
(More unsolved instances is worse.).

Fig. 13. Percentage longer than the optimal length versus history increase,
every dot represents one run of the algorithm for a fixed parameter choice on a
fixed test set. (Longer is worse.).

The normalized time expresses how much longer this parameter
choice needed in comparison to the shortest time needed for this
test set. For example, a value of 2 indicates that this parameter
choice needs twice as long as the fastest parameter choice on
the same test set.

When plotting the normalized time versus history increase as
seen in Fig. 14, it is striking that small values have high running
times. This agrees with the earlier observation that too small of
a value for history increase leads to either not finding solutions
or only finding them after many iterations. This leads to high
runtimes. Then a less clear trend emerges, where the fastest time
seems to occur for values of history increase going from 0.17 to
0.47. Values outside this range seem undesirable timing-wise.

If we look at both solution quality and time, we can see that
there is a trade-off. Small values (0.02-0.10) for history increase
give high-quality solutions but at the cost of high runtimes. Vice
versa, higher values (0.10-0.47) result in faster solutions and a
loss of solution quality.

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 30,2023 at 12:32:55 UTC from IEEE Xplore. Restrictions apply.

5816 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 18, SEPTEMBER 15, 2023

Fig. 14. Normalized time versus history increase, different markers indicate
different test sets. Time is normalized per test set, see (2).

Fig. 15. Performance of single-convergence with parameter values according
to differential evolution. History increase: 0.053, ε: 0.335. Note that, whereas
this is similar to Fig. 9, their multi-convergence performance is shown.

Now, we use the tuned parameter value of history increase
from differential evolution and plot the total performance on all
test sets that have optimal solutions. This is the performance of
single-convergence. A solution is found for all of the approx-
imately 450 different feasible problems. The resulting perfor-
mance is plotted in Fig. 15. Above 30 commodities, there aren’t
many test sets where an optimal solution can be found within
reasonable time, hence the narrowing 5 to 95 percentile band.
A solid performance is shown, with an average performance
that stays below 3%. Looking at the time needed to get these
solutions, our algorithm scales a lot better than the exponential
scaling of the integer linear program, as shown in Fig. 16.

C. Effects of Cost-Based Rip-Up

We now look towards multi-convergence. After one solution
is found, the algorithm does not terminate. Instead, it rips up
certain paths and resets all congestion. Two parameters are an
obvious choice to tune for this restart: at which percentage R%
does the algorithm rip up and how many timesn does it look for a
solution? We calln the maximum convergence number. Looking
at the previous section, we want to tune the history increase HI

Fig. 16. Time comparison of an integer linear program solver to a single
convergence of Aurora on different test sets. Similar to Fig. 10, but towards the
higher number of commodities, the time needed is even lower by an order of
magnitude.

Fig. 17. A downward trend can be seen between rip-up value and fitness with
12% to 18% giving good values. (Lower fitness is better.).

and introduce a fourth parameter. It seems logical to slightly
scale the history increase by a value v after each solution.

The effect of multi-convergence is now the following: after
one solution is found, the algorithm restarts by ripping up all
paths that are R% longer than their shortest path in the mesh.
It changes the history increase HI to v ·HI and does this until
n solutions are found. The first time HI is used, after the first
solution v ·HI , after the second solution v2 ·HI , etc.

Firstly, we look at the rip-up value. The idea of ripping some
parts up, but not all, is that the previous solution contains good
parts and bad parts. The good parts consist of paths that are
optimal or close to optimal, whereas the bad parts can still be
improved. As seen in Figs. 17 and 18, choosing a rip-up value
that is too low both causes worse fitness and greater time usage.
A value of around 15% gives the most consistent performance.

Restarting has a clear effect on performance, and also the
number of times matters. As seen in Fig. 19. Restarting only
once already improves fitness on average by 33%. Restarting

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 30,2023 at 12:32:55 UTC from IEEE Xplore. Restrictions apply.

KERCHOVE et al.: AUTOMATED ROUTER WITH OPTICAL RESOURCE ADAPTATION 5817

Fig. 18. Rip-up value versus normalized time. No clear trend emerges here,
but a value of 0%, which means ripping up everything, seems to be undesirable.
Time is normalized per test set, see (2).

Fig. 19. Effect of the number of restarts on fitness. Restarting more is better
but with diminishing returns.

more keeps improving fitness but with diminishing returns.
Differential evolution ended with a maximum convergence value
of 6, thus for the allotted number of iterations, there is no
meaningful value in restarting more than 6 times.

D. Preprocessing Effects

Preprocessing changes the initial weights by a small value ε,
see Section III-D. This stimulates paths to not use the short-
est paths that share edges with the shortest paths of other
commodities.

The effect of preprocessing seems to be less outspoken,
however, whereas only a fourth of all runs are on a test set
without preprocessing, it does account for a third of all situations
where not all feasible instances were solved. Besides this, there
are noticeably more unsolved instances when not using prepro-
cessing. As depicted in Table II, using preprocessing reduces
the chance of not finding a solution by around 25%. Not using

TABLE II
NUMBER OF TEST SETS WHERE AT LEAST ONE FEASIBLE PROBLEM INSTANCE

REMAINS UNSOLVED

Fig. 20. All test sets and the number of unsolved problem instances mapped
out by value for ε. The left box is all test sets where no preprocessing was done,
a noticeably higher number of instances remains unsolved.

preprocessing not only increases the chance of not finding a
solution to a problem instance in a test set, but it also increases
the number of problem instances it did not find a solution for in
a single test set, see Fig. 20.

E. Number of Iterations

The maximum number of iterations is an important parameter
to tune. With the current fitness function, a higher value for the
number of iterations is always better. More iterations can only
improve the number of feasible instances solved and the quality
of solutions. Because of this, a second goal is put forward that
the maximum number of iterations should strive for. This should
be an estimation by which the algorithm should have found a
solution. If it does not find a solution by then, the algorithm
concludes that no solution exists. This estimation will depend on
the number of commodities. Fig. 21 plots the maximum number
of iterations the algorithm needs over all problem instances by
the number of commodities. Here, at most, 65 iterations are
needed per commodity. This peak of 1618 iterations is reached
for one problem instance with 25 commodities. This motivates
the following rule: if there are n commodities and Aurora has
not found a solution after 80 · n iterations, it halts. This rule
should provide a high enough safety margin to find a solution
while being proactive in deciding when there is no solution. If
Aurora finds a solution, then the maximum number of iterations
is increased by 50%, giving it plenty of time to improve its results
through multi-convergence.

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 30,2023 at 12:32:55 UTC from IEEE Xplore. Restrictions apply.

5818 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 18, SEPTEMBER 15, 2023

Fig. 21. The maximum number of iterations that is needed to find a solution
by number of commodities over all problem instances.

IX. CONCLUSION

We have demonstrated a high-performance routing algorithm
specifically adapted to the unique topology of photonic in-
tegrated circuits. Aurora produces close-to-optimal results in
reasonable time and does this so consistently over a wide variety
of different problem instances. On average, the results are within
2% of the optimal solution and it finds these several orders of
magnitude faster than an integer linear program solver. Starting
from hexagonal meshes with radius r = 8, the runtime of these
solvers easily goes up to hours. On higher radii, it is infeasible to
expect results in reasonable time on normal hardware, whereas
Aurora still produces good solutions within seconds to minutes.
The effect of the different parameter choices was studied and
more interesting values were highlighted. We implemented an
optimizer to attain good parameter values and validated the
obtained parameter values on a wide variety of test sets.

There are still some aspects where future work can be done.
Right now, the algorithm only terminates once it reaches the
maximum number of iterations. However, by analyzing the
progress of the algorithm, for example, in terms of available
routing resources and current iteration, it might be possible to
detect early if there is no feasible solution. This could greatly
reduce runtime on unroutable problem instances.

Couplers also have a coupling mode, meaning that they can
split the light over both waveguides. This allows for single-
source multi-target commodities. The proposed algorithm is
designed to be fairly easily adaptable to accommodate this
problem, but further research would be required to devise a
strategy to properly implement this.

REFERENCES

[1] D. Pérez, I. Gasulla, and J. Capmany, “Programmable multifunctional
integrated nanophotonics,” Nanophotonics, vol. 7, no. 8, pp. 1351–1371,
2018.

[2] W. Bogaerts and A. Rahim, “Programmable photonics: An opportunity for
an accessible large-volume PIC ecosystem,” IEEE J. Sel. Topics Quantum
Electron., vol. 26, no. 5, Sep./Oct. 2020, Art. no. 8302517.

[3] N. Harris et al., “Linear programmable nanophotonic processors,” Optica,
vol. 5, no. 12, pp. 1623–1631, 2018.

[4] D. P. López, “Programmable integrated silicon photonics waveguide
meshes: Optimized designs and control algorithms,” IEEE J. Sel. Topics
Quantum Electron., vol. 26, no. 2, Mar./Apr. 2020, Art. no. 8301312.

[5] X. Chen, P. Stroobant, M. Pickavet, and W. Bogaerts, “Graph represen-
tations for programmable photonic circuits,” J. Lightw. Technol., vol. 38,
no. 15, pp. 4009–4018, Aug. 2020.

[6] A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Auto-routing
algorithm for field-programmable photonic gate arrays,” Opt. Exp., vol. 28,
no. 1, pp. 737–752, 2020.

[7] X. Chen and W. Bogaerts, “A graph-based design and programming
strategy for reconfigurable photonic circuits,” in Proc. IEEE Photon. Soc.
Summer Top. Meeting Ser., 2019, pp. 1–2.

[8] F. V. Kerchove, X. Chen, D. Colle, W. Bogaerts, and M. Pickavet,
“Adapting routing algorithms to programmable photonic circuits,” in
Proc. Eur. Conf. Opt. Commun., 2022, Paper We5.19. [Online]. Available:
https://opg.optica.org/abstract.cfm?URI=ECEOC-2022-We5.19

[9] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based
performance-driven router for FPGAs,” in Proc. 3rd Int. ACM Symp.
Field-Programmable Gate Arrays, 1995, pp. 111–117.

[10] Y.-J. Chang, Y.-T. Lee, and T.-C. Wang, “NTHU-route 2.0: A fast and
stable global router,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des.,
2008, pp. 338–343.

[11] K. E. Murray, S. Zhong, and V. Betz, “AIR: A fast but lazy timing-driven
FPGA router,” in Proc. IEEE 25th Asia South Pacific Des. Automat. Conf.,
2020, pp. 338–344.

[12] M. Pan and C. Chu, “FastRoute 2.0: A high-quality and efficient
global router,” in Proc. Asia South Pacific Des. Automat. Conf., 2007,
pp. 250–255.

[13] K. E. Murray et al., “VTR 8: High-performance CAD and customizable
FPGA architecture modelling,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 13, no. 2, pp. 1–55, 2020.

[14] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[15] T. Eilam-Tzoreff, “The disjoint shortest paths problem,” Discrete Appl.
Math., vol. 85, no. 2, pp. 113–138, 1998. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0166218X97001212

[16] L. Perron and V. Furnon, “Or-tools,” Google, Aug. 11, 2022. [Online].
Available: https://developers.google.com/optimization/support/cite

[17] M. E. H. Pedersen, “Tuning & simplifying heuristical optimization,”
Ph.D. dissertation, Univ. Southempton, School of Engineering Sciences,
Southampton, U.K., 2010.

Ferre Vanden Kerchove received the M.Sc. degree in mathematics from Ghent
University, Ghent, Belgium, in 2021. He is currently working toward the Ph.D.
degree in computer science with IDLab, Ghent University - imec, Leuven,
Belgium. His research interests include algorithms, graph theory, logic, and
computability.

Xiangfeng Chen (Student Member, IEEE) received the M.Sc. degree from the
Center for Optical Materials Science and Engineering Technologies, COMSET,
Clemson University, Clemson, SC, USA, in 2018 by carrying out research on
array waveguide gratings for III-V on silicon nitride hybrid integration. He is
currently working toward the Ph.D. degree with the Photonic Research Group,
Ghent University - IMEC, Ghent, Belgium. His research interests include large-
scale programmable photonic circuits at both circuit and component levels. He
enjoys the interdisciplinary nature of photonic engineering.

Didier Colle (Member, IEEE) received the M.Sc. degree and Ph.D. degree
in electrotechnical engineering from Ghent University, Belgium, in 1997 and
2002 respectively. Since 2022, he has been a Senior Full Professor with Ghent
University. He has been an Associate Professor since 2011 and a Full Professor
since 2014 with the same university. He is co-responsible for the research
cluster on network modeling, design, and evaluation (NetMoDeL) inside the
IMEC IDlab research group. This research cluster deals with fixed internet
architectures and optical networks, green ICT, the design of network algorithms,
and techno-economic studies. His has authored or coauthored in more than 500
international journal and conference articles and has resulted in more than 20
Ph.D. degrees in his research field, which include inside international (mainly
European), national, and bilateral research projects together with the industry.

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 30,2023 at 12:32:55 UTC from IEEE Xplore. Restrictions apply.

https://opg.optica.org/abstract.cfm{?}URI=ECEOC-2022-We5.19
https://linkinghub.elsevier.com/retrieve/pii/S0166218X97001212
https://linkinghub.elsevier.com/retrieve/pii/S0166218X97001212
https://developers.google.com/optimization/support/cite

KERCHOVE et al.: AUTOMATED ROUTER WITH OPTICAL RESOURCE ADAPTATION 5819

Wouter Tavernier received the B.S. and M.S. degrees in computer science
from Ghent University, Ghent, Belgium, in 2002, and the Ph.D. degree from
Ghent University, in 2012, on reliable routing and switching. He joined the
Internet-Based Communications Networks Group (which became part of IDLab
in October 2016) of Ghent University in 2006 as a Researcher on Carrier
Ethernet. He is currently a Professor with Ghent University, where he teaches
courses on computer networks. He has authored or coauthored in more than 100
scientific publications in his research field, which include performance and re-
source optimization aspects of network function virtualization and deterministic
networking. This work is performed in the context of European projects such as
H2020 5G-CHAMPION, NGPAAS, SONATA-NFV, and 5G TANGO.

Wim Bogaerts (Fellow, IEEE) received the Ph.D. degree in the modeling, de-
sign, and fabrication of silicon nanophotonic components from Ghent University,
Ghent, Belgium, in 2004. During this work, he started the first silicon photonics
process on imec’s 200 mm pilot line, which formed the basis of the multi-project-
wafer service ePIXfab. In 2014, he co-founded the spin-off company Luceda
Photonics to further develop unique software solutions for silicon photonics
design, using the IPKISS design framework. Since 2016, he has been again
a full-time Professor with Ghent University, looking into novel topologies for
large-scale programmable photonic circuits, supported by a consolidator grant
from the European Research Council (ERC). His research interests include
the challenges for large-scale silicon photonics: Design methodologies and
controllability of complex photonic circuits, telecommunications, information
technology, and applied sciences. He is a Senior Member of Optica and SPIE.

Mario Pickavet (Senior Member, IEEE) received the M.Sc. and Ph.D. degrees
in electrical engineering from Ghent University, Ghent, Belgium, in 1996 and
1999, respectively. Since 2000, he has been a Professor with Ghent University,
where he is teaching courses on discrete mathematics and network modeling. He
is co-leading the research cluster on network modeling, design, and evaluation
(NetMoDeL). He has authored or coauthored about 500 international publica-
tions, both in journals and proceedings of conferences. He is coauthor of the
book Network Recovery: Protection and Restoration of Optical, SONET-SDH,
IP, and MPLS. His main research interests include fixed internet architectures
and optical networks, green ICT, and the design of network algorithms. In this
context, he is currently involved in several European and national projects. He is
Holder of a Bronze Medal at the International Mathematical Olympiad (Sweden,
1991).

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on August 30,2023 at 12:32:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

