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Experimental results on nonlinear 
distortion compensation using 
photonic reservoir computing 
with a single set of weights 
for different wavelengths
Emmanuel Gooskens 1,2*, Stijn Sackesyn 1,2, Joni Dambre 3 & Peter Bienstman 1,2

Photonics-based computing approaches in combination with wavelength division multiplexing 
offer a potential solution to modern data and bandwidth needs. This paper experimentally takes 
an important step towards wavelength division multiplexing in an integrated waveguide-based 
photonic reservoir computing platform by using a single set of readout weights for up to at least 3 
ITU-T channels to efficiently scale the data bandwidth when processing a nonlinear signal equalization 
task on a 28 Gbps modulated on-off keying signal. Using multiple-wavelength training, we obtain bit 
error rates well below that of the 1.5× 10

−2 forward error correction limit at high fiber input powers 
of 18 dBm, which result in high nonlinear distortion. The results of the reservoir chip are compared 
to a tapped delay line filter and clearly show that the system performs nonlinear equalization. This 
was achieved using only limited post processing which in future work can be implemented in optical 
hardware as well.

The need for ever higher data bandwidths in all aspects of the current digital society (video streaming, cloud ser-
vices,...) requires ever improved data processing in terms of data bandwidth and energy  consumption1. Between 
2018 and 2022, global data bandwidth nearly tripled with an increase of 28% in 2022 alone, reaching an esti-
mated total by the end of 2022 just shy of 1  Pbps2. Traditional electronics-based systems are reaching physical 
limits due to transistor size limitations and charging of electrical  lines3. Photonics-based hardware approaches 
offer a number of advantages, in particular high data bandwidth. This is especially so when enhanced through 
wavelength division multiplexing (WDM), which makes them attractive alternatives. There are many potential 
photonics-based hardware implementations for data processing, such as those focusing on matrix multiplication 
which is of interest for convolutional processing and deep learning  applications4–6. In this work however, we 
are concerned with reservoir computing  systems7–9. Reservoir computing refers to using a randomly initialised 
dynamical system, called the reservoir, which processes the information. This system is left untrained, but a 
simple linear readout layer is added to it. Only this linear readout is trained, leading to a simple training scheme. 
This, combined with flexibility and insensitivity to manufacturing errors, makes reservoir computing well suited 
for a photonic-based hardware implementation. Examples of such photonic reservoir computing (PRC) systems 
are approaches consisting of a single non-linear node with feedback and free-space reservoir  systems10–28. This 
work however focuses on a spatially extended implementation with multiple nodes, fabricated in silicon pho-
tonics. Compared to free-space or fiber-based approaches, this benefits system compactness and stability.  In29,30 
such integrated PRC chips were shown to be able to perform arbitrary boolean logic operations with memory, 
header recognition and signal equalization.

This work will also target the above-mentioned signal equalization task, which aims to eliminate the (nonlin-
ear) distortion of an optical signal after propagation through an optical link. One of the fundamental problems 
at the high bandwidths that are being targeted in this work, is the Kerr effect in optical fibers. Especially at high 
powers, it can be responsible for multiple nonlinear optical effects, like self-phase modulation (SPM)31. Signal 
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equalization is currently typically handled by electronic Digital Signal Processing (DSP) chips, but these strug-
gle at ever increasing data bandwidths. The capability of PRC to eliminate nonlinear distortion through fast 
in-hardware photonic processing was already demonstrated  in30,32.  In33 it was shown using simulations how the 
wavelength dimension in waveguide-based photonic reservoir computing could be exploited in order to enhance 
the footprint-to-bandwidth ratio. Here, we extend that theoretical work by experimentally verifying its results 
using a chip, measurement setup and methods similar to those used  in29,30.

The remainder of this paper is structured as follows. First, a short overview is given on the photonic reser-
voir used. In the next section, the methods used for obtaining the necessary data and the processing thereof are 
discussed in detail. Then, we present and discuss the results obtained from the process, before concluding in a 
final section.

Photonic reservoir design
The design of this photonic reservoir is based on the four-port architecture, which is a power efficient evolution 
of the swirl  architecture34, by replacing all three-ports by four-ports30,35. The chip architecture causes interfer-
ence between the different light paths reaching each reservoir node. This can be mathematically modelled by 
representing the optical signals propagating through the reservoir by complex numbers, i.e. containing both 
amplitude and phase information. To fully describe the reservoir dynamics we performed optical circuit simula-
tions, using Photontorch as  in33. The node signals are then linearly combined with trained weights in order to 
solve a certain task. The node signals can be either converted by the quadratic photodetector nonlinearity before a 
linear combination (the so-called electrical readout), or after a linear combination using complex-valued weights 
(the so-called optical readout). The nodes are implemented as 3 × 3 multimode interferometers (MMIs), which 
distribute the optical power in their input ports equally over their output ports.

Two inputs and two outputs are used for inter-node connections with the remaining input and output serving 
as interfaces to and from the reservoir. The reservoir studied in this paper has 16 nodes in a 4 by 4 configuration 
as is shown in Fig.1. The chip is made on a silicon nitride platform (through Ligentec), and has a footprint of 
≈ 31 mm

2 . The interconnection length between nodes was ≈ 2.1 mm for the inner reservoir connections, ≈ 4.2 
mm for the long vertical outer connections and ≈ 6.3 mm for the long horizontal outer node connections. The 
interconnection loss was ≈ 0.47 dB/cm.

Measurement setup and post processing
The experimental setup is shown in Fig. 2. A single-mode fiber of 25 km with an attenuation of 0.2 dB/km at 1550 
nm was added between modulator and chip in order to provide signal distortion for the signal equalization task. 
The signal is amplified before being sent through the fiber in order to increase nonlinear distortion effects. By 
setting the fiber input power, we can specify the difficulty of the equalization task to be solved by our reservoir 
computer, as can be seen from the eye diagrams in Fig.  3.

This paper will study 3 standard ITU-T 50 GHz separated wavelengths namely [1552.122, 1552.524, 1552.926] 
nm. It is important to mention that the experiments do not use a true WDM signal, where all wavelengths are 
injected simultaneously into the fiber, but make use of wavelength sweeps over the WDM wavelengths. Although 
this neglects nonlinear crosstalk between the wavelengths, it is an important first step to show that the same 
weights can be still be used in a situation like this.

An amplifier before the chip is set in such a way that the optical power at the input of the reservoir is the 
same for all experiments. This minimises signal-to-noise variations for different fiber input powers, and ensures 
a fair comparison.

The experiments presented in this paper are all done using a so-called electrical readout strategy. This means 
that the nodes are optically probed and detected by a photodiode, one at a time. The entire input signal, modu-
lated using on-off keying at 28 Gbps, is repeated in time in order to accomplish this. The electrical time traces 
collected at each photodiode are saved on a computer and the linear combination of these traces is done in post-
processing on a computer. This is in contrast to a so-called optical readout strategy, where the optical signals are 
weighted and combined on-chip in the analogue optical domain, before being sent to a single photodiode. This 

Figure 1.  (a) Schematic four-port  architecture35. (b) Mask layout of integrated circuit.
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latter method is certainly feasible, but has a higher technological complexity, which brings more challenges. The 
optical readout is subject to ongoing experiments and out of the scope of this paper. Long-term however, such a 
strategy is the way to  go30. For such an optical readout strategy to work efficiently with WDM in the future, we 
now use only a single set of weights for all sequentially-measured wavelengths. Indeed, having a separate sets of 
weights for every wavelength would significantly increase chip footprint, electrical steering complexity and power 
consumption, thereby negating the aim of this work. Even though for the electrical readout strategy employed 
here, these problems are less present, we will still limit the readout to one set of weights for all wavelengths, in 
order to showcase the viability of the long term strategy. Obviously, having only a single set of weights means that 
only the same task can be executed for the different wavelengths. High chip losses, due to suboptimal design and 
fabrication of the MMIs, necessitate the use of another amplifier after the chip in order to amplify the signal to 
within the detection range of the photodetector. Finally, the signal is saved electronically and post-processed on 
a computer. Since we do not measure different channels at the same time, but rather sequentially, we temporally 
realign the channels by optimising the time offset for every node using a Gaussian optimisation  algorithm36, 
which minimizes the average bit error rate (BER) across the used wavelength channels for a validation dataset. 
The training of the weights consists of a ridge regression algorithm, as implemented by the sklearn Python library 
in which normalization is allowed, and makes use of a cross validation implementation. Indeed, the data for each 
wavelength is split into 10 folds, and in each iteration 9 folds serve as training data for the ridge regression and 1 
fold serves as test data. In this way, after 10 iterations, all 10 folds were used for testing. The average and standard 
deviation of the BERs over the 10 iterations are then used to display the results. (The use of ridge regression 
instead of the more complicated Adam gradient descent algorithm as  in33 was possible in case of the electrical 
readout only having real-valued weights, versus the complex-valued weights of an optical readout.) The labels 
used for training are the symbols in the digital on-off keying bit stream. The cross validation data set consisted of 
20 000 bits. For the optimization of the time offsets, a separate validation set consisting of 10 000 bits was used. 
Note that when eventually moving from electronic weights to non-volatile optical weights, these could have a 
much lower resolution. However, the effects of this limited weight resolution can be counteracted using specific 
training  algorithms37. During this postprocessing, three additional 1-bit delayed copies of the node signals are 
used in conjunction with the original measured node signal. This increases the number of effective outputs of the 
reservoir, and is similar to adding a feedforward equalizer in the electrical domain on top of the optical reservoir. 
In Fig. 4 it is shown how adding of these delayed copies favorably impacts performance. Although each delayed 

Figure 2.  Schematic illustration of the setup used in the  experiment30.

Figure 3.  Eye diagrams at the output of the fiber for different input powers. (a) 5 dbm (b) 10 dbm (c) 18 dbm.
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copy has its own readout weight, we still opted to make these weights independent on wavelength, to align closer 
to a future optical readout implementation.

Results
The main reason why reservoir performance normally goes down when varying the wavelength/frequency is 
the resulting variation in phase shifts in the waveguide interconnections. This leads to altered signal mixing for 
which the readout was not trained and the time offsets were not optimized, leading to an incorrect weighting 
and recombination of node outputs. However, taking into account more than one wavelength during training 
allows the readout to adapt to the phase dynamics associated with each wavelength but poses a greater challenge 
as a machine learning  task33 (Fig. 5).

Figure 6 shows how the performance over the wavelengths in the case of only one wavelength being trained 
and in the case of multiple wavelengths being trained to show the effect of multiple wavelength training. In the 
left figure, it is clear that the performance is only good for the wavelength that was trained (1552.524 nm). For 
the right figure on the other hand, all wavelengths shown were incorporated in the training set, and this clearly 
results in better performance over the entire wavelength range. Again, we want to stress that we use the same 
weights for all the wavelengths in this case.

The results in Fig. 6 were for a low fiber input power of 5 dBm, where we do not expect significant nonlinear-
ity. We will now investigate the performance for higher input powers like 10 and 18 dBm. In Fig. 7, it is shown 
that the system can still perform well for at least up to 3 standard 50 GHz spaced ITU-T wavelengths at these 
higher levels of difficulty. (There is no reason to assume 3 channels is the limit, and measuring more wavelength 
channels is a goal of future work.) For all 3 wavelength channels, the BER stays well below 1.5× 10

−2 , which is 
the forward error correction (FEC) limit of the P1-PTX-2-100G-WDM optical transport  system38. This system 
is suitable as a reference, because it has strong dense WDM capabilities in the C-band and is therefore the type 
of interface that could be paired with this PRC system. Still, for the most difficult case at 18 dBm, the BER starts 
to degrade, and it becomes harder for the single set of readout weights to equalise all wavelengths equally.

Finally, we will compare the performance of our system with an electrical tapped delay line (TDL) filter. The 
PRC system used 16 nodes with three additional 1-bit delayed copies of the node signals, which translates to 64 
readout weights. In order to have a fair comparison, we will also use 64 taps for the TDL. Just as  in30, the reservoir 
outperforms such a TDL in the case of significant nonlinear distortion, i.e. when the input power is 18 dBm Fig. 8 
(left). This is the case for all wavelengths processed by a single set of weights. Even the worst performing wave-
length has a BER well below that of a TDL filter optimised for only one wavelength. Note that the TDL’s inferior 
performance stems from its inability to equalize the nonlinear distortion (in the reservoir, the combination of 
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Figure 4.  Average BER over the cross validation iterations as a function of number of delayed copies. Error 
bars indicate the standard deviation of the BER over the cross validation iterations. The fiber input power was 18 
dBm and all 3 ITU-T wavelengths were included in training.

Figure 5.  When training for multiple wavelengths good performance is expected at those wavelengths, and a 
limited wavelength range centered around  these33.
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interference and a photodiode creates a quadratic nonlinearity). It is also largely independent of the number of 
taps used, as can be seen in Fig. 8 (right).

Conclusion
We have experimentally taken a first important step towards WDM in an integrated waveguide-based photonic 
reservoir computing platform using only limited post processing i.e. a digitally implemented readout and the 
generating of delayed copies of measured node signals. When using the FEC limit of 1.5× 10

−2 as a benchmark, 
the single-readout system was shown to work well up to at least 3 standard ITU-T wavelengths for 28 Gbps 
(nonlinear) signal equalization tasks. The reservoir outperforms a simple tapped delay line filter for higher levels 
of signal distortion. This confirms the capacity of the system to tackle nonlinear tasks. By reaffirming experimen-
tally that the nonlinear problem solving capability of the system remains intact and that performance does not 
degrade to unacceptable levels when utilizing a single set of readout weights, integrated waveguide-based pho-
tonic reservoir computing platforms are shown to be a potential solution to modern data bandwidth challenges.
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Figure 6.  Average BER, with error bars indicating standard deviation over the cross validation iterations for 
single-wavelength training (left) versus multiple-wavelength training (right) at 5 dBm fiber input power. In the 
top case the wavelength for which time offsets were optimized and readout weights were trained was 1552.524 
nm, whereas in the bottom case, all wavelengths were taken into account.
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Figure 7.  Average BER, with error bars indicating standard deviation over the cross validation iterations for 
multiple wavelength training. All wavelengths displayed were taken into account for time offset optimization 
and readout weight training. Fiber input powers were 5 dBm, 10 dBm and 18 dBm. The horizontal red line 
illustrates the relevant FEC limit.
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Data availability
Data underlying the results presented in this paper are available from the corresponding author (emmanuel.
gooskens@ugent.be) upon reasonable request.
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