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Abstract: Spiking Neural Networks, also known as third generation Artificial Neural Networks,
have widely attracted more attention because of their advantages of behaving more biologically
interpretable and being more suitable for hardware implementation. Apart from using traditional
synaptic plasticity, neural networks can also be based on threshold plasticity, achieving similar
functionality. This can be implemented using e.g. the Bienenstock, Cooper and Munro rule. This
is a classical unsupervised learning mechanism in which the threshold is closely related to the
output of the post-synaptic neuron. We show in simulations that the threshold characteristics
of the nonlinear effects of a microring resonator integrated with Ge2Sb2Te5 demonstrate some
complex dependencies on the intracavity refractive index, attenuation, and wavelength detuning
of the incident optical pulse, and exhibit class II excitability. We also show that we are able to
modify the threshold power of the microring resonator by the changes of the refractive index and
loss of Ge2Sb2Te5, due to transitions between the crystalline and amorphous states. Simulations
show that the presented device exhibits both excitatory and inhibitory learning behavior, either
lowering or raising the threshold.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Artificial neural networks (ANNs) have revolutionized the field of information technology,
leading to the development of more optimized and autonomous artificial intelligence systems
[1]. However, ANNs require a large amount of power to run on classic Von Neumann machines,
even when using optimized hardware such as graphical processing units (GPUs) [2]. To address
this issue, spiking neural networks (SNNs) were developed. They behave in a biologically more
interpretable way and are more suitable for hardware implementation. These networks perform
computations asynchronously, i.e. without an external clock. SNNs can run on neuromorphic
processors, which allow for analog-like asynchronous communication. Several commercial
solutions are now available, including Intel Loihi [3], IBM’s TrueNorth [4], and SpiNNaker [5].
SNNs are orders of magnitude more energy-efficient than their non-spiking counterparts, which
require constant energy consumption even when communication or computation is unnecessary.

At present, the learning mechanism of on-chip SNNs are mostly based on Spike-Timing-
Dependent Plasticity (STDP) [6]. Various photonic synapses have demonstrated STDP behavior
by changing the transmission levels of Phase Change Materials (PCMs) [7–10], which feature
multiple stable phases of matter that have distinct optical properties. Changing the state of
the PCM from amorphous to crystalline varies the waveguide’s effective refractive index and
modulates the absorption [11]. The most commonly used PCM is the archetypal alloy Ge2Sb2Te5
[12–15].

Alternatively, SNNs can be based threshold plasticity rather than on synaptic plasticity. E.g.,
the Bienenstock, Cooper and Munro (BCM) rule is a classical unsupervised learning mechanism
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that was developed based on the dynamic threshold phenomenon observed in biological vision
systems [16]. Researchers have found that the threshold of neurons in these systems can change in
response to environmental changes, allowing for better adaptation. In the BCM rule, the threshold
is closely related to the output of the postsynaptic neuron [17]. G. Tesauro demonstrated that
neural networks using threshold plasticity, rather than synaptic plasticity, can achieve the same
functionality [18].

At present, a threshold plasticity learning mechanism based on BCM rules has been used in
neural networks for phoneme recognition [19], 3D object recognition [20] and face recognition
[21]. However, the neural networks of these reports are only based on simulations rather than
physical implementations. In recent years, due to the unique device structure and memory
characteristics of memristors, some feasible methods to implement sliding threshold have been
proposed. SrTiO3-based second-order memristors [22], memristive synapse model based on
the HP memristor [23], WO3−x memristive synapse [24] have been shown to achieve sliding
threshold plasticity mechanism based on BCM rules. The realization of the threshold plasticity
learning mechanism in the on-chip optical neural network is only based on our previous scheme
using hybrid Si-VO2 microring resonators [25]. However, due to the volatility of VO2 [26,27], it
does not offer any advantages in terms of power consumption.

In this paper, to address this issue, we use the non-volatility of the phase change material GST
and its different refractive index and attenuation in different states [14,15,28] to realize an on-chip
threshold plasticity learning mechanism. We numerically simulate the threshold plasticity of
the nonlinear effects of a SOI microring integrated with GST. We design the all-pass microring
resonator covered with GST and investigate the characteristics of its nonlinear phase plane and
threshold plasticity, which can be tailored by the refractive index, attenuation and wavelength
detuning of signal optical pulse. When we change the power of the optical signal pulse, the
microring undergoes a subcritical Andronov-Hopf bifurcation. As a consequence, the system
shows class II excitability. Therefore, the threshold power of the microring resonator is changed
by the refractive index and loss of GST during the state change, and the device can be employed
to implement excitatory and inhibitory learning mechanisms.

2. SOI-GST microring resonator

The excitable microring is mainly based on the combined effects of free carrier absorption (FCA),
free carrier dispersion (FCD) and the thermo-optical (TO) effect. Moreover, the Coupled Mode
Theory (CMT) model allows to incorporate the contributions of all the relevant physical effects
in a very intuitive and accurate way [29]. Therefore, the CMT model is chosen to simulate these
physical effects in the excitable microring. An all-pass microring resonator loaded with the phase
change material GST was designed on the SOI platform as shown in Fig. 1. The resonator had a
radius of 50 µm, the silicon waveguide height is of 220 nm, and the gap between the microring
and the bus waveguide is of 600 nm. GST was deposited on the microring with a thickness of
10 nm and a length of 100 nm, and an ITO cap with a thickness of 10 nm was deposited to avoid
oxidation.

In a previous study [30], the Coupled Mode Theory (CMT) model was used to analyze the
propagation of transverse electric (TE) mode incident pulses in an add-drop microring resonator
loaded with GST. However, for an all-pass microring loaded with GST, which consists of a single
ring coupled with only one bus waveguide, the CMT equation is simplified as follows:
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Fig. 1. SOI-GST Microring resonator. Inset: cross-section and zoom-in of the GST cell.

where u is the temporal evolution of the intracavity field, N is the free-carrier density, and ∆T is
the temperature change in the GST-loaded microring resonator.

Compared to a GST-loaded add-drop microring resonator, the main difference in an all-pass
microring resonator is that there is less coupling loss due to the presence of only one bus
waveguide. Therefore, the total loss γloss_hy of the GST-loaded all-pass microring is:

γloss_hy = γcoup + γrad + γabs_hy

γabs_hy = γabs,lin + γabs,FCA + γabs,TPA
. (2)

Other parameters and expressions in Eq. (1) are consistent with those given in Ref. [30].
A finite-difference time-domain (FDTD) simulation was employed to calculate the electric

field distribution E in the GST [12]. The evanescent-field coupling and power (heat) transfer
between the guided light and the GST were investigated by calculating the unit power absorption
(Pabs) [31,32].

Figure 2 shows the calculated Pabs in amorphous and crystalline GST for a 1 mW input power
using transverse magnetic (TM) and transverse electric (TE) modes as input, as the width of the
GST-cell varies from 440 nm to 640 nm. The waveguide supports one TE-like and one TM-like
mode in this range at a wavelength of 1550 nm. Pabs is obtained by integrating the power loss
density over the area of the GST-cell. As crystalline GST has a larger complex refractive index in
the C band, and the overlapping area between the GST-cell and light field is larger with a TM
mode input optical pulse, it is observed that for the same state of GST, the power absorption of
the TM mode is larger than that of the TE mode. For each particular mode, the power absorption
of crystalline GST is larger than that of amorphous. The maximum optical power absorbed
by the GST-cell occurs when the waveguide width is about 600 nm, as shown in Fig. 2. A
waveguide width of 600 nm was chosen to obtain larger power absorption. For the rest of the
paper, the TM mode was chosen over the TE mode due to its larger Pabs in the GST and larger
amplitude coupling coefficients in the microring resonator, resulting in a lower threshold and
power consumption.
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Fig. 2. Calculated results of the unit power absorption Pabs for the TM (black circle) and TE
(green triangule) mode, for an amorphous (dotted line) and crystalline (solid line) GST-cell,
as the waveguide width varies from 440 nm to 640 nm. Inset: zoomed-in region of the black
circle, showing the unit power absorption Pabs at the center of the amorphous and crystalline
GST using the TM mode input optical pulse.

3. Nonlinear phase-plane and threshold characteristics

A SOI microring resonator can show Class II excitability [29,33], for which the shape of the
input perturbation (stimulus) does not need to be precisely controlled. Indeed, as long as the
input perturbation is sufficiently strong, the shape of the ring’s excitation is hardly affected by the
shape of the input pulse. Therefore, only a Continuous Wave (CW) input was considered in the
bifurcation analysis for Class II excitability.

Setting the derivatives to zero in Eq. (1) results in the steady state equations:[︃
(δωnl_hy + ωr_hy − ω)

2 −
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The Fixed Points (FP) u, ∆T and N of the system can be solved using Eq. (3). The stability of
the steady state solutions can be analyzed by evaluating the eigenvalues of the Jacobian of the
system equations. Between u, ∆T and N of the system, the rate of change of u is much faster than
that of ∆T and N. Therefore, the system state rapidly jumps to the zero-growth curve of du/dt= 0
with the input perturbation. For this purpose, we project the (u, ∆T, N) -time-traces for a given
input power and wavelength onto the (∆T, N)-plane. Thus, the projection of zero-growth curves
of d(N, u)/dt= 0 and d(∆T, u)/dt= 0 on the (∆T, N) phase-plane can be considered to analyze
the dynamic characteristics of the system. When solving d(N, u)/dt= 0, the second equation of
Eq. (1) was used to parameterize N as a function of u. This was substituted into the first equation
of Eq. (3) and solved for ∆T as a quadratic equation. By scanning the value of ∆T, the projection
of d(N, u)/dt= 0 on the (∆T, N) phase-plane can be obtained. For the solution of d(∆T, u)/dt= 0,
a parameterization of ∆T and N as a function of u was used [25,29].
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The d(N, u)/dt= 0 and d(∆T, u)/dt= 0 nullclines were calculated for a wavelength shift of -20
pm in the am-GST-loaded microring. Here, the Runge-Kutta method is used directly to calculate
Eq. (1). The optical input power is 0.8 mW for Fig. 3 and 1.5 mW for Fig. 4. The optical energy
|u|2, the concentration of free carriers N and the mode-averaged temperature difference with the
surroundings ∆T change with time were shown in Fig. 3(b) and Fig. 4(b). The impulse response
is measured by the maximum temperature change ∆Tmax caused by Pin. The threshold is defined
as the optical pulse power Pth at which d∆Tmax/dPin reaches its maximum value, i.e., when the
change in ∆Tmax is at its maximum.

Fig. 3. (a) (∆T, N) plane and (b) dynamic response of microring resonator when ∆λ=-20
pm and Pin = 0.8 mW (below threshold).

Fig. 4. (a) (∆T, N) plane and (b) dynamic response of microring resonator when ∆λ=-20
pm and Pin = 1.5 mW (above threshold).

The threshold characteristics of a microring loaded with GST are obvious from Figs. 3 (below
threshold) and 4 (above threshold). Indeed, it is shown in Fig. 3 that the system only has one
stable fixed point (FP), and the optical pulse power does not reach the threshold. There is no
impulse response output in the microring, and ∆T and N are almost unchanged. The microring
capped with am-GST is in the sub-threshold state.

On the other hand, in Fig. 4 the microring produces an impulse output response, and the
maximum value of ∆T exhibits a jump. This is primarily due to the fact that the rate of change of
N is much faster than that of ∆T. The time traces often relax towards the d(N, u)/dt= 0 nullcline
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and eventually return to a stable FP through oscillation. As a result of the microring undergoing
a Saddle-Node bifurcation (SN), the stable and unstable Limit Cycle (LC) annihilate in a fold
LC bifurcation. However, due to its proximity to the fold LC bifurcation, the system can exhibit
excitability under external stimulation in this regime.

When the incident light pulse power is further increased to Pin= 2.3 mW, a stable LC coexists
with a stable FP centered in this LC, as shown in Fig. 5. This indicates a subcritical Andronov-
Hopf bifurcation. We prove explicitly with time-traces that the LC encloses a stable FP in the (∆T,
N) phase-plane. Depending on the initial conditions, the time-trace will converge to the stable
LC (black curve (∆T, N) (t= 0)= (1.1 K, 4e16 cm−3)) or to the stable FP (magenta curve (∆T, N)
(t= 0)= (1.4 K, 4e16 cm−3)). The pulse trajectories in the phase plane in Fig. 5(b) also clearly
illustrate it. Therefore, when Pin is set close to a subcritical Andronov-Hopf bifurcation, similar
to the excitability reported in Ref. [34], the microring system can exhibit Class II excitability
[35].

Fig. 5. (a) (∆T, N) plane and (b) dynamic response of microring resonator at Pin= 2.3 mW,
the initial conditions of black curve and magenta curve correspond to (∆T, N) (t= 0)= (1.1 K,
4e16 cm−3) and (∆T, N) (t= 0)= (1.4 K, 4e16 cm−3) respectively.

With the increase of the input optical power perturbation, self-pulsation occurs. In Fig. 6, we
calculate the (∆T, N) plane and dynamic response when the input optical power perturbation Pin
is 3 mW. At this point, the microring resonator is in the self-pulsation regime. The system has a
stable limit cycle, and it exhibits self-pulsation behavior in this interval.

Finally, Fig. 7 (a) shows the dependence of the threshold of microring resonators coated
with GST on the crystallization fraction. The results demonstrate that, when the detuning of
the incident light pulse remains constant, the threshold of the microring increases as the GST
crystallization fraction increases, which can be attributed to the higher loss of higher crystalline
fraction.

However, according to the third expression of Eq. (1), an increase in cavity loss results in an
increase in temperature change, which in turn leads to a decrease in the negative value of δωnl_hy
. According to Eq. (4), this can be considered equivalent to a blue shift in the signal optical
wavelength.

δωnl_hy = −
ω

ng_mix

(︃
dnsi

dT
∆T +

dnsi

dN
N
)︃

. (4)

The threshold of microring covered with GST is related to the wavelength λ as well, as also
shown in Fig. 7(a). In principle, the threshold power Pth increases as ∆λ (λ detuned from resonant
wavelength λr) increases.
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Fig. 6. (a) (∆T, N) plane and (b) dynamic response of microring resonator when ∆λ=-20
pm and Pin = 3 mW (above threshold).

Fig. 7. (a)Threshold of optical spiking ring changes with the crystallized fraction of
am-GST-loaded microring. (b) The resonance wavelength shifts between the microring
integrated with am-GST and cry-GST. The inset clearly shows an enlarged view of the
transmission characteristics to show the wavelength shift.

Given the microring resonator parameters, if the input optical pulse is detuned towards the blue,
typically a subcritical Andronov-Hopf bifurcation that can achieve Class II excitability appears.
However, if the input optical pulse is detuned towards the red, a supercritical Andronov-Hopf
bifurcation appears [33,36]. Therefore, for the realization of the threshold plasticity learning
mechanism, it is required to always maintain ∆λ<0. Note that there is a wavelength shift of 21.7
pm between the resonance wavelength of microring integrated with am-GST and cry-GST, as
shown in Fig. 7 (b). Therefore, we choose ∆λ= -20pm, so that the system has ∆λ < 0 in any state
of GST to achieve subcritical Andronov-Hopf bifurcation.

4. Learning behavior

As we have seen in the previous section, when the power of the optical signal pulse reaches
the threshold of the microring, the resulting temperature change is considerably greater than
when the microring does not respond, causing a significant change in the loss of the Si-GST
waveguide. As we will show now, this effect can be used to increase or decrease the threshold of
the microring, depending on the initial crystallization state. This process can be applied to a
threshold plasticity learning mechanism.
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4.1. Inhibitory learning behavior

To show inhibitory learning (increased threshold), we start from a microring with GST in the
amorphous phase. We inject a series of square light pulses with varying power levels, detuned by
∆λ=-20 pm, and having a pulse width of 100 ns. Figure 8 (a) top shows the injected pulses, and
(a) bottom shows the output of the microring. At first, an injected pulse with a power of 1.1 mW
can elicit a response from the microring, as can be seen by the short drop in output. However,
after injecting a high-power signal optical pulse of 50 mW, partial crystallization of GST results
in an increase in intracavity loss and consequently an increase in threshold. Concurrently, partial
crystallization of GST causes a decrease in the red shift ∆λ (negative value) of the resonant
wavelength of the microring resonator cavity, resulting in an increased threshold. At this point,
an injected optical pulse with a power of 1.1 mW is no longer capable of eliciting a response
from the microring. Injecting a signal optical pulse with higher power can further increase the
threshold of this microring.

Fig. 8. (a) Injection perturbation signal and the response of spiking ring induced by injection
perturbation; The crystallization fraction and temperature change of the GST cell when the
optical pulse is (b) 50 mW and (c) 25 mW.

To simulate the process of high-power optical pulses inducing phase transitions of am-GST, we
use the Johnson-Mehl-Avrami Kohnogorov (JMAK) model [37]. Figure 8(b) shows the simulated
changes in the average temperature and crystallization fraction of the GST deposited on the
microring caused by a 50 mW optical pulse. The temperature distribution of the GST at the end of
the signal pulse is shown in the inset of Fig. 8(b), which illustrates that the maximum temperature
difference of GST is less than 10% at this time. Hence, we use the average temperature of GST
to calculate its crystallization fraction, and thus obtain the changes in the refractive index and
loss of the Si-GST hybrid waveguide. Figure 8(c) shows the changes in the average temperature
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and crystallization fraction of GST induced by a following optical pulse of 25 mW for further
crystallization over time.

4.2. Excitatory learning behavior

On the other hand, to show excitatory behavior, we start from GST in the crystalline state instead.
The width of pulses is also 100 ns. Figure 9(a) top shows the optical injected signal, and (a)
bottom shows the output of the microring. Initially, an injected light pulse with a power of 1.7 mW
cannot make the microring produce a response. However, after an 8 mW optical pulse is injected,
the loss in the cavity increases and the threshold decreases due to the partial amorphization of
GST. At the same time, the blue shift ∆λ (negative value) of the resonant wavelength of the
microring is increased due to the partial amorphous GST, which also leads to a decrease of the
threshold. At this time, an incident optical pulse with the same power as before (1.7 mW) can
make the microring produce an output. At this point in time, the threshold of the microring
resonator is higher than 1.6 mW, as injecting such a pulse does not elicit any response. However,
the threshold of the microring can be further reduced by injecting a 9 mW optical pulse, so that
1.6 mW injection signal pulse can new also make the microring produce a response.

Fig. 9. (a) Injection perturbation signal and the response of spiking ring induced by injection
perturbation; The crystal fraction of the GST cell when the optical pulse is (b) 8 mW and (c)
9 mW.

In the process of GST transitioning from a crystalline to an amorphous state, high-power light
pulses first heat GST to above the melting temperature (∼890 K) [31], causing the chemical bonds
in the crystalline GST material to break, and then undergo a rapid cooling quenching process,
so that the atoms in the molten state do not have time to rearrange into bonds, thus forming a
short-range ordered but long-range disordered amorphous state. Therefore, we use the volume
ratio of the region that is heated above the melting temperature and quickly cooled to amorphize
as the percentage of amorphization, as shown in the inset of Fig. 9(b), to obtain the change in
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GST’s crystallization fraction over time, and thus obtain the changes in the refractive index and
loss of the Si-GST hybrid waveguide.

5. Conclusion

We conducted numerical simulations to investigate the threshold plasticity of nonlinear all-pass
microrings integrated with GST. We discussed its phase plane and threshold characteristics.
The results demonstrated that the threshold characteristics of the microring resonator depend
on the refractive index, attenuation, and wavelength detuning of the input signal. When the
power of the optical pulse is adjusted precisely, the microring shows subcritical Andronov-Hopf
bifurcation dynamics, resulting in class II excitability. Consequently, the threshold power of the
microring resonator can be modified by changing the refractive index and loss of GST during
state transitions. The threshold plasticities of this kind of microring exhibit both excitatory and
inhibitory learning behavior, providing a feasible path towards emulating BCM learning rules in
photonic SNNs.
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