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Summary. We will present two different incarnations of silicon photonics for information 

processing. The first one is a network of ring resonators with patches of phase change 

materials, which experimentally shows synaptic plasticity. The second one is a recurrent 

quantum neural network that is trained to perform a quantum version of optical channel 

equalisation. We present simulations of a silicon quantum photonics network, and will 

supplement this with experimental results on the Xanadu Borealis fibre setup. 

Self-adapting ring networks 
 

Synaptic plasticity, i.e. the ability of synaptic connections to strengthen or weaken depending on their 

input, is a fundamental component of learning and memory in biological neural networks [1]. This 

property allows the network parameters to directly adapt to the input signal, thus without being 

externally tuned by a training algorithm. In contrast with this paradigm, the most popular and 

successful artificial neural network (ANN) models are nowadays based on backpropagation, which 

usually requires full observability of the network states and precise parameter tuning. In practice, these 

requirements strongly limit the scalability of neuromorphic hardware and backpropagation is not 

considered biologically plausible [2]. 

 

We present a novel all-optical recurrent ANN which can adapt to its input via synaptic plasticity. The 

platform is integrated silicon photonics and plasticity is obtained through deposition of phase change 

material (namely GST [3]). We experimentally demonstrate the network employment as a plastic 

reservoir for reservoir computing (RC), where the performance on a time series classification task is 

enhanced by letting the photonic network adapt to suitable input waveforms. Our network consists of 

several coupled silicon ring resonators (RRs). One every three RRs is partially covered with GST and 

is used as plastic node with all-optical non-volatile memory [4]. Moreover, the RRs without GST are 

employed as nonlinear neurons with multi-scale volatile memory, arising from the silicon nonlinear 

effects in the ring waveguide [5,6].  

 

In our experiment, we tackled the classification of 5 time series types, inserted as optical waveforms in 

our RR network (Fig. 1(a)). The reservoir network generated several different nonlinear 

representations of the input waveform, thus expanding the input dimensionality. Each output 

waveform was integrated over time, allowing to employ slow electronics. The obtained waveform 

energies were fed into the reservoir readout (linear classifier trained by logistic regression). The 

classification performance was repeatedly evaluated via 6-fold cross-validation (Fig. 1(b)). Between 

each evaluation, we performed a plastic adaptation step, consisting of the repeated insertion of a 

modified version of an input waveform class (a different class for each step). Each modified waveform 

type could permanently change the configuration of the plastic weights (GST cells) in a different way. 

We show (Fig. 1(b)) that the plastic adaptation steps could significantly improve the classification 

performance, allowing to decrease the error from more than 40% to less than 10%. A similar trend was 

observed for other input wavelengths. 
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Figure. 1 (a) Outputs are detected and integrated over time, before being fed into a linear classifier. (b) 

Classification error rate after different plastic adaptation steps. 

 

Quantum recurrent neural networks 
  

We also have been investigating the reservoir computing paradigm in the context of online quantum 

time series processing. More specifically, this means looking at tasks where both the input and the 

output are quantum states. This is in contrast to most other work in the field of quantum reservoir 

computing, which considers tasks with a classical output. In the case of classical output, the reservoir 

observables are typically expectation values, and therefore the system needs to be run multiple times 

in order to estimate these expectation values. This results in a slow, unpractical experimental system 

that cannot perform online (i.e. real-time) processing of an incoming datastream. The task we have 

been studying is the quantum channel equalisation (QCE) task: given the output of a quantum channel 

with memory, which imposes correlations and entanglement on an input stream, train a system to undo 

these effects and generate an unentangled output stream. Fig. 2 visualises a setup that can be used to 

tackle the QCE task: a decoder is trained to undo the effects of a randomly chosen encoder. We will 

present experimental results on the Xanadu Borealis setup that illustrate this task.  

 

 
  

Figure 2: Setup to solve the QCE task. 
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