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Abstract—Programmable photonic integrated circuits (PPICs)
are an emerging technology recently proposed as an alternative to
custom-designed application-specific integrated photonics. Light
routing is one of the most important functions that need to
be realized on a PPIC. Previous literature has investigated
the light routing problem from an algorithmic or experimental
perspective, e.g., adopting graph theory to route an optical signal.
In this paper, we also focus on the light routing problem, but
from a complementary and theoretical perspective, to answer
questions about what is possible to be routed. Specifically, we
demonstrate that not all path lengths (defined as the number
of tunable basic units that an optical signal traverses) can be
realized on a square-mesh PPIC, and a rigorous realizability
condition is proposed and proved. We further consider multi-
path routing, where we provide an analytical expression on path
length sum, upper bounds on path length mean/variance, and the
maximum number of realizable paths. All of our conclusions are
proven mathematically. Illustrative potential optical applications
using our observations are also presented at the end.

Index Terms—Routing analysis, programmable photonic inte-
grated circuits

I. INTRODUCTION

OVER the past two decades, photonic integrated circuits
(PICs) have been demonstrated in a growing number of

applications and fields, such as data communications, quantum
computing, and optical beam-steering [1]–[6]. Usually, a PIC
is designed for one particular application, which is commonly
referred to as application-specific. For every new application,
engineers must design and fabricate a new photonic circuit
from scratch. Depending on the technology, this cycle can
take one year or more. Recently, programmable photonic inte-
grated circuits (PPICs) [7]–[19] have emerged as an alternative
paradigm, exploiting reconfigurability to avoid the redesign
workload. Specifically, a PPIC is made up of a mesh of so-
called tunable basic units (TBUs), and each TBU has two
actively controlled optical tuners (e.g., electro-optic phase
shifters). By tuning these individual actuators, the flow of light
in a PPIC can be reconfigured to realize various linear light
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processing functions, such as splitting, interfering, routing, and
filtering [8], [11], [12].

Depending on the connectivity of these TBUs, a PPIC
can be categorized into two types: feed-forward and loop-
back (recirculating) topologies [10], [15]. Some special feed-
forward topologies [20], [21] have been proven capable of
realizing any unitary transformations, and thus have become
popular as an acceleration engine to implement matrix-vector
multiplications for optical neural networks [2]. On the other
hand, loop-back topologies [11] have the ability to redirect
light in any direction in the circuit, and implement tunable
delay lines, interferometric filters, and ring resonators. They
are more versatile and can be useful in more optical applica-
tions compared to feed-forward topologies. The most common
configurations of a loop-back PPIC are a triangular, square, or
hexagonal mesh [8], [10], and these are also the main focus
in our paper.

One of the most important functions for a PPIC to realize
is light routing. Some earlier published papers [14], [22]
model a PPIC using a directed/undirected graph, and solve
the routing problem using existing graph algorithms. These
efforts are oriented towards answering the question of how
to route, while in our paper, we study (and answer) a series
of complementary questions related to what can be routed or
not. Our analysis is performed based on the metric of path
length, which is defined as the number of TBUs in the optical
path [22]. When an optical signal traverses through a PPIC,
its phase change and time delay is closely related to its path
length. Thus, investigating path length will provide us a good
understanding of the routing ability of PPICs and will be
instructive in many optical applications. As an example, if a
PPIC can route at most y (e.g., y = 5) optical signals such that
their path lengths are all equal, then this indicates that at most
y optical signals can go through this PPIC while maintaining
their relative phase differences. Such a conclusion is of crucial
interest in a phase sensitive optical application. An immediate
question is: What is the maximum value of y for a given PPIC?
Our paper focuses on answering such questions. All of our
findings will be supported by mathematical proofs. Finally, a
number of illustrative potential optical applications using our
observations are explored.

The paper is organized as follows. In Section II, we briefly
review the compact model of the TBU, formally make several
definitions (such as floating node and path length), and de-
scribe several axiomatic conclusions. Next, in Section III, we
present our major results about the routing ability of a general
square mesh, covering both the cases of single-path and multi-
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path routing. In Section IV, we present a few applications
inspired by our findings. Finally, we conclude our paper with
Section V. Our main text only focuses on square meshes;
analyses of triangular and hexagonal meshes are considered
in the Appendix.

II. PRELIMINARY

For this study, we focus on an N × M square mesh (see
the Appendix for other mesh topologies), made up of TBUs
arranged along the horizontal and vertical edges, as shown
in Fig. 1 (a)-(b). The TBU can be implemented in different
ways [10], but the most common implementation is based on
variants of a 2× 2 Mach–Zehnder interferometer (MZI) [10],
[11]. In this paper, we consider the same TBU implementation
as in [15]. An MZI has two inputs and two outputs, and their
values are related by a transfer matrix. Specifically, the two
output optical signals equal the product of the following 2×2
transfer matrix with the input optical signals:

F =
α

2

[
e−jθ − e−jϕ −je−jθ − je−jϕ

−je−jθ − je−jϕ −e−jθ + e−jϕ

]
e−jω

neffL
c (1)

where {θ, ϕ} are the active phase shifts of the TBU which
are tuned by electric signals, ω is the angular frequency of
the optical carrier wave, α represents the TBU loss, neff =
neff(ω) represents the effective index of the propagating mode
in the waveguides, c is the free space light speed, and L is
the length of the waveguide in the TBU. For a more in-depth
exploration of the transfer matrix and alternative forms, we
recommend [10], [18], [23], and [24].

There are two special cases of primary interest: (i) bar state:
θ = 0 and ϕ = π, and (ii) cross state: θ = ϕ = −0.5π. The
resulting F for these two cases are respectively shown below:

bar state: F =

[
1 0
0 −1

]
αe−jω

neffL
c

cross state: F =

[
0 1
1 0

]
αe−jω

neffL
c ,

(2)

For a horizontal TBU in the bar state, an optical signal going
in from the top left port will be guided to its top right port
(i.e., confined in the same arm). Alternatively, for that TBU in
the cross state, an optical signal going in from its top left port
will be guided to the bottom right port. When a square-mesh
PPIC is used merely to route light, all TBUs are either set to
cross state or bar state. Thus, following this convention, we
assume all TBUs are either in cross state or bar state in our
paper, and no partial coupling is allowed. Now, we formally
define the graph representation of a square-mesh PPIC, where
the ports of the TBUs are represented by nodes.

Definition 1. An N × M square-mesh PPIC can be repre-
sented by an undirected simple graph, with parallel/cross line
segments for bar/cross state, respectively, as demonstrated in
Fig. 1 (a) and (c).

We will respectively use N and M to represent the number
of rows and columns throughout our paper. We will use the
format TBUij−mn to refer to the TBU at the intersection
of square cell (i, j) and (m, n). To ease the mathematical

Fig. 1: (a) An undirected simple graph representation of an
N × M square-mesh PPIC when all TBUs are in bar state.
The green and orange dots represent floating and non-floating
nodes, respectively. (b) An example of a 2 × 2 square mesh
when all TBUs are in bar state. Purple and pink rectangles
represent horizontal and vertical TBUs, respectively. (c) The
optical path marked by the solid red line has length 4; path
segments not involved in this path are marked with dashed
lines. In this mesh configuration, the four TBUs in the path of
interest are in cross state, and the other TBUs are in bar state.

description later, we introduce two definitions, based on the
concepts of ‘node degree’ and ‘path’ in graph theory.

Definition 2. We define a floating node as a node with only one
edge connected to it (i.e., node degree equal to 1). Similarly,
a non-floating node refers to a node with at least two edges
connected to it (i.e., node degree no less than 2).

Definition 3. We define an undirected optical path as a path
both starting from and ending at a floating node. Path length
is defined as the number of edges (or equivalently, the number
of TBUs) that the path passes through.

Several things need to be clarified. First, in a square mesh,
a non-floating node can only have node degree equal to or
less than 2, but not larger than 2, because at most two edges
are connected to a node. Second, due to reciprocity of light
propagation in passive circuits, one undirected optical path
actually corresponds to two directed light paths. For instance,
in Fig. 1 (c), we will use (A,B,C,D,E) to denote the
undirected optical path marked by red of length 4, while that
path actually corresponds to two directed optical paths A →
B → C → D → E and E → D → C → B → A in potential
applications. Equivalently, (E,D,C,B,A) is another valid no-
tation for this undirected light path. However, (E,D,C,B,A)
with start at E and end at A, and (A,B,C,D,E) with start
at A and end at E, will be counted as one undirected light
path instead of two in our paper. Last, but not least, the
metric path length is closely related to the phase change of an
optical signal when it goes through a square mesh. Given an
optical path of length l, assume that a time-harmonic optical
signal with input complex magnitude b following this path
goes through the square mesh. Then, according to Eq. (2), the
output response is:

b · (−1)q · (αe−jω
neffL

c )l = b · αle−j(ω
nefflL

c +qπ) (3)
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Note that the (−1)q factor corresponds to the fact that a
TBU in bar state might introduce an additional 180◦ phase
shift, as shown in Eq. (2). Here q can be regarded as either
0 or 1, depending on the number of TBUs in bar state in
the path. Nevertheless, the qπ phase shift is trivial, as it can
be compensated if we append additional phase shifts at the
output of the square mesh. More importantly, what we focus
on are the remaining frequency-dependent term l(ωneffL/c)
which characterizes the phase response, and the term αl which
impacts the magnitude response. These expressions manifest
the rationale for basing our analysis on the path length l.
To facilitate discussion later in the paper, we introduce the
concept of a peripheral TBU and a circuit configuration:

Definition 4. (i) A peripheral TBU refers to a TBU possessing
floating nodes. A non-peripheral TBU is a TBU with all four
of its nodes non-floating. (ii) A circuit configuration denotes a
specific arrangement for setting the state of each TBU (either
cross state or bar state) for all TBUs in the entire mesh.

As shown in Fig. 1 (c), TBU10−11 is a peripheral TBU
placed vertically at the top left position. This example also
indicates that to apply our TBU naming format to a peripheral
TBU, we have to imagine a notional additional square cell
(e.g., cell (1, 0) in this case) at the outer left side. We note that
each circuit configuration uniquely corresponds to one binary
string. For example, an all-one string ‘11...11’ represents the
scenario where all TBUs in the PPIC are in cross states,
whereas an all-zero string ‘00...00’ signifies the situation
where all TBUs are in bar states. Fig. 2 shows four different
example circuit configurations for a 2× 1 square mesh. In the
following, we present several axioms in Theorem 1 to lay the
groundwork for later analysis.

Fig. 2: Four different example circuit configurations are shown
for a 2×1 square mesh. In each configuration, there are always
six undirected paths (marked in gray, black, pink, yellow,
purple, and red). These paths might share TBUs, but they do
not have conflicts.

Theorem 1. For an N × M square mesh, we have the
following conclusions:
(1) There are N(M + 1) +M(N + 1) TBUs in the circuit.
(2) The total number of circuit configurations is

2N(M+1)+M(N+1).
(3) The total numbers of floating and non-floating nodes are

(4N + 4M) and 4NM , respectively.
(4) For each specific circuit configuration, the total number

of undirected optical paths is (2N + 2M).
(5) An undirected optical path has two different floating

nodes, at the path start and end, respectively.

(6) An undirected optical path passes through a vertical and
a horizontal TBU in turns, abbreviated to ’· · ·VHVH· · · ’.

The above conclusions can be proved by straightforward
calculation. For (2), we note that each TBU has two state
choices (i.e., either cross or bar), and thus, the total number of
circuit configurations equals 2#TBU, where #TBU is provided
in (1), though some of them are identical under rotation or
flipping. To prove (4), we note that an undirected optical path
‘consumes’ two floating nodes, because it must start from
and end at a floating node (Definition 3), and that there are
(4N + 4M) floating nodes in total by (3). Most importantly,
we emphasize that the (2N + 2M) undirected optical paths
might share TBUs, but they do not have any conflicts. 1 See
Fig. 2 for a visual example on a 2× 1 mesh.

For a curious reader, we pose what may appear to be a
simple question: can a 2 × 3 square mesh implement a path
of length 3 or 7? After drawing and trying many possibilities
by hand, we find that a 2 × 3 square mesh can implement a
path of length 7, but not 3. Even more surprisingly, neither is
realizable in a 2×2 square mesh. To this end, our first question,
which will be answered in the next section, is: In an N ×M
square mesh, is path length x (x ∈ Z+) realizable by some
circuit configuration?

III. ROUTING ABILITY OF SQUARE MESH

A. Realizability of a Single Path

First, we attempt to bound the value of x by investigating the
minimum and maximum realizable path length in an N ×M
square. Obviously, the minimum path length equals 1. The
following Theorem 2 answers the maximum length question.

Theorem 2. Enumerating all possible circuit configurations,
the maximum path length that an N × M square mesh can
achieve equals (4NM + 1).

Proof. The proof is made up of two parts: (i) the maximum
path length cannot be larger than (4NM +1), and (ii) a path
of length (4NM+1) is indeed realizable in an N×M square
mesh. For (i), we prove by contradiction: Assume a path of
length x ≥ 4MN+2 is realizable. Then, the number of nodes
on this path is (x + 1), which is no less than (4MN + 3).
Since we only have 4NM non-floating nodes as depicted
in Theorem 1 (3), then this path must experience at least 3
floating nodes, which contradicts Theorem 1 (5).

Now, we prove (ii) by constructing a path of length (4NM+
1). In outline, we first show the construction in the case of a
2×2 square mesh in Fig. 3 (a). The key of the construction is
to make the optical path traverse all cells following (1, 1) →
(1, 2) → (2, 2) → (2, 1), and then reverse this trajectory going
back to (1, 1). We can generalize this construction to any N×
M square mesh. Roughly speaking, we make the optical path
traverse the first row from left to right (e.g., (1, 1) → (1, 2) →
· · · → (1,M)). Then by setting TBU1M−2M to cross state, we
direct the optical path down to the next row, cell (2,M). Next,

1Proving the absence of conflict is subtle. Formally, conflicting occurs when
two undirected paths use the same node. However, it is obvious that for a fixed
circuit configuration, one node can only correspond to one undirected optical
path.
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the optical path will follow (2,M) → (2,M − 1) → · · · →
(2, 1), and so on and so forth. With a proper setting of all
TBUs, the optical path will follow a zigzag path traversing to
the last cell in the N -th row, and then reversely go back to
(1, 1).

Formally, we provide the construction in a general N ×M
square mesh. We set one peripheral TBU, TBU10−11, all
non-peripheral vertical TBUs, and (N − 1) non-peripheral
horizontal TBUs,

{TBU1M−2M , TBU21−31, TBU3M−4M , · · ·
, TBU(N−1)M−NM or TBU(N−1)1−N1}︸ ︷︷ ︸

depends on if N is odd or even

to cross state, while all other TBUs are set to bar state. Then
an undirected optical path with start and end at the floating
nodes of TBU10−11 has length of (4NM + 1).

Theorem 2 implies that if x is not an integer in the range
[1, 4NM + 1], then it will not be realizable in an N × M
square mesh. Then is any integer path length in the range
[1, 4NM + 1] realizable? Unfortunately, the answer is no, as
the curious reader might have found for themselves in trying
to synthesize a path of length 3 or 7 in a 2×2 square mesh. We
will determine the realizability condition ultimately, but before
that, we need some further understandings on path length.

A square mesh PPIC has four sides: top, bottom, left, and
right. The start node of an undirected optical path must be
located on one of these sides, and the end node must also be
located on one side, which may be the same or different side
than for the start node. Now, consider an undirected optical
path with start point on the left side of a 2 × 2 mesh shown
in Fig. 3 (d). Based on where the end point is, there are three
types: (i) Type S: the gray path, where the end point is located
on the same side as the start point 2; (ii) Type A: the red path,
where the end point is located on the adjacent side (i.e., top
or bottom in this case) of the start point; and (iii) Type O: the
yellow path, where the end point is located on the opposite side
(i.e., the right side in this case) of the start point. We observe
that the path length possesses very different characteristics for
these three cases, as summarized in the following Theorem 3.

Theorem 3. Consider an undirected optical path in an N×M
square mesh. Without loss of generality, we assume its start
point is located on the left side of the square mesh, and denote
its path length by l.
(1) Type S: If the path’s start and end nodes are located on

the same side, then l ≡ 1 (mod 4).
(2) Type A: If the path’s start and end nodes are located on

adjacent sides, then l ≡ 0 or 2 (mod 4).
(3) Type O: If the path’s start and end nodes are on opposite

sides, then l ≡ 3 (mod 4) if M is odd, and l ≡ 1
(mod 4) if M is even.

Here the modulo remainder notation l ≡ d (mod 4) means
that l has a remainder of d (d = 0, 1, 2, 3) when divided by 4.

Proof. Theorem 1 (6) states that any undirected optical path
can be expressed using the notation ‘· · · VHVH · · · ’, where

2To clarify, the end point and the start point can belong to different TBUs.
As long as they are on the same side, the path type is S.

Fig. 3: (a) Construction for maximum length (4MN+1) in an
N×M square mesh demonstrated in the case of M = N = 2.
(b) Based on (a), we change the top left peripheral horizontal
TBU01−11 to cross state, yielding a path of length 4MN .
(c) Based on (a), we change the second top right peripheral
vertical TBU2M−2(M+1) to cross state, yielding a path of
length (4MN + 1 − 2M). (d) We fix the start point of an
undirected optical path to the left side; based on the end point
location, there are three different path types.

‘V’ and ‘H’ stand for vertical and horizontal TBUs, respec-
tively, starting from the start node. We assume the start point
is located on the left side; thus, the first TBU seen by this
path must be a vertical one (see Fig. 1 (c)).

Now if a path belongs to type A, then the last TBU seen
by this path must be horizontal (see Fig. 1 (c)). Thus, in this
case, the path follows ‘VHVH· · ·H’, which implies that this
path must see 2d TBUs (i.e., d vertical and d horizontal) in
total. Namely, l is even. For later consistency, we write the
path length in this case as l ≡ 0 or 2 (mod 4).

If a path belongs to type S, then the last TBU seen by this
path must be vertical, which indicates that this path follows
‘VHVH· · ·V’. We denote the total number of ‘H’s on this path
by d. Then, the path length is l = 2d+1 since the number of
‘V’s is one larger than that of ‘H’s. Now, if we can prove d is
even, then we will attain the desired conclusion l ≡ 1 (mod 4)
for type S. Let us complete the proof by assuming there are d0
‘H’s corresponding to the path going in the forward direction
(from left to right). Then, since both the start and end points
are on the left side, there must be d0 ‘H’s corresponding to the
backward direction (from right to left) as well. Otherwise, the
end point cannot be on the left side. Thus, the total number
of ‘H’s d = 2d0, implying d is indeed even.

Now we deal with type O. The proof for this case is similar
to that for type S. If a path belongs to type S, then the last
TBU seen by this path must be vertical, and this path follows
‘VHVH· · ·V’. If there are d0 ‘H’s corresponding to going in
the backward direction (from right to left), then there must be
(d0+M) ‘H’s corresponding to going in the forward direction,
since the end point is located at the right side. Thus, there are
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(2d0+M) ‘H’s in total. The number of ‘V’s is (2d0+M+1),
and the path length l = #H + #V = 4d0 + 2M + 1. This
implies that l ≡ 3 (mod 4) if M is odd, and l ≡ 1 (mod 4)
if M is even.

Corollary 1. Following the same assumptions of Theorem 3,
the maximum and minimum path length for different types
is listed below, and the bound is achievable by some circuit
configuration.
(1) Type S: 1 ≤ l ≤ 4MN + 1
(2) Type A: 2 ≤ l ≤ 4MN
(3) Type O: 2M + 1 ≤ l ≤ 4MN − 2M + 1

Proof. For (1), if we set a peripheral vertical TBU at the
left side to bar state, then its two floating nodes build up an
undirected optical path of length 1. For the upper bound, we
have already provided a construction for the maximum path
length (4MN + 1) in Theorem 2 and the constructed path
belongs to type S.

For (2), the minimum path length 2 is demonstrated by the
red path in Fig. 3 (d). For the upper bound, first because l
cannot be (4MN +2) or larger due to Theorem 2 and l must
have remainder of 0 or 2 due to Theorem 3, l has to be smaller
than 4MN . Moreover, we can provide a circuit configuration
to achieve the length 4MN based on the construction shown
in Theorem 2: we further change TBU01−11 to cross state,
yielding a path of length 4MN belonging to type A. See
Fig. 3 (b) for an illustration in a 2× 2 square mesh.

For (3), that the minimum path length equals (2M + 1)
is straightforward, as demonstrated by the yellow path in
Fig. 3 (d). Namely, the minimum path is attained when
the yellow path attempts to directly go from left to right.
However, due to the special topology, it will pass through M
horizontal TBUs, and (M+1) vertical TBUs in turns, leading
to l = 2M + 1. For the upper bound, we first notice that a
path of type O consumes at most one edge of each peripheral
horizontal TBU (see Fig. 3(c)). Since there are 2M peripheral
horizontal TBUs, and M(N − 1) non-peripheral horizontal
TBUs, a path of type O represented by ‘VHVH· · ·HV’ at
most consumes 2NM ‘H’s because of:

2M × 1︸ ︷︷ ︸
‘H’ by peripheral horizontal TBUs

+ M(N − 1)× 2︸ ︷︷ ︸
‘H’ by non-peripheral horizontal TBUs

However, 2NM ‘H’s will make the path’s start and end point
both at the left side, and the path will be of type S not type O.
To enforce the path being type O (i.e., end at the right side),
we have to subtract 2NM by M at least. In summary, the
maximum number of ‘H’s a path of type O can consume is
M(2N − 1), where NM ’H’s correspond to going in the for-
ward direction (i.e., from left to right), and the remaining for
the backward direction. As we have explained in Theorem 2,
the number of ‘V’s is one larger than the number ‘H’s. Thus,
we have l ≤ 2M(2N − 1) + 1 = 4MN − 2M + 1. Now,
we demonstrate (4MN − 2M + 1) is achievable. Similarly,
based on the construction shown in Theorem 2, we make
one modification: we further change TBU2M−2(M+1) to cross
state, yielding a path of length (4MN + 1− 2M) belonging
to type O. See Fig. 3 (c) for an illustration in a 2× 2 square
mesh.

Theorem 2 and Corollary 1 provide us the information
on path length based on the path type. When presenting
Theorem 2 and Corollary 1, we assume that the start point
is located on the left side, while it should be straightforward
to generalize them to other cases, such as the start point on
the right/bottom/top side. We do emphasize that for path type
O, the generalization should be done carefully, as suggested
by the following Corollary 2.

Corollary 2. Consider an undirected optical path in an N ×
M square mesh. We assume its start point is located on the
top side of the square mesh, and denote its path length by l.
If it belongs to type O (i.e., start and end point at opposite
sides), then l ≡ 3 (mod 4) if N is odd, and l ≡ 1 (mod 4)
if N is even. Moreover, 2N + 1 ≤ l ≤ 4MN − 2N + 1.

In essence, for type O, when the start point is on the left or
right side, the condition should be depicted using the number
of columns M ; and when the start point is on the top or bottom
side, the condition should be depicted using the number of
rows N . Now, we are ready to present our first main theorem
about the realizability of a single path.

Theorem 4. (Main Result I) For an N × M square mesh
and a desired path length x, we denote three integer sets:

Γ⋆ = {d | d ≡ 0, 1, 2 (mod 4), 1 ≤ d ≤ 4MN + 1}
ΓM = {d | d ≡ 3 (mod 4), 2M + 1 ≤ d ≤ 4MN + 1− 2M}
ΓN = {d | d ≡ 3 (mod 4), 2N + 1 ≤ d ≤ 4MN + 1− 2N}
(1) If both N and M are even, then any x ∈ Γ⋆ is realizable;

x ̸∈ Γ⋆ is not.
(2) If N is even and M is odd, then any x ∈ Γ⋆ ∪ ΓM is

realizable; x ̸∈ Γ⋆ ∪ ΓM is not.
(3) If N is odd and M is even, then any x ∈ Γ⋆ ∪ ΓN is

realizable; x ̸∈ Γ⋆ ∪ ΓN is not.
(4) If both N and M are odd, then any x ∈ Γ⋆ ∪ ΓN ∪ ΓM

is realizable; x ̸∈ Γ⋆ ∪ ΓN ∪ ΓM is not.

Proof. For (1), using Theorem 3 with Corollary 1 and 2, we
readily obtain for any x ̸∈ Γ⋆ that it is not realizable. Similar
conclusions hold true for cases (2)-(4). The remaining task is
to provide constructions showing that for any x in our defined
set, it is indeed realizable.

In the following, we will demonstrate the construction
method using a small square mesh; extending to a general
N × M mesh is straightforward. To begin, we demon-
strate the construction method for case (1) using a 2 × 2
square mesh in Fig. 4. The key is to use all cells in
a zigzag order: {(1, 1), (1, 2), · · · , (1,M), (2,M), (2,M −
1), · · · , (2, 1), (3, 1), (3, 2), · · · }. Take l ≡ 1 (mod 4) as
an example. The set {5, 9, · · · , 4MN + 1} contains NM
integers, where 9 occurs in the second place, and thus we
will use cell (1, 1) and (1, 2) as shown in the second sub-
figure in the top row of Fig. 4. As another example, the
set {2, 6, 10, · · · , 4MN − 2} contains NM integers, where
6 occurs as the second, and thus we will use cell (1, 1) and
(1, 2) as shown in the second sub-figure in the middle row of
Fig. 4.

For case (2), we can apply the construction method we
show for case (1) to deal with x ∈ Γ⋆, and we only
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Fig. 4: Illustration of construction for Γ⋆ using a 2× 2 square mesh (i.e., N = M = 2). Note that l = 1 is trivial, and is not
shown in the first row.

need to provide a construction method for those x ∈ ΓM .
We demonstrate our construction in Fig. 5. The set ΓM =
{2M + 1, 2M + 5, · · · , 4NM − 2M + 1} contains (NM −
M + 1) integers. To realize the first desired path length
(2M + 1), we will use all cells in the first row (i.e., cell
{(1, 1), (1, 2), · · · , (1,M)}), as shown in the first sub-figure
in Fig. 5. Then for the remaining other desired path length,
we will gradually exploit one additional cell in the zigzag
order: {(2,M), (2,M−1), · · · , (2, 1), (3, 1), · · · }. Finally, the
construction for cases (3) and (4) should already be understood
as they are similar to case (2).

Fig. 5: Illustration of construction for ΓM using a 2×3 square
mesh.

Thus far, we have thoroughly answered the question of
what path length x is realizable in an N × M square mesh.
Our findings provide valuable guidance when routing optical
signals, such as where to put input and output nodes. We will
consider such applications in Section IV.

B. Realizability of Multiple Paths

Building upon the single-path case, a more interesting
question is: In an N×M square mesh, can we find a circuit
configuration to realize y paths, each of length x? In this
section, we make the number of paths a variable y (instead
of fixing it to 1 as the previous section did), and investigate
the maximum value of y given the value of x. As a quick
example, when x = 1, we know the maximum value of y is
(2N +2M) because path 1 is only realizable using peripheral
TBUs.

Theorem 5. For a fixed circuit configuration of an N × M
square mesh, we collectively denote the lengths of all (2N +
2M) undirected optical paths by Γ = [l1, l2, · · · , l2N+2M ].
Then the sum of all undirected optical paths

∑2N+2M
i=1 li can

be written in the format (2N + 2M + 4k), for some k ∈
{0, 1, · · · , NM}. Moreover, when the path sum equals (2N+
2M + 4k0), then
(1) The path average Γ̄ = 1 + 2k0

N+M .
(2) For any undirected optical path, its path length 1 ≤ li ≤

4k0 + 1.
(3) The path variance σ2(Γ) ≤ 8k2

0

N+M − 4k2
0

(N+M)2 .
and the bound in (2)-(3) are achievable.
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Proof. We first prove that the path sum is in the format
(2N + 2M + 4k), for some k ∈ {0, 1, · · · , NM}. According
to Theorem 1 (1), there are (2NM + M + N) TBUs in
total. Since each TBU has two edges that can be used by the
optical signal (regardless of bar or cross state) [8], there are
(4NM+2N+2M) edges altogether. Furthermore, each edge
occurs at most in one undirected optical path, so the maximum
path sum equals (4NM + 2N + 2M). We should notice that
achieving length sum (4NM +2N +2M) is an ideal case in
which all of the edges of the square cell are used and that there
is no untraveled closed loop in the circuit. Next, we consider
the case when closed loops exist; we will show that each
closed loop not being used by any undirected optical path must
have length 4k, which further implies that the path sum equals
(4NM + 2N + 2M − 4k), where k = 0, 1, · · · , NM . Note
that the construction for each k ∈ {0, 1, · · · , NM} is already
shown in the first row of Fig. 4. The proof is straightforward
if we notice that a closed loop indicates that the loop passes
an even number of ’V’s and even number of ’H’s, so that it
can start from a non-floating node and also ends at the same
node. Thus, its length is 4k because the path length equals the
sum of the number of ’V’s and ’H’s.

Now, we prove the three statements. The first statement
about path average is trivial, because the path sum equals
(2N + 2M + 4k0) while the number of paths is (2N + 2M).

For the second statement, we first emphasize that Theorem 2
is a special case of Theorem 5 (2) when k0 = NM . Now, we
notice that when the path sum equals (2N +2M +4k0), there
will be k0 square cells consumed by some undirected optical
paths. If the maximum path length is larger than (4k0 + 1),
following the same thought as in Theorem 2, we see that it
will lead to at least 3 non-floating nodes, or (k0 + 1) square
cells used. Either case will result in a contradiction.

To prove the third statement, we retrieve a conclusion from
statistics: If a random variable lies in the range [a, b], and its
mean is µ, then its variance is upper bounded by (µ−a)(b−µ).
In our case, substituting a with 1, b with (4k0+1), and µ with
(1 + 2k0/(N +M)), proves statement (3).

Last, but not least, we provide a construction achieving the
bound shown in statements (2) and (3). We enforce one path
length to be (4k0+1) and the remaining (2N +2M −1) path
lengths all to be 1. The construction for such is already shown
in the first row of Fig. 4. Now, the variance is given by:

σ2(Γ) =
1

2N + 2M

2N+2M∑
i=1

(li − Γ̄)2

=
(4k0 + 1− Γ̄)2 + (2N + 2M − 1)(1− Γ̄)2

2N + 2M

Further substituting the path mean Γ̄ = 1 + 2k0/(N + M)
as provided in Theorem 5 (1) into the above expression, we
have:

σ2(Γ) =
1

2N + 2M
(4k0 −

2k0
N +M

)2

+ (1− 1

2N + 2M
)

4k20
(N +M)2

=
8k20

N +M
− 4k20

(N +M)2

which is exactly the expression shown in Theorem 5 (3).

The following theorem quantifies the multi-path routing
ability of an N ×M square mesh.

Theorem 6. (Main Result II) If y paths each of length x
can be realized in an N × M square mesh with a circuit
configuration, then we have:

y ≤ min{⌊4NM

x− 1
⌋, 2M + 2N,C1, C2}

where ⌊·⌋ represents rounding to the integer below. C1 repre-
sents an additional constraint active under the case when x
is even:

C1 =

{
4, If x is even

+∞, Else

Similarly, C2 is an extra constraint active under the case when
x ≡ 3 (mod 4):

C2 =


0, If x ≡ 3, N and M are even
0, If x ≡ 3, N is even, M is odd, x ̸∈ ΓM

0, If x ≡ 3, N is odd, M is even, x ̸∈ ΓN

0, If x ≡ 3, N and M are odd, x ̸∈ ΓN ∪ ΓM

+∞, Else

Proof. The bound (2M+2N) is trivial; since we have (2M+
2N) undirected optical paths in total, y cannot be larger than
this bound. The bound C2 reuses the conclusion of Theorem 4,
imposing an additional requirement when x ≡ 3 (mod 4).
Additionally, we have the following inequality because the
path sum cannot be larger than (2N + 2M + 4NM):

xy + ā(2N + 2M − y) ≤ 2N + 2M + 4MN

where ā represents the average path length of the remaining
(2N+2M−y) paths. Noticing that ā ≥ 1 and 2N+2M−y ≥
0, we have:

xy+1(2N +2M − y) ≤ 2N +2M +4MN → y ≤ 4NM

x− 1
.

Our remaining task is to justify the bound C1. In essence,
the bound C1 states that a square mesh at most realizes four
paths of a specified length x if x is even. To prove this, we
recall that in Theorem 3, an even-length path is only possible
if the path belongs to type A. We consider the case when
M and N are both sufficiently large compared to x (e.g.,
M,N ≥ 2x). As we are merely looking for the upper bound
of y, imposing this additional assumption is not restrictive;
however, it also implies that the bound C1 = 4 might not
be tight for the case when M and N are comparable with x
(e.g., x = 4, N = 1, and M = 1). Under this assumption, if
there are d0 paths of length x realizable at the top left corner
(i.e., with start node at the left side, and end node at the top
side) of the square mesh, then by symmetry, there will be
4d0 paths of length x realizable in total since there are four
corners (see Fig. 6). In the following, we will prove that the
maximum value of d0 equals 1 in the case x = 4, justifying
the bound C1. Generalizing the proof to an arbitrary even x
is straightforward, and is omitted here.
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Fist, as shown in Fig. 6, we prove that for all paths of
length four realizable at the top-left corner using some circuit
configurations, they all must pass through node A. As we
already mention in the proof of Theorem 3, a path of length
four will follow ’VHVH’. We consider where the optical path
is after passing through the first ’VH’ pair, and is about to
pass through the second ’VH’ pair. For simplicity, this location
is referred to as the intermediate node. Since the optical path
starts from the left side, the intermediate node must be located
at a node in the red circle shown in Fig. 6 after passing through
the first ’VH’ pair. Furthermore, since the optical path will pass
through the second pair ’VH’ and then reach the top side, we
reverse this process and find that the intermediate node must
be located in the yellow circle. Thus, the intersection of the
red and yellow circle uniquely determines that a path of length
four at the top-left corner must pass through node A.

Next, we state an obvious conclusion: For a fixed circuit
configuration, if we know that two undirected optical paths
pass through the same node, then these two paths actually
are identical (i.e., they refer to the same path). With the
above two pieces, we can complete our proof. Given a circuit
configuration, we assume that there are two different paths of
length four synthesizable at the top-left corner. Using the first
conclusion, we know both of them pass through node A. Then,
using the second conclusion, we see that these two paths are
actually identical.

Fig. 6: For all paths of length four realizable at the top-left
corner using some circuit configurations, they all must pass
through node A, which is the intersection of the red and yellow
circle.

In Fig. 7 (a), we use a 2× 3 square mesh as an example to
demonstrate how tight our provided upper bound in Theorem 6
is. Note that in a 2×3 square mesh, there are already 17 TBUs,
resulting in 217 circuit configurations. Brute-force enumeration
of all configurations is only barely time affordable.

Extending the aforementioned theorems to other topologies,
such as triangular and hexagonal meshes, is straightforward
and is summarized in the Appendix. An important observation
from such analysis is that square meshes are not able to im-
plement some lengths in the range [1, 4NM ], while triangular
and hexagonal meshes do not have this problem. In the next

Fig. 7: (a) In a 2 × 3 square mesh, comparison of our upper
bound provided in Theorem 6 and the real maximum value
of y by brute-force enumerating all circuit configurations. We
also see that no paths (y = 0) are possible for paths of length
x = 3 and x = 23 in a 2 × 3 square mesh. (b) Plot of our
estimated upper bound for y versus different x in a 21 × 21
square mesh.

section, we will discuss some potential implications and usage
of our findings.

IV. IMPLICATIONS AND APPLICATIONS

In this section, we present several potential applications
based on our findings. Note that the PPIC we present here is of
relatively small size consistent with demonstrations to date in
the literature (e.g., 1× 2 square mesh shown in Fig. 3 of [7]).
Our described applications become even more appealing as
PPIC sizes scale up in the future.

A. Guidelines for Setting N and M

In this subsection, we demonstrate how to use our derived
conclusions to determine the appropriate values of N and M
given a collection of integer path lengths Λ that we wish to
realize on a square mesh. Note that this question form has real-
world implications. For instance, when we want to synthesize
a fourth order finite impulse filter with a square mesh as the
delay line, then Λ should be an arithmetic sequence with four
elements (e.g., [2, 4, 6, 8]). As another example, if we want to
use the square mesh to route four optical signals while keeping
their phases equal, then Λ should be a collection containing
four identical integers (e.g., [3, 3, 3, 3]).

Consider the first example where we want to realize path
length collection Λ1 = [2, 4, 6, 8] on a square mesh. Suppose
we want the row and column to be balanced (i.e., N = M =
x ∈ Z+), and we try to determine x using our previous
conclusions. Theorem 2 imposes the first inequality constraint:
8 ≤ 4NM+1 = 4x2+1, which gives x ≥ 2. Then, we use the
path sum conclusion in Theorem 5, leading to another inequal-
ity constraint: 2+4+6+8 < 2N +2M +4NM = 4x+4x2,
which gives x ≥ 2. As shown in Fig. 8, a 2× 2 square mesh
indeed can realize Λ1 = [2, 4, 6, 8] simultaneously. Finally,
we emphasize that as our theorems provide lower bounds,
so using these theorems serve as a necessary condition, but
might not be sufficient. Namely, x < 2 is definite to fail for
Λ1 = [2, 4, 6, 8], but x = 2 might not be sufficient either, and
2 is only a starting search point.
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Fig. 8: Two different circuit configurations of a 2× 2 square
mesh to realize Λ1 = [2, 4, 6, 8].

The first example is of relative small scale, and even a
direct guess without knowing our conclusions might attain
a good result. In the second example, we consider Λ2 =
[6, 10, 14, 18, 22, 26] and balanced row and column (i.e., N =
M = x). Estimating x without knowing our conclusions is
quite difficult. On the other hand, our Theorem 2 requires:
26 ≤ 4x2 + 1, which gives x ≥ 3. Moreover, the path sum
conclusion in Theorem 5 requires: 6+10+14+18+22+26 ≤
2N + 2M + 4NM = 4x + 4x2, yielding x ≥ 5. Since
both of these two constraints must be satisfied, we suggest
starting from a 5-by-5 square mesh for this particular Λ2.
To end this example, notice that a configuration realizing
Λ2 = [6, 10, 14, 18, 22, 26] on an N -by-M square mesh with
TBU length L and TBU loss α is equivalent to another
configuration realizing Λ′ = [3, 5, 7, 9, 11, 13] on a square
mesh with TBU length L′ = 2L and TBU loss α′ = α2

from the perspective of magnitude and phase response, as
evidenced by Eq. (3). However, we must emphasize that in
terms of synthesizing Λ and Λ′, they are completely different.
Specifically, path length 3 is required in Λ′, and as stated in
Theorem 4, either N or M must be 1. This will be more clear
in the following third example.

In the third example, we consider Λ3 = [3, 5, 7, 9, 11, 13].
Note that in the previous Λ1 and Λ2, the required path lengths
are all even, so that they will not have remainders equal to
3 when divided by 4. However, 3 and 11 in Λ3 both have
remainder of 3 when divided by 4. As stated in Theorem 4,
at least one of M or N must be odd to handle these cases.
Moreover, path length 3 is even more special; when substitut-
ing it as d into the inequality given in Theorem 4, it requires
either M = 1 or N = 1. Without loss of generality, we
assume N = 1. As in our previous examples, using Theorem 2
and the path sum conclusion, we have: 13 ≤ 4NM + 1 and
3+5+7+9+11+13 ≤ 2N+2M+4NM , yielding M ≥ 8.
As a byproduct, this example suggests that careful treatment
needs to be taken if a path length of remainder 3 when being
divided by 4 is present.

In the fourth example, we consider a reverse example. Can
a 2-by-2 square mesh implement Λ4 = [1, 18]? We find 18 is
larger than the maximum allowed path length 4NM+1 = 17,
so the answer is no. Then, what about Λ4 = [1, 2, 4, 5, 8, 10]?
We observe that the sum of Λ4 is 30 larger than the allowed
4NM + 2N + 2M = 24, so the answer is no. As a further
follow up, what about Λ4 = [1, 1, 1, 1, 2, 4, 5, 10]? The answer
is still no, because now we have eight paths in Λ4, reaching
the maximum allowable paths 2N + 2M = 8 realized in a
2-by-2 square mesh. This motivates us to calculate the mean
of Λ4, which equals 3.125 and cannot be written in the form

shown in (1) of Theorem 5. In summary, our theorems provide
several criteria to rule out unreasonable path length collections
for a predefined size of square mesh with almost no cost. Note
that in this reverse example, we try to detect which inequality
constraints defined in our theorems Λ4 violate. If any of these
constraints are violated, we can be certain that Λ4 is impossible
to realize. However, to fully prove its feasibility when none is
violated, we would need to construct a solution.

B. Inverse Measurement and Characterization

Model-based circuit design has extensive application in
electronic integrated circuits, as exemplified by the widely
employed BSIM model for MOS devices, with parameters
fit by device and circuit measurements. In a parallel manner
within our context, compact and accurate models for the TBU
devices will be crucial for programmable photonic meshes to
gain widespread usage. In this subsection, we demonstrate how
to use our theorems to inversely characterize the value of α
once a square-mesh PPIC chip is fabricated. We set all TBUs
to cross state, so that the length sum of the (2N+2M) optical
paths equals (2N+2M+4NM). We inject (2N+2M) optical
sources independently from each of the input nodes. We use an
optical network analyzer (ONA) to measure the complex trans-
fer functions (i.e., the complex ratios of the output signals over
the input signals), denoted by {r1, r2, · · · , r2N+2M}, where
each ri is a complex scalar, including both the information
of magnitude and phase response. Based on Eq. (3), it is
straightforward that we have the following relation:

2N+2M∏
i=1

|ri| = α
∑

i=1 li = α2N+2M+4MN (4)

where li represents the length of the i-th optical path. It implies
that once we have the measurements {r1, r2, · · · , r2N+2M},
we can inversely estimate α by:

α = exp(

∑
i=1 log |ri|

2N + 2M + 4NM
). (5)

Note that in real fabrication, process variation exists, and
it is likely each TBU will have a slightly different α, de-
noted by {α1, α2, · · · , α2N+2M}. Under this circumstance,
Eq. (5) actually provides an estimation of their geometric
mean, i.e., 2N+2M+4NM

√
α1α2 · · ·α2N+2M . As a byproduct,

readers might be curious if we can estimate each individual
{α1, α2, · · · , α2N+2M}, not solely their geometric mean. Un-
fortunately, ambiguity arises when we try to do so as shown
in Fig. 9.

By analogy to inversely measuring α, we can do the same
thing for the TBU length L. Still setting all TBUs to cross
state, then the variable q in Eq. (3) for any optical path will
be zero. Thus, we have the following relation:

2N+2M∑
i=1

Phase(ri) = −(

2N+2M∑
i=1

li) ·
ωneffL

c

= −(2N + 2M + 4NM)
ωneffL

c

(6)
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Fig. 9: Ambiguity occurs when attempting to determine
each individual α value for non-peripheral TBUs. If
{α1, α2, α3, α4} is a solution as shown in (a), then (b) will
also be a solution. As an example, if {α1, α2} satisfy the
measurement result of the red optical path, then {bα1, α2/b}
will also satisfy the measurement result for some constant b.

Note that the equality sign holds under the addition of integer
multiples of 2π (denoted by 2dπ later). If we assume that
neff is known, then we can inversely measure the TBU length
variable L via:

L =
c · [−

∑2N+2M
i=1 Phase(ri) + 2dπ]

(2N + 2M + 4NM)ωneff
(7)

where d is an integer added to make the estimated L mean-
ingful (i.e., close to its design value). We note that it is
expected that ambiguity of the estimated value of L occurs
when doing this inverse characterization due to the periodicity
of phase. Similarly, due to process variation, each TBU
will have a slightly different length parameter L, denoted
by {L1, L2, · · · , L2N+2M}, and Eq. (7) then estimates their
arithmetic mean.

To end this subsection, we consider a variant of the above
approach, focusing on local characterization. We take inverse
measurement of α as an example. If we wisely set the TBUs
into bar/cross state, we can exclude a few TBUs from being
passed though by any of the (2N + 2M) optical paths, and
the length sum will equal (2N + 2M + 4k0), as depicted in
Theorem 5. In this case, the denominator in Eq. (5) should be
revised to (2N+2M+4k0) accordingly, and the calculated α
becomes a ’local’ estimation. When only part of the square-
mesh PPIC is exploited in an application, this local inverse
measurement might be more accurate than the previous global
one, and of particular interest.

V. CONCLUSIONS

In this paper, we theoretically investigate the routing ability
of programmable photonic integrated circuits under the as-
sumption that TBUs are either in cross or bar state. Such an
assumption is reasonable to be made in an optical routing
application. Based on the compact model of the TBU, we first
show that the path length (defined as the number of TBUs
that a path passes through) is decisive in the signal response,
affecting both phase and magnitude. Next, we provide several
theorems rigorously determining what path length is realizable
in single-path routing. Then, we approach multi-path routing,
providing analytical expressions for the path length sum, and
an upper bound on path length variance and the maximum

number of realizable paths. Finally, a number of potential
optical applications using our observations are illustrated.

Future work includes using the proposed inverse measure-
ment technique to extract precise compact models for the
TBUs in fabricated PPICs. In the longer term, we envision
that the theoretical foundation established in this work will not
only serve as a base for broader implications but also inspire
both us and the entire community to explore novel applications
of these results.

APPENDIX

The conclusions and proofs shown in the main text can
be well generalized to other topologies such as hexagonal
mesh, triangular mesh, with a few light modifications. In the
Appendix, we consider two popular topologies, parallelogram
hexagonal mesh, as shown in Fig. 10, and parallelogram
triangular mesh, as shown in Fig. 11. Other topology variants
(e.g., concentric hexagonal mesh) won’t be covered, while
readers can derive themselves by relying on the analysis
methods we provide. Theorem 7 summarizes the conclusions
for a parallelogram hexagonal mesh.

Fig. 10: A parallelogram hexagonal mesh of size N ×M .

Fig. 11: A parallelogram triangular mesh of size N ×M .

Theorem 7. For a N × M parallelogram hexagonal mesh,
we have the following conclusions:
(1) There are (4N+4M−2) peripheral TBUs, and (3NM−

2N − 2M + 1) non-periperhal TBUs; There are (8N +
8M − 4) floating nodes, and 6NM non-floating nodes.
There are (4N + 4M − 2) undirected optical paths in
total for one circuit configuration.
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Fig. 12: Top row: Construction for finding a circuit configuration to realize l ≡ 4 (mod 6). Bottom row: Construction for
finding a circuit configuration to realize l ≡ 2 (mod 6).

(2) Denote an integer set Γ⋆ = {d ∈ Z+ | 1 ≤ d ≤ 6NM +
1}. Any path length x ∈ Γ⋆ is realizable via some circuit
configuration, while x ̸∈ Γ⋆ is not.

(3) Denote the lengths of all a undirected optical paths by
Γ = [l1, l2, · · · , la]. Then the sum of all undirected optical
paths

∑a
i=1 li can be written in the format (4N +4M −

2+ 6k), for some k ∈ {0, 1, · · · , NM}. Moreover, when
the path sum equals (4N + 4M − 2 + 6k0), then the
path average Γ̄ = 1 + 3k0

2N+2M−1 ; the path length 1 ≤
li ≤ 6k0 + 1; the path variance σ2(Γ) ≤ 18k2

0

2N+2M−1 −
9k2

0

(2N+2M−1)2 .
(4) If y paths each of length x can be realized with some

circuit configuration, then we have:

y ≤ min{⌊6NM

x− 1
⌋, 4N + 4M − 2}

All statements above can be similarly proved following our
treatment of the square mesh. In Fig. 12, we demonstrate how
to construct a circuit configuration to realize a desired path of
length x ∈ Γ⋆ in the case of a 2× 2 hexagonal mesh. Specifi-
cally, the top row and bottom row respectively demonstrate the
construction for l ≡ 4 (mod 6) and l ≡ 2 (mod 6). To realize
l ≡ 3 (mod 6), we slightly modify the construction method
shown in the bottom row by changing the purple TBU11−01

and the orange TBU11−00 to bar and cross state, respectively.
Then the resulting red trajectory will have length satisfying l ≡
3 (mod 6). The key idea here is the same as shown in Fig. 4.
We initially consume cell (1, 1) and (1, 2) to realize path
length 8 or 9. Then, when the desired path length increases
to 6, we consume one more cell following a zigzag order:
(1, 1), (1, 2), · · · , (1,M), (2,M), · · · , (2, 1), (2, 2), · · · . Simi-
larly, the remaining cases l ≡ 5, 0, 1 (mod 6) can be handled
by modifying the pink, purple, and orange TBUs in the top
row. To end this section, Theorem 8 summarizes the conclu-
sions for a parallelogram triangular mesh. The construction
method is similar to that for parallelogram hexagonal mesh,
and is omitted.

Theorem 8. We assume M is even, so that the N × M
triangular mesh shown in Fig. 11 has a parallelogram shape.
We have the following conclusions:
(1) There are (2N + M) peripheral TBUs, and ((3N −

1)M2 −N) non-periperhal TBUs; There are (4N +2M)
floating nodes, and 3NM non-floating nodes. There are
(2N+M) undirected optical paths in total for one circuit
configuration.

(2) Denote an integer set Γ = {d ∈ Z+ | 1 ≤ d ≤ 3NM+1}.
Any path length x ∈ Γ⋆ is realizable via some circuit
configuration, while x ̸∈ Γ⋆ is not.

(3) Denote the lengths of all undirected optical paths us-
ing a set: L = [l1, l2, · · · , l2N+M ]. Then the sum of
all undirected optical paths Γ =

∑2N+M
i=1 li can be

written in the format (2N + M + 3k), for some k ∈
{0, 1, · · · , NM}. Moreover, when the path sum equals
(2N +M +3k0), then the path average Γ̄ = 1+ 3k0

2N+M ;
the path length 1 ≤ li ≤ 3k0 + 1; the path variance
σ2(Γ) ≤ 9k2

0

2N+M − 9k2
0

(2N+M)2 .
(4) If y paths each of length x can be realized with some

circuit configuration, then we have:

y ≤ min{⌊3NM

x− 1
⌋, 2N +M}
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