
Large-scale neural network in passive silicon photonics for
biologically plausible learning.

Alessio Lugnana, Alessandro Foradorib,a, Stefano Biasia, Peter Bienstmanb, and Lorenzo
Pavesia

aNanoscience Laboratory, Department of Physics, University of Trento, Italy
bPhotonics Research Group, Ghent University - imec, Ghent 9052, Belgium

ABSTRACT

Neuromorphic computing hardware that requires conventional training procedures based on backpropagation is
difficult to scale, because of the need for full observability of network states and for programmability of network
parameters. Therefore, the search for hardware-friendly and biologically-plausible learning schemes, and suitable
platforms, is pivotal for the future developments of the field. We present a novel experimental study of a photonic
integrated neural network featuring rich recurrent nonlinear dynamics and both short- and long-term plasticity.
Scalability in these architectures is greatly enhanced by the capability to process input and to generate output
that are encoded concurrently in the temporal, spatial and wavelength domains. Moreover, we discuss a novel
biologically-plausible, backpropagation-free and hardware-friendly learning procedure based on our neuromorphic
hardware.
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1. INTRODUCTION

Neuromorphic photonics, i.e. the realization of photonic artificial neural networks (ANNs), has recently shown
great promise in overcoming important limitations of neuromorphic electronics.1–3 Indeed, photonics allows
for enhanced parallelism (e.g. via WDM techniques, short for wavelength division multiplexing) lower power
consumption (no Joule heating) and reduced latency (e.g., no parasitic effects). However, training photonic
neuromorphic hardware via conventional training algorithms based on backpropagation (BP) greatly limits the
scalability of deployable networks and it is not a biologically plausible.4,5 These limitations mainly arise from
the requirements of observability and control of the network internal states and parameters, which are usually
necessary to run BP.

In this work we investigate the employment of a photonic integrated ANN able to host complex and recurrent
dynamics and to process information by exploiting the spatial, temporal and wavelength dimensions in parallel.
The presented photonic ANN is very compact and simple to fabricate. It consists of 64 silicon microring resonators
(MRRs, see Fig. 1 a), all coupled together by straight waveguides that are in turn connected to multiple input
and output optical ports. Thanks to the complex dynamics enabled by silicon nonlinear effects and to the
periodic resonances in a MRR spectrum,6–8 the actual network is much larger than its spatial arrangement, as
it is expanded through the temporal and wavelength domains, while preserving a small on-chip footprint. We
show that several nonlinear representations of the input optical time series (flattened images from the MNIST
dataset9) can be obtained in parallel at different wavelengths. These representations can be employed by a
computationally cheap and biologically plausible machine learning (ML) scheme, based on the combination
(ensemble learning) of simple linear classifiers. Our learning architecture can be thought as a combination of
hardware-based reservoir computing systems,10–12 where different reservoirs are given by outputs of our photonic
ANN at different wavelengths. In particular, we show that the classification accuracy of handwritten digits
steadily increases by employing more and more nonlinear representations from our photonic ANN, and that
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it significantly overcomes the accuracy obtained substituting the nonlinear representations with linear ones,
demonstrating the key role of the proposed neuromorphic hardware.

This work is inspired by a previous research13 and presents, in comparison, few important improvements. In
particular, here we employ a more energy efficient photonic ANN, as it does not include phase change materials
for reconfigurability and it presents a better connected topology. Moreover, in this work we employ an improved
ML scheme and we use the full MNIST dataset without any preprocessing. Finally, the acquisition of the images
processed by our photonic ANN is self-triggered and therefore does not need any synchronization with the input
signal, e.g. by means of an external clock signal.

2. RESULTS

We inserted flattened MNIST images (70000 images) in our integrated photonic ANN by modulating infrared
laser light (wavelengths around 1550 nm, see Fig. 1 a) with a sampling time of 2 ns. Peak optical powers of
few mW allowed us to trigger strong nonlinear dynamics in the MRRs network, linked to two-photon absorption
in silicon and based on variations of free carriers density and temperature in the MRRs.14 In particular, free
carriers provide nonlinear short-term memory with a characteristic time of few nanoseconds, while temperature
provides nonlinear long-term memory with a characteristic time of few hundred nanoseconds. The input insertion
was repeated for 11 different laser wavelengths (approximating concurrent parallel insertion), each providing a
different time-dependent representation acquired at output port 2 (see Fig. 1 a). Specifically, the employed
wavelengths (in nanometers) are 1556.55, 1555.91, 1555.75 , 1555.59, 1555.42, 1555.26, 1555.10, 1554.94, 1554.78,
1554.62, 1554.46, 1556.55. The first wavelength was chosen so that it did not excite any MRR resonance,
resulting in a linear representation of the input to be used as a reference and to obtain a ML baseline. The other
wavelengths excited different MRR resonances, resulting into different nonlinear representations at the output
ports. Moreover, for each resonant wavelength, 10 optical different power levels were considered, each providing
different nonlinear representations as well. Namely, the estimated on-chip power levels were (respectively mean
and peak power in milliwatt): 0.086, 0.17, 0.26, 0.34, 0.43, 0.51, 0.60, 0.69., 0.77, 0.86, and 1.5, 3.0, 4.5, 6.1,
7.6, 9.1, 10.6, 12.2, 13.7, 15.2. For the (first) non-resonant wavelength we only employed the higher power level
among the listed ones. Therefore, we measured a total of 101 different output representations of the input, all
at the same output port.

Regarding the ML analysis, we separated the first 60000 samples from the subsequent 10000, respectively
employed as training and test sets. The first step of our training procedure consists of training a linear classifier
(logistic regression) using 10000 samples of the training set, where the employed features came from the linear
output representation (i.e. with the non-resonant wavelength of 1556.55 nm). In the second step, we select
the best nonlinear representation to be combined with the system trained in the first step, among the ones
obtained using the first resonant wavelength (namely 1556.55 nm) and different power levels. In particular, for
each power level we trained a linear classifier using 14500 samples of the training set, employing as features the
corresponding nonlinear representation together with the output of the previously trained linear classifier (see
Fig. 1 b). We evaluated its performance using the rest of the training set (here employed as a validation set).
Afterwards we selected the case giving the best validation accuracy. The third step of our training procedure
is a repetition of the second: considering the second resonant wavelength and for each input power level, we
train a linear classifier using 19000 training samples, employing as features the current nonlinear representation
together with the outputs of the 2 previously trained and chosen classifiers. Again, we employ the rest of the
training set to evaluate and choose the best power level for the given wavelength. These steps are repeated
until all the 10 resonant wavelength have been considered. Moreover, in order to evaluate how much of the
classification accuracy is due to the nonlinear representations produced by our neuromorphic hardware, we
repeated the training procedure employing only the linear representation generated using the non-resonant
wavelength. Overall, each step of this training procedure is meant to progressively improve the performance of
the whole model, by learning how to correct the mistakes made in the previous steps.

The final ML accuracy was estimated by evaluating each trained linear classifier on the test dataset (last
10000 MNIST images), each one corresponding to a different number of chosen nonlinear representations (see
Fig. 1 c). We notice that the classification performance steadily increases with the number of employed nonlinear
representations, and that it is significantly greater than the linear baseline. These results show that our photonic



ANN can be used to enhance the ML performance obtainable with simple and computationally cheap linear
classifiers. Importantly, the full ML model is biologically plausible and does not require observation and control
of the internal states and parameters of the neuromorphic hardware. Moreover, it should be stressed that many
more different nonlinear representations can be obtained from our photonic ANN (e.g., by employing different
output ports) and that the network could be easily scaled up to significantly larger number of neurons (MRRs)
and input/output ports.

Figure 1. ML classification of handwritten digits enhanced by an integrated photonic ANN. a) Images are flattened and
inserted as an optical time series into our MRR network, which produces several nonlinear representations of the input,
depending on the output physical port, the laser wavelength and power. b) Diagram of the employed ML model. The
input signal is inserted into different recurrent networks (each representing the nonlinear transformation performed by
our photonic ANN at different input wavelength). The output of the first is used to train a linear classifier, whose output
is joined to the output of the second recurrent network and used to train the second linear classifier, and so on. This
way, each linear classifier is trained to improve on the previous one, exploiting different nonlinear representations of the
input. c) Classification accuracy of the different employed linear classifiers (blue), corresponding to different numbers
of exploited nonlinear representations. This is compared with the accuracy of the same ML model (orange) where only
linear representations are used.



3. CONCLUSION

In this work we propose a novel integrated photonic neural network based on coupled silicon microring resonators.
This neuromorphic hardware can host complex nonlinear dynamics and is able to produce several different
nonlinear representations of its input, via highly parallel operations in the spatial, temporal and frequency
domains. We showed that, even employing only a single physical output port, our photonic ANN could generate
100 different nonlinear representations of its input signal (flattened images of handwritten digits, namely the
MNIST dataset), by varying the input laser wavelength and power. Moreover, we demonstrated a biologically
plausible and computationally cheap machine learning scheme that could exploit these nonlinear representations
in order to significantly increase its accuracy in image classification (MNIST task). As a next step, we aim to
investigate the exploitation of multiple physical output ports, e.g. integrating an automatic exploration and
optimization of the generated representations directly into the measurement process, thus limiting the data to
be measured and stored. Furthermore, we plan to test our neuromorphic system and machine learning scheme
on other tasks, such as fashion MNIST and time series prediction.
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