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Abstract: Coherent Ising machines (CIMs), leveraging the bistable physical properties of
coherent light to emulate Ising spins, exhibit great potential as hardware accelerators for tackling
complex combinatorial optimization problems. Recent advances have demonstrated that the
performance of CIMs can be enhanced either by incorporating large random noise or higher-order
nonlinearities, yet their combined effects on CIM performance remain mainly unexplored. In this
work, we develop a numerical CIM model that utilizes a tunable fifth-order polynomial nonlinear
dynamic function under large noise levels, which has the potential to be implemented in all-optical
platforms. We propose a normal form of a CIM model that allows for both supercritical and
subcritical pitchfork bifurcation operational regimes, with fifth-order nonlinearity and tunable
hyperparameters to control the Ising spin dynamics. In the benchmark studies, we simulate
various sets of MaxCut problems using our fifth-order polynomial CIM model. The results show
a significant performance improvement, achieving an average of 59.5% improvement in median
time-to-solution (TTS) and an average of 6 times improvement in median success rate (SR) for
dense Maxcut problems in the BiqMac library, compared to the commonly used third-order
polynomial CIM model with low noise. The fifth-order polynomial CIM model in the large-noise
regime also shows better performance trends as the problem size scales up. These findings reveal
the enhancements on the computational performance of Ising machines in the large-nose regime
from fifth-order nonlinearity, showing important implications for both simulation and hardware
perspectives.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

As a versatile framework of both theoretical and practical significance, the Ising model is a
cornerstone of statistical mechanics, offering valuable insights into the behavior of interacting
particles in a variety of physical systems. Moreover, the cost function of many optimization
problems can be mapped to the Ising model, such that the optimal solution corresponds to the
Ising ground state [1]. This model, represented by an undirected graph, encompasses a set of
binary Ising spin nodes (xi = ±1) connected by Ising coupling interactions denoted as Jij. The
Ising Hamiltonian is defined as H = −

∑︁
i<j Jijxixj. The objective of the optimization problem

usually lies in determining the spin configurations that minimize the Ising Hamiltonian for a
given coupling matrix. Ising machines are physical systems designed to find low-energy solutions
of the Ising model. Their core operational principle is to mimic an Ising model, by letting its
state evolve to minimize the Ising Hamiltonian over time.

Ising machines have a diversity of hardware realizations, including quantum annealers [2,3],
electrical oscillator-based Ising solvers [4–8], polariton lattices [9], spatial Ising machines [10],
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and coherent Ising machines (CIMs) [11–16]. Since their invention, considerable attention has
been paid to CIMs as a promising next generation of hardware accelerators [17], designed to
tackle hard combinatorial optimization problems. CIMs usually consist of a network of optical
Ising nodes, offering fast and energy-efficient optimization capabilities for generic quadratic
unconstrained binary optimization (QUBO) problems.

Various optical systems have been proposed to build CIMs, among which the most widely
representative platform is the degenerate optical parametric oscillator (DOPO) [13,15,18]. The
DOPO system maps the Ising spins into bistable states of coherent light pulses (e.g., 0 and
π phases), or into the in-phase amplitude of the coherent light pulses [13]. Most commonly
for the existing DOPO platforms, the following stochastic differential equation (SDE) can
well approximate the in-phase amplitude dynamics in a third-order nonlinear dynamic form
[11,13,15,18]:

dxi = [(r − 1)xi − ηx3
i + β

N∑︂
j=1

Jijxj]dt + γdWt, i = 1, 2, . . . , N. (1)

Here, xi represents the in-phase amplitude of the ith light pulse and its sign represents the
binary spin direction, while dt is the integration time step. N is the number of spins, r is the linear
gain of the laser pump, the term −1 in (r − 1) is the normalized loss term, η is the third-order
polynomial coefficient and β is the mutual coupling strength. γdWt is the stochastic Gaussian
noise, with γ the amplitude of the noise or noise level, and Wt standing for the Wiener process
[19] with expectation value 0 and variance

√
dt. The SDE function consists of a nonlinear

dynamic part (r − 1)xi − ηx3
i that generates bistability for encoding the Ising node state from a

third-order supercritical pitchfork bifurcation, and a linear coupling part β
∑︁N

j=1 Jijxj that serves
as the negative gradient to minimize the Ising Hamiltonian.

Incorporating higher-order interactions or nonlinearities in the spin dynamics may enhance
the performance of an Ising machine, as suggested in a recent study [20]. Ising machine
models based on sigmoidal, periodic, and clipped spin dynamic functions have been investigated,
which bring higher-order interactions to the Ising node spin dynamic function. The third-order
polynomial CIM model without any higher-order interactions has been found to be less powerful
in computational performance compared with other Ising machine models that have higher-order
nonlinearities. This is because a more distinct spin amplitude inhomogeneity exists in third-order
models, which might lead to a faulty mapping of the original combinatorial optimization problems
[20–23]. However, the previously studied nonlinearities are with fixed nonlinear terms that
originate from currently known physical Ising systems, without further engineering to optimize
the nonlinear terms. Inspired by the work in [24–28] with programmable nonlinearities in
optical neural networks, we assume that a tunable nonlinear term also has the potential to further
optimize the Ising machine.

A recent study in [29] has shown the fabricable possibility of an all-optical CIM based on a
microrings. Here, the Ising nodes are realized with Kerr nonlinear rings, which naturally give
rise to a tunable fifth-order nonlinearity in the spin dynamics. The incorporation of tunable
higher-order terms can be understood intuitively as a result of the presence of bistable optical
ring cavities and symmetry breaking in the two microring coupled MZI system, which leads to a
higher-order nonlinear spin dynamic function. As stated in the Supplement 1, tunability of the
higher-order nonlinearity can be achieved by controlling the operational optical parameters, e.g.,
the detuning of the ring resonance and the pump power. In this work, based on the proposed
device, we present a generic Ising machine model with tunable higher-order nonlinear terms to
engineer the nonlinearity, such that it optimizes the CIM’s performance in optimization tasks. It
is worth mentioning that the microring-based Ising machine in [29] is not unique in realizing a
higher-order nonlinearity. Other optical CIM platforms also have the potential of incorporating
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higher-order nonlinearities, such as OEO-based Ising machines [20] or Ising machines using
spatial light modulators (SLMs) [30,31].

A schematic illustration of the proposed CIM model can be found in Fig. 1, which shows a
4-spin Ising system with spin configuration [1,−1,−1, 1] at time t0. The system encodes the Ising
spins into the bistable states of the in-phase amplitude of light in nonlinear optical devices. This
system has the potential to be energy-efficient when operated under ultra-low photon number
limits. The nonlinear optical device in the system of [29] has an approximate spin dynamic
function, derived from its optical properties, of the form:

dxi = [(r − 1)xi − ηx3
i + ζx

5
i + β

N∑︂
j=1

Jijxj]dt + γdWt, i = 1, 2, . . . , N. (2)

Tunable nonlinear spin 
generator

Ising coupling matrix multiplier

Feedback loops

Subcritical 

Supercritical 

0 −1 −1 0
−1 0 0 −1
−1 0 0 −1
0 −1 −1 0

Maxcut problem

1 2

43

Fig. 1. Schematic of the proposed CIM model, allowing subcritical and supercritical
operational regimes. There are three main building blocks: a tunable nonlinear spin
generator that produces the nonlinear dynamics of the spins, an Ising coupling matrix
multiplier that computes the multiplication of the spin vector and the Ising coupling matrix,
and feedback loops that update the spin configuration. The building blocks can be built in
photonic integrated circuits as stated in [29]. The tunability explanation can be seen in the
Supplement 1.

Compared with Eq. (1), a fifth-order term ζx5
i is included in the dynamic function of the

fifth-order CIM model. Notably, r, η, ζ , β and γ are tunable hyperparameters in our fifth-order
CIM model. Uniquely, the fifth-order model enables operation in a regular supercritical regime
in addition to a subcritical regime, which induces an additional hysteresis effect that can interact
with the noise. The fifth-order model can be further engineered with the tunability of ζ and η.

The noise level parameter γ in Eq. (1) and Eq. (2) plays an important role in Ising machines.
On one hand, to achieve minimal power consumption in the proposed system, which means a low
photon number associated with each detected signal, it is crucial to consider the negative impact
of the large noise inherent in the experimental setup when operating the Ising machine. The
signal-to-noise ratio can be approximately 1 or even smaller when utilizing an ultra-low photon
number as investigated in [32,33]. On the other hand, however, the large intrinsic noise can also
serve as a resource to enhance the computational performance of Ising machines. The importance
of noise in Ising machines’ performance has been reported in [34–36]. Indeed, for some hard
optimization problems, injecting a substantial amount of noise is necessary for CIMs to find
the ground state (GS) of hard optimization problems, as this can be beneficial in exploring the
configuration space, particularly when the energy landscape has many local minima. Sufficient
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random noise which is uncorrelated to the current state of the Ising machine can help escape
from these large numbers of local minima. Therefore, finding the GSs requires a relatively
large amount of noise in these circumstances. [35,36] suggests that leveraging noise amplitude
adequately can also facilitate and speed up the convergence to the GS.

However, High noise levels drive Ising machines into a thermal equilibrium, where the
probability of reaching the ground state decays exponentially with the random noise level
[10,35,36]. These conflicting effects need to be carefully balanced. In this sense, the incorporation
of hysteresis in the fifth-order CIM spin dynamic function holds the promise of effectively
mitigating the negative influence of noise, while still being able to benefit from the exploration it
provides. Broadly speaking, hysteresis refers to the lag or delay in the response of a system to
external changes in its input or operating conditions, and results in a "memory effect", where the
state depends on its history. It has been commonly applied in electronic engineering [37,38] and
can also help in artificial neural networks to tolerate as well as control the noise [39–41]. As an
example, the Schmitt trigger uses the hysteresis loop to help suppress noise and signal fluctuations.
Recently, memristor-based Hopfield neural networks equipped with tunable hysteretic thresholds
have been shown to be able to reduce the influence of random noise from experimental setups,
and are able to perform simulated annealing [6]. These implementations are all in the digital
domain or hybrid analog-digital domain, where using hysteresis to control the noise is a relatively
mature technique. However, we anticipate that hysteresis can enhance the capability to mitigate
the effects of large noise levels in analog CIM systems as well, particularly when the mean
saturated analog spin amplitude and the Gaussian noise level are comparable in magnitude. This
is one of the main points are be investigated in this paper.

To the best of our knowledge, previous studies of CIM models have neither systematically
explored a tunable fifth-order nonlinearity in the spin dynamic function nor the subcritical
pitchfork bifurcation regime with hysteresis. As suggested above, this could help to interact with
the noise in the Ising system, facilitating the balance between the exploitation and exploration
processes. In this paper, the subcritical pitchfork bifurcation regime model is compared with the
supercritical regime model to reveal the performance enhancement from utilizing hysteresis. In
order to build a general framework, we focus on the numerical computational performance of a
fifth-order polynomial CIM model, without taking into account the original physical constraints
of hyperparameters in the proposed hardware. We show that the fifth-order nonlinearity results in
a promising enhancement in computational performance for the MaxCut benchmark sets BiqMac
[42], some randomly-generated MaxCut problems, and Gset [12]. Additionally, we find that the
subcritical regime with hysteresis is less sensitive to variations of hyperparameter settings. This
is particularly important for accelerating hyperparameter optimization and addressing hardware
imperfections.

Below is a brief overview of the paper’s organization. In section 2, the steady-state analysis
of the fifth-order polynomial CIM model in the supercritical and subcritical pitchfork regime
is presented. In section 3, the optimization of the numerical setup that we use is discussed. In
section 4, the benchmark results on MaxCut problems are presented and discussed. Finally, we
conclude the findings from this research and discuss the future directions in section 5.

2. Steady state analysis of fifth-order polynomial CIM model

A third-order polynomial CIM model (1) can only be operated in a supercritical pitchfork
regime to allow bistability for encoding the spins. A fifth-order polynomial CIM model however,
depending on the sign of the third-order coefficient η in Eq. (2), can be operated in either a
supercritical (i.e. η>0) or a subcritical (i.e. η<0) pitchfork regime [43]. In this section, we
study the different bifurcation diagrams in these two operational regimes that the Ising system
exhibits, characterized by different types of bifurcation points and stable branch shapes. These
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are important in practice, as they affect the dynamic evolution of the Ising system, leading to
diverse outcomes in performance.

2.1. Supercritical model (η>0)

To visualize the differences in the supercritical and subcritical bifurcation diagrams, we focus
on a single uncoupled Ising spin from the Ising system. An uncoupled-node bifurcation of the
Ising node in the supercritical pitchfork bifurcation regime (i.e. η>0) can be described by Eq. (2)
without the coupling terms and the noise in the following ordinary differential equation (ODE):

ẋuncoupled = (r − 1)x − ηx3 + ζx5, η>0. (3)

The corresponding bifurcation diagram and corresponding potential energy curves are shown
in Fig. 2. For comparison, a third-order (i.e. ζ = 0) supercritical pitchfork bifurcation has two
branches of stable fixed points. A negative fifth-order coefficient ζ in Eq. (2) can modify the
shape of the stable branch after reaching the same pitchfork bifurcation point as a third-order
spin dynamic function. The stable fixed point as a function of the parameters can be calculated
from Eq. (3) as:

x2
stable =

η −
√︁
η2 − 4(r − 1)ζ

2ζ
(4)

(a) (b)

Fig. 2. (a): bifurcation diagram for ẋ = (r − 1)x − x3 + ζx5 in the supercritical (i.e. η>0)
pitchfork regime. (b): potential energy curves corresponding to points below or above the
supercritical pitchfork bifurcation. The potential energy is obtained by the integration of the
ODE over x, providing a view for the stability.

The fifth-order coefficient ζ can be fine-tuned as a hyperparameter in the CIM model to
improve performance results, as we show in the benchmark studies in section 4.

To further illustrate the steady states at different bifurcation parameter values, the potential
curves for different bifurcation parameters r are also shown in Fig. 2. When r is below the
pitchfork bifurcation point rp = 1, e.g. r = 0.5, the minimum of the potential curve only appears
at x = 0, indicating that the spin amplitude is only stable at x = 0. When r is above the pitchfork

bifurcation point, e.g. r = 1.5, two minima appear at x = ±

√︃
η−
√
η2−4(r−1)ζ

2ζ , indicating that the
spin amplitude is bistable at these values.

2.2. Subcritical model (η<0)

In this section, we focus on the spin dynamics of the fifth-order CIM model in a subcritical (η<0)
pitchfork regime without coupling terms and noise:

ẋuncoupled = (r − 1)x − ηx3 + ζx5. (5)
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The bifurcation diagram and corresponding potential energy curves are shown in Fig. 3. When
η<0 and ζ<0, as shown in Fig. 3, a pair of saddle-node bifurcation points leads to the emergence
of two stable steady states. In the third-order model (ζ = 0), the absence of a non-trivial
stable steady state precludes the existence of bistability for encoding Ising spins. Therefore, the
fifth-order nonlinearity plays a stabilizing role in this scenario to encode the Ising spin states.
The bifurcation diagram shows two symmetric hysteretic loops, delineated by the purple arrows.
As hysteresis exists, the CIM model possesses the capability to ensure fewer fluctuations of spin
states even with random noise. Moreover, it holds the potential to augment the uniformity of
analog spin amplitudes because of a flatter amplitude trend compared with the supercritical
regime.

(b)(a)

Fig. 3. (a): Bifurcation diagram for ẋ = (r − 1)x + 0.15x3 − 0.01x5 in subcritical pitchfork
regime (η<0 and ζ<0). (b): Three potential energy curves corresponding to three r values
below or above the subcritical pitchfork bifurcation.

The hysteretic loops are characterized by their width, represented by w, and their heights,
denoted as h1 and h2. To derive these values, we observe that for the stable subcritical regime
(η<0, ζ<0) in Fig. 3, the non-trivial stable branch shape can be obtained as:

x2 =
η +

√︁
η2 − 4(r − 1)ζ
−2ζ

. (6)

Here, r, η and ζ are coefficients from the fifth-order polynomial equation Eq. (2). The hysteretic
width can be derived as w = −

η2

4ζ , and the hysteretic heights are h1 =
√︂

η
2ζ , h2 =

√︂
η
ζ .

Apart from being potentially beneficial because of its stabilizing effect, hysteresis could be
used to perform simulated annealing, by adjusting its parameters such as width w, height h1, and
h2 as the annealing progresses. However, achieving precise control or measurement over these
parameters in an analog Ising system with coupled nodes poses a significant challenge. Indeed,
due to the inhomogeneity of analog spin amplitudes, the resulting values of w, h1, and h2 might
deviate from node to node.

Finally, the corresponding potential curves for the stable subcritical regime with multiple
bifurcation parameters r are shown in Fig. 3: by controlling the bifurcation parameter r, the
energy barriers between the energy minima and maxima are tuned, leading to different locations
of the energy minima (stable fixed points).

3. Optimization setup

In this section, we present the techniques of linear annealing and the hyperparameter optimization
workflow for optimizing the performance of the Ising machine setup.
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3.1. Linear annealing scheme

The choice of the gain parameter is typically important in the performance of Ising machines
[13,44,45]. In our simulations, we use a linear annealing scheme for the linear gain parameter r,
as was shown to be efficient in [13,45]:

r(t) =

{︄
r0 +

rend−r0
Tann

× t t<Tann

rend t ≥ Tann.
(7)

Here, r0 is an initial linear gain from which we linearly increase to the ending value rend in
the annealing time span Tann. This scheme allows the Ising machine to explore both the regime
near the bifurcation threshold and the regime high above it. If the annealing time span Tann is
sufficiently long, the linear gain can be considered slowly varying during one run. The Ising
machine can thus explore different parameter settings, increasing the likelihood of achieving
the optimal parameter setting that correctly maps the analog Ising energy to the real Ising
Hamiltonian.

3.2. Hyperparameter optimization

To find the optimal combination of all seven hyperparameters (i.e. r0, rend, ζ , η, β, Ta, Trun) for
the polynomial CIM models, we follow a workflow based on Bayesian optimization [46] per set
of problems with the same problem size and then grid search per instance:

1. Set the runtime Trun to a sufficiently large value, then do a rough grid search for the other
six parameters in a large hyperparameter space to find a smaller space where the SR is
non-zero (or where the distance to the best-known solution is under 10%, for Gset problems
where the CIM models failed to reach the best-known solution).

2. Run Bayesian optimization on this smaller hyperparameter space, and find a near-optimal
setting for all six hyperparameters to maximize the median SR per set of problems with the
same problem size if it’s non-zero or maximize the best-obtained cut value per instance.

3. With the other four hyperparameters fixed to the optimal values found by Bayesian
optimization, run a two-dimensional scan per instance of what we found to be the most
performance-relevant hyperparameters, i.e. linear gain rend and coupling strength β.

4. (for the problems with non-zero SR after the above optimization process) Set the linear gain
rend and coupling strength β to the optimal values from the previous steps, and perform a
one-dimensional scan per instance of Trun to find the optimal TTS.

Note that in this paper, the SR is obtained from 200 trials of simulation. The SR is defined as
the transient success rate as in [20], which marks a trial as a success if the GS is reached once or
more than once during the run time or integration time Trun, i.e.:

Ps(Trun) =
#Successful_trials

#All_trials
(8)

4. Benchmark studies on MaxCut problems

To evaluate the computational performance and scalability of the fifth-order polynomial CIM
model with large noise, after the optimization of CIM models in section 3.2, we solve benchmark
MaxCut problems from the BiqMac benchmark [42] of size N = 60, 80, 100 with 50% edge density,
our own MaxCut tasks with randomly generated edges with N = 30, 40, 50, 120, 150, 200, 300
with 50% edge density, and Gset instances of N = 800, 2000 from the Suite Sparse Matrix
Collection [12]. In this section, we first analyze the influence of the noise level and show
time-domain simulations to illustrate the effect of hysteresis. Then, we show the computational
performance using the third-order polynomial Ising machine model with low noise as a baseline.
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4.1. Noise level scan

We first examine the impact of random Gaussian noise on the performance of CIM models, to
investigate whether large noise can improve performance. As mentioned before, some previous
studies show that, when the noise intensity is orders of magnitude lower than the stable fixed
point values of the Ising node amplitudes, the performance of a CIM is unlikely to be influenced
by the random fluctuations stemming from the noise [20,35]. Yet different studies [34,35,47]
show that large noise improves the Ising machine performance by helping the escape from local
minima, especially basin attractors, by reducing the autocorrelation time for the applications of
Boltzmann sampling [47] and enlarging the operational area in hyperparameter spaces for hard
optimization problems [34,35]. To analyze the impact of noise on our CIM models, we conduct a
noise level scan. Representative SR curves as a function noise level γ for different models, as
depicted in Fig. 4, offer insights into the enhanced performance resulting from hysteresis.
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(a) Third-order supercritical model
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(b) Fifth-order supercritical model
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(c) Fifth-order subcritical model with
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Fig. 4. Representative SR as a function of noise level γ for BiqMac instance g05_100_4 for
third-order and two fifth-order polynomial models. The fifth-order subcritical model with
hysteresis achieves over 30% higher peak SR and encompasses an operational range of γ
with a non-zero SR broader than the supercritical models. The other model parameters are
optimized by the hyperparameter optimization workflow.

The SR curves in Fig. 4 of all models show low values in the low-noise regime, followed
by a rise to an optimal SR and then a drop back to zero. This can be understood because, in
the low-noise regime, the Ising machine can be easily trapped in local minima of a non-convex
energy landscape which is typical for the hard MaxCut instances. On the other hand, in the
large-noise regime, the signal-to-noise ratio becomes too small such that the random spin flips
induced by the noise prevent convergence to the ground state, causing a decrease in SR. Figure 4
also shows that the subcritical model outperforms the other models in achieving a higher optimal
SR and a wider operational window. This suggests that the subcritical model is less sensitive to
noise level variations, leading to improved robustness for different experimental conditions.

Note that the trends of SR curves of instance g_05_100.4 have been observed in 25 out of 30
instances in the BiqMac library simulation. The optimal noise of all three models per BiqMac
instances can be seen in the supplementary materials. For all the models, the optimal noise for
the maximal SR appears larger than 1 for most of the instances, indicating that the large noise
can improve SR performance in BiqMac tasks.

4.2. Time-domain simulations

In order to further validate the hypothesis that the hysteresis in the subcritical regime can help
reduce the fluctuations and make the Ising machine more robust to the deleterious effects of noise,
we present the time-domain evolution of the spin amplitude and energy for BiqMac instance
g_05_100.6, as a representative example.
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Figure 5 displays time trajectories with corresponding statistics of energy and spin-amplitude
distribution for different models. Row (1.) shows a low-noise simulation of the third-order model
as a baseline. A large-noise third-order model is depicted in row (2.), a supercritical fifth-order
model in row (3.), and finally a subcritical fifth-order model with hysteresis in row (4.).

Best-cut
first obtained time

Annealing
ending time

(1.)
Low-noise:
3rd supercritical
model

(a.) Time trajectories (b.) Low-energy state sampling
histogram during one run

(c.) Spin amplitude distribution
at best-cut state

(2.)
Large-noise:
3rd supercritical
model

(3.)
Large-noise:
5th supercritical
model

(4.)
Large-noise:
5th subcritical
model

GS

GS 90% GSEnergy
Spin amplitude

Fig. 5. Time trajectories and related statistical analysis of CIM models under low and
large-noise profiles for BiqMac instance g_05_100.6 with N = 100 Ising nodes. Row (1.)
shows the low-noise third-order supercritical model operated and optimized under γ = 0.01.
Row (2-4) show the large-noise simulation operated and optimized under γ = 2 for the
third-order supercritical model, fifth-order supercritical model, and fifth-order subcritical
model, respectively. Column (a.) presents the evolution of the energy (red curve) and spin
amplitude (purple curves) (only 5 randomly selected nodes out of 100 nodes are displayed
for clarity). Column (b.) displays the histogram of the low-energy state samplings (from the
GS energy to 90% GS energy) during one simulation. Column (c.) shows the spin amplitude
density distribution of all 100 Ising nodes when the best cut is first obtained, demonstrating
the analog heterogeneity of each model when reaching the optimal solution during one
simulation.

The time trajectories in column (a.) show that the third-order model under a low-noise level
exhibits clean time traces but quickly gets trapped in a local minimum. The large-noise simulation
shows much noisier behavior in the spin dynamics, as expected. Between the three models, the
subcritical model in the bottom row reaches the GS the fastest and generates fewer spin flips
afterward, compared to the other two models. The supercritical model with the same fifth-order
coefficient as the subcritical model (third row) behaves the worst in terms of solving speed and
robustness against random spin flipping.

Turning our attention now to the histogram of the low-energy state samplings for the entire
runtime series in column (b.), we see that the third-order model under a low-noise level in the top
row spends most of the time in a single low-energy state near the GS, but is unable to actually
reach it. On the other hand, the high-noise subcritical model in the bottom row visits a large
number of low-energy states during the simulation, indicating that it samples this region well,
when looking for the GS. On the other hand, the remaining two models in the middle columns
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have a higher probability of sampling the less useful higher-energy states. This trend further
supports the superiority of the subcritical model in terms of low-energy state sampling efficiency.

Finally, column (c.) illustrates the spin amplitude distribution for the state when the best cut
is first obtained. The results suggest that the large-noise subcritical model has a smaller width
of the spin amplitudes distribution for both negative and positive spin directions, with fewer
amplitudes around the flipping threshold compared to the other two models, even better than the
low-noise simulation of a third-order model.

In summary, the time domain simulations demonstrate that noise plays a crucial role in allowing
the Ising system to escape from local minima. Under a large noise level, the fifth-order subcritical
CIM model is able to reach the GS more quickly and has a higher probability of sampling the GS
or low-energy states over time compared with the other polynomial CIM models. Additionally,
the inhomogeneity of the analog amplitudes is also reduced, indicating that we can harness the
positive exploration effect of noise, while not suffering from its negative effects in terms of
amplitude noise.

4.3. Computational performance

TTS and SR are chosen to be the figures of merit in our work. The SR has been defined in section
3.2. The TTS in our simulations is defined in the same manner as in [48]:

TTS =

{︄
Trun ×

log(0.01)
log(1−Ps(Trun))

0<Ps(Trun) ≤ 0.99
Trun Ps(Trun)>0.99,

(9)

where Trun = #time_interval × #time_steps denotes the run time or integration time for one
simulation trial, and Ps(Trun) is the SR for a certain run time as defined before. Note that due to
a computation resource limitation for the simulation, the maximal #time_steps is 25000 in our
simulation. Thus TTS has an upper bound value of 55273.067, which means that when the true
TTS is equal to or larger than 55273.067, the simulation will return this value.

4.3.1. BiqMac benchmark results (N = 60 · · · 100)

In this section, we present the simulation results for the BiqMac benchmark problems, including
an analysis of the sensitivity to hyperparameter variations. We also compare the TTS and SR
performance for the third-order and fifth-order polynomial CIM models.

Sensitivity to hyperparameter variations
Figure 6 illustrates a representative two-dimensional scan of SR versus different combinations

of (rend, β) under large noise levels. The other hyperparameters are fixed at the best value for
each nonlinear model. The subcritical fifth-order CIM model not only achieves a higher peak SR
but also encompasses larger operational windows with high SR, compared with the other two
models. This implies that the subcritical fifth-order CIM model can maintain high performance,
even without fine-tuning the hyperparameters which can simplify the time-intensive parameter
optimization. Besides, this signifies increased robustness against hyperparameter imperfection
in real physical hardware. Additionally, we have performed simulations of adding spin-to-spin
variance to the fifth-order term ζ , with a standard deviation σ = 0.1ζ on the hard MaxCut instance
g05_100.6. We observe a minor impact on the SR for the supercritical model (SR changes from
49% to 45%) and subcritical model (SR changes from 96% to 95%). This indicates that the
fifth-order models appear to be robust to spin-to-spin variance of the fifth-order coefficient.

TTS and SR performance
Table 1 shows the median TTS and SR values for third-order and fifth-order supercritical

models, as well as the fifth-order subcritical model. All results are obtained after hyperparameter
scans and using a linear annealing scheme for the linear gain parameter r.

Table 1 reveals that compared with the commonly-used third-order CIM model with low noise,
the other three large-noise models reach a much higher SR for the benchmark instances. The
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(a) Third-order CIM model. (b) Fifth-order CIM model: super-
critical.

(c) Fifth-order CIM model: subcriti-
cal.

Fig. 6. SR for a 2-dimensional scan of different (β, rend) settings for BiqMac problem
g05_100.4, in the large-noise regime.

Table 1. BiqMac library MaxCut benchmark performance. The best performance among the models
of SR and TTS for each problem set is highlighted in bold. The fifth-order models outperform the

others in median TTS or median SR for the benchmark sets.

Benchmark
sets

Third-order model in
low noise

Third-order model in
large noise

Fifth-order model
supercritical in large
noise

Fifth-order model
subcritical in large
noise

Median
TTS

Median
SR

Median
TTS

Median
SR

Median
TTS

Median
SR

Median
TTS

Median
SR

g_05_60 621.0 19.5% 602.2 77% 365.8 82% 384.7 85%
g_05_80 891.1 9.5% 354.9 95% 352.7 94% 464.9 95%
g_05_100 1511.0 16% 1352.5 78% 423.2 96% 348.7 91%

median SR improvement ranges from 65.5% to 85.5% for different N. Furthermore, compared
with the supercritical models, the subcritical fifth-order models with hysteresis have a better
median TTS as the graph size scales up to N = 100.

Figure 7 presents the TTS and SR for each problem in the different BiqMac benchmark sets.
Overall, compared with the third-order low-noise model, the median performance of TTS and SR
are improved for the large-noise models. The improvement is more distinct for hard instances
(i.e., achieving less than 10% SR for the third-order CIM model in low noise) in the BiqMac
library, which we indicate by having a red instance index. 9 out of 15 hard instances gain an
average SR increase of 67% for the large-noise models. However, the TTS improvement is less
pronounced with a large-noise profile. This might be explained by the time trajectory results in
Fig. 5: the third-order model with a low-noise profile first reaches its best-cut much faster than
models with a large-noise profile. Noise can serve as a random sampling in the energy landscape
of the optimization problem, thus a large noise can improve the probability of reach the GS at the
cost of taking longer time for the sampling process.

4.3.2. Custom benchmark results (N = 30 · · · 300)

To further show the scalability of the models, we augment the BiqMac set with our own custom
MaxCut problems with sizes varying from N = 30 to 300, using randomly generated edges with
50% edge density. The models’ results are computed after the optimization process outline above.
The outcomes corresponding to TTS scalability analysis are presented in Fig. 8. Although large
noise can reduce the median TTS, it tends to increase the spread of TTS data. Also, if N increases,
the spread of TTS data tends to increase for all models. However, between all large-noise models,
the spread of TTS data from the fifth-order subcritical model is the smallest, at least for N<150.
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3rd-order model in low noise
3rd-order model

5th-order model: supercritical
5th-order model: subcritical

Model name

Fig. 7. TTS and SR of different models for instances from BiqMac benchmark sets (if not
otherwise specified, the models are operated under large-noise levels). The indices of hard
instances are highlighted in red.

Note that we are unable to accurately determine the spread for N ≥ 150, due to the upper bound
limit of TTS. Indeed, this upper bound in our simulations is 55273.067 due to a limited maximal
integration time Trun. A TTS larger than the upper bound is considered to be equal to the upper
bound itself. Note that for N = 300, only the fifth-order subcritical model achieves multiple TTS
values below this limit, suggesting a promising TTS trend for even larger N.

BiqMac instances

TTS computational upper bound

Fig. 8. TTS scaling curves for CIM models: each problem size N contains 10 problem
instances. The upper bound of the TTS computation time is indicated by the dashed line,
which is given by the maximal simulation time.
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4.3.3. Gset benchmark results (N = 800, 2000)

Finally, we also run experiments on eight selected Gset instances including N = 800 spins for
graph G18, G19, G20, G21 and N = 2000 spins for graph G39, G40, G41, G42. These instances
have been observed to be relatively hard for the third-order polynomial supercritical model to
solve [20], i.e., they have a gap of a few percentages compared to the best-known solutions. Thus
we choose the best-obtained cut per model, as the performance.

The Gset benchmark results can be seen in the Table 2. The subcritical fifth-order model
obtains a median improvement of 3.85% in the best cut for the eight hard instances in Gset library,
compared with the supercritical third-order model, suggesting that the computational advantage
of a fifth-order model remains, as the problem size scales up.

Table 2. Best obtained cut comparisons of third-order model in low noise and subcritical model. In
this simulation, we obtained the results by performing Bayesian optimization for the model

hyperparameters under low noise and large noise, respectively.

Gset instance
index

N Best-known
cut [49]

Third-order model in
low noise best
obtained cut

Subcritical model in
large noise best
obtained cut

Improvement
[%]

18 800 992 945 981 3.8

19 800 906 867 889 2.5

20 800 941 899 929 3.3

21 800 931 889 917 3.1

39 2000 2408 2233 2323 4.0

40 2000 2400 2224 2320 4.3

41 2000 2405 2234 2300 3.0

42 2000 2481 2304 2395 3.9

5. Conclusions

We develop fifth-order polynomial CIM models which can be operated either in the supercritical
pitchfork regime or in the subcritical pitchfork regime with hysteresis in its bifurcation diagram.
The fifth-order polynomial CIM models can be potentially implemented on integrated photonic
hardware, which can be operated under ultra-low photon number regime with large intrinsic
noise. It’s important to note that the fifth-order nonlinearity in spin dynamics is derived from
the microring-based photonic Ising node structure as in [29], which is built using materials
with third-order nonlinearities such as Kerr and thermal nonlinearities, rather than materials
with fifth-order nonlinearity. Thus, there is no need for additional power to drive the fifth-order
nonlinearity and the power requirements for the fifth-order polynomial model should be similar
to those for operating under the third-order polynomial model. We investigate the effect of the
noise level on the SR and TTS for different MaxCut problems, and we find that a relatively
large noise can be beneficial for improving the overall SR, and the SR improvement is more
prominent for hard instances. We have observed that the subcritical model with hysteresis
efficiently filters out undesired spin flipping after reaching low-energy states, as evidenced by the
time trajectories. This suggests that hysteresis allows a better balance between exploitation and
exploration under a large-noise profile, countering the issue of becoming ensnared in local minima
and failing to reach a GS. Also, the large-noise subcritical model achieves enhanced robustness
against hyperparameter variations. Besides, the fifth-order models hold the potential of being
implemented on other Ising machines, e.g., by using physically programmable nonlinearities
[24–28].

However, although the advantage in SR for hard instances is distinct, the results also show
that large noise can yield a longer time to find the optimal configuration due to its sampling
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process and a larger spread in the SR and TTS performance, making a minority of instances
harder to solve. The subcritical model can mitigate the issue relatively, but it still has a larger
spread compared with the model operated under low noise. It’s worth noting that the current
optimization flow is not perfect and there remains potential space to improve the model either
by extending the explored hyperparameter spaces, or by using more advanced hyperparameter
optimization tools [50], for example. In the future, it might be necessary to further optimize the
model parameters and investigate the working principle of the hysteresis in the subcritical model
to address this phenomenon in order to ensure a more reliable performance. We will also focus
on the physical realization of the proposed system. It is important to note that achieving full
optimization of all hyperparameters may be challenging in hardware due to the extensive number
of combinations required in the optimization process. However, the subcritical fifth-order model
reduces parameter sensitivity, resulting in less need for parameter tuning and a significantly
reduced overhead in parameter optimization.
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