
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12322  | https://doi.org/10.1038/s41598-024-61004-7

www.nature.com/scientificreports

A recurrent Gaussian quantum 
network for online processing 
of quantum time series
Robbe De Prins 1*, Guy Van der Sande 2 & Peter Bienstman 1

Over the last decade, researchers have studied the interplay between quantum computing and 
classical machine learning algorithms. However, measurements often disturb or destroy quantum 
states, requiring multiple repetitions of data processing to estimate observable values. In particular, 
this prevents online (real-time, single-shot) processing of temporal data as measurements are 
commonly performed during intermediate stages. Recently, it was proposed to sidestep this issue 
by focusing on tasks with quantum output, eliminating the need for detectors. Inspired by reservoir 
computers, a model was proposed where only a subset of the internal parameters are trained while 
keeping the others fixed at random values. Here, we also process quantum time series, but we do 
so using a Recurrent Gaussian Quantum Network (RGQN) of which all internal interactions can be 
trained. As expected, this increased flexibility yields higher performance in benchmark tasks. Building 
on this, we show that the RGQN can tackle two quantum communication tasks, while also removing 
some hardware restrictions of the currently available methods. First, our approach is more resource 
efficient to enhance the transmission rate of quantum channels that experience certain memory 
effects. Second, it can counteract similar memory effects if they are unwanted, a task that could 
previously only be solved when redundantly encoded input signals could be provided. Finally, we run a 
small-scale version of the last task on Xanadu’s photonic processor Borealis.

In the pursuit of improved data processing, there is an increasing emphasis on combining machine learning (ML) 
techniques with quantum computing (QC). Building on the established belief that quantum systems can outper-
form classical ways of computing1, quantum machine learning (QML)2 provides a methodology for identifying 
applications for quantum computers where the target algorithm is learned (i.e. trained) rather than designed.

In classical machine learning, algorithms such as recurrent neural networks (RNNs)3,4, transformers5,6, long 
short-term memory (LSTM) networks7, and reservoir computing (RC)8 have led to state-of-the-art performances 
in natural language processing, computer vision, and audio processing. This makes them good sources of inspira-
tion for new QML models.

However, the common use of projective measurements in quantum computing leads to the requirement of 
processing the same input data multiple times to estimate the expectation values of detected observables. It is 
known that this can lead to an exponential decrease in achievable computational complexity9, and this poses even 
more of a fundamental bottleneck for temporal models. As the detections are often carried out at intermediate 
processing stages, this leads to back-actions on the state of the quantum system. On the one hand, this gives rise 
to laborious operating procedures and large overheads10. On the other hand, it prevents one from performing 
online time series processing (i.e. constantly generating output signals in real-time, based on a continuous stream 
of input signals). This restricts the use of temporal models in fields like quantum communication, where online 
operation is of great importance.

Recently, an approach was introduced that proposes to sidestep this detection issue by performing online pro-
cessing of quantum states and thereby removing the need for detectors11. The model was inspired by the concept 
of RC8, where random dynamical systems, also called reservoirs, are made to process temporal input data. RC 
research has demonstrated that training only a simple output layer to process the reservoir’s output signals can 
achieve state-of-the-art performance in various computational tasks while significantly reducing training costs. 
Building on this idea, Ref.11 tackled several computational tasks using a random network of harmonic oscillators 
and training only the interactions between that network and some input-carrying oscillators.

OPEN

1Photonics Research Group, Ghent University - imec, Technologiepark‑Zwijnaarde 126, 9052  Gent, 
Belgium. 2Applied Physics Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. *email: 
robbe.deprins@ugent.be

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-61004-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:12322  | https://doi.org/10.1038/s41598-024-61004-7

www.nature.com/scientificreports/

Here, we introduce a Recurrent Gaussian Quantum Network (RGQN). Inspired by RNNs rather than RC, we 
choose to train all interactions within the RGQN rather than keeping a subset of these interactions fixed. Specifi-
cally, we train all interactions within the Gaussian state formalism12, thereby excluding non-Gaussian components 
like the Kerr gate and the cubic phase gate. This last restriction is beneficial as it allows us to use simple numerical 
tools while, on the experimental side, the RGQN can be implemented using optical components that are readily 
available in the laboratory13–15. We first compare our model with the findings of Ref.11 by conducting numerical 
simulations of two computational tasks: the short-term quantum memory (STQM) task and the entangler task. 
We will provide detailed definitions of these tasks in the following sections. They respectively serve as bench-
marks to assess the RGQN’s linear memory capabilities and its ability to entangle different states in a time series. 
As expected, we will show that the RGQN outperforms the RC-inspired approach at these benchmark tasks.

More interestingly, we demonstrate that the increased flexibility of our model makes it well-suited to tackle 
two different tasks within the domain of quantum communication, where optics naturally is the leading hardware 
platform. We will show that the RGQN can remove some of the hardware restrictions of the currently available 
methods for these tasks. First, we show that the RGQN can enhance the capacity of a quantum memory channel. 
In such a channel, subsequent signal states are correlated through interactions with the channel’s environment. 
Our network achieves this enhancement by generating an entangled quantum information carrier. Indeed, it is 
known that the asymptotic transmission rate of memory channels can be higher than the maximal rate achieved 
by separable channel uses. It is said that the capacity of such channels is ‘superadditive’. For a bosonic memory 
channel with additive Gauss-Markov noise16, it was previously shown that the generation of such entangled 
carriers can be performed sequentially (i.e. without creating all channel entries all at once) while achieving near-
optimal enhancement of the capacity17. Our model achieves the same result while having a simpler encoding 
scheme (e.g., without Bell measurements) and being more versatile, as it is known reconfigurable circuits can 
adapt to fabrication imperfections18,19.

Moreover, we show that a RGQN can also compensate for unwanted memory effects in quantum channels 
(the so-called quantum channel equalization or QCE task). Existing work on this task required the availability of 
redundantly encoded input signals11. This undermines the practicality of the method. Moreover, such a redundant 
encoding is impossible without full prior knowledge of the input states (e.g. when they result from a previous 
quantum experiment that is not exactly repeatable) because quantum states cannot be cloned. Here, we show 
that the increased flexibility of the RGQN allows us to lift the restriction of redundant encoding. Additionally, 
we find that the RGQN’s performance can be improved by allowing the reconstruction of the channel’s input to 
be performed with some delay.

As the RGQN does not contain any non-Gaussian components, it can be constructed using optical compo-
nents that are readily available in the laboratory13–15. To confirm this, we conducted a small-scale version of the 
QCE task on the recently introduced photonic processor Borealis15. However, our results are constrained by the 
limited tunability of Borealis’ phase modulators.

The rest of this paper is structured as follows. We introduce our RGQN model in the first section and bench-
mark it with the STQM and entangler tasks in the second section. The third section shows that the RGQN 
achieves superadditivity in a bosonic memory channel and that it tackles the QCE task without redundantly 
encoded input signals. Finally, we present the experimental QCE results.

Model
Our RGQN model is presented in Fig. 1a. It incorporates a generic m-mode circuit S that consists of beam split-
ters, phase shifters, and optical squeezers. Such a circuit can be described by a symplectic matrix. Hence, we 
will further refer to it as a symplectic circuit. As shown in Fig. 1b, any symplectic circuit can be constructed as 
a linear interferometer, followed by a set of single-mode squeezers and a second linear interferometer. This is 
known as the Bloch-Messiah decomposition20. The two linear interferometers can be further decomposed into 
a set of beamsplitters and phase shifters using a rectangular decomposition21.

Figure 1.   RGQN model. (a) Quantum states are repeatedly sent in the upper mio modes. These input modes are 
combined with mmem memory modes and sent through a symplectic circuit S . Afterwards, the state on the upper 
mio modes is collected as output, while the remaining mmem modes are looped back to the left side of S . (b) The 
symplectic circuit S can be constructed as a linear interferometer, a set of single-mode squeezers (orange boxes), 
and a second linear interferometer20.
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The mio upper modes at the left (right) side of S are the input (output) modes of the RGQN. The remaining 
modes of S are connected from left to right using mmem = m−mio delay lines. The delay lines are equally long 
and we will further denote them as ‘memory modes’. To perform a temporal task, we send a time series of quan-
tum states (e.g., obtained from encoding classical information or from a previous quantum experiment) to the 
input modes of the RGQN. The temporal spacing between the states is chosen equal to the propagation time of 
S and the delay lines, such that we can describe the RGQN operation in discrete time. Because of the memory 
modes, output states depend on multiple past input states, which grants the RGQN some memory capacity. By 
training the circuit S (essentially training the parameters of its constituent gates), the RGQN can learn to process 
temporal data.

In further sections, we sometimes restrict S to be orthogonal symplectic. Such a circuit only comprises beam 
splitters and phase shifters, excluding optical squeezers. When applicable, we will denote the circuit as O.

Note that, in contrast to quantum RNN models like Ref.22, no detectors are present in our model. Although 
we will need to use detectors to train the hardware setup, they will be left out at inference time. As discussed 
before, this allows for online operation, which means our model focuses on tackling a conceptually different set 
of tasks than currently existing quantum temporal models.

Benchmark tasks
Short‑term quantum memory task
The goal of the short-term quantum memory (STQM) task is to recall states that were previously fed to the 
RGQN after a specific number of iterations, denoted by D . This task is visualized in Fig. 2a for the case where 
mio = 2 and the RGQN consists of an orthogonal circuit. Note that if we were to use a general symplectic network 
instead of an orthogonal one, optical squeezers could be added and optimized, such that the results would be at 
least equally good. However, we will show that we can reach improved performance without including optical 
squeezers in the RGQN, which is beneficial for an experimental setup.

We focus our attention on the case where D = 1 . The input states are chosen randomly from a set of squeezed 
thermal states (more details in Methods). Fig. 3a shows the average fidelity23 between an input state at iteration 
k and an output state at iteration k + D , as a function of mmem and mio . We see that the RGQN perfectly solves 
the STQM task if mio ≤ mmem . This is easy to understand as O can be trained to perform several SWAP opera-
tions (i.e. operations that interchange the states on two different modes). More specifically, the RGQN can learn 
to swap every input mode with a different memory mode, such that the input state is memorized for a single 
iteration before being swapped back to the corresponding output mode. For mio > mmem , such a SWAP-based 
circuit is not possible, leading to less than optimal behavior of the RGQN.

In Fig. 3b, the fidelity values obtained by the RC-inspired model of Ref.11 are subtracted from our results. 
Across all values of mmem and mio , we observe that the RGQN scores equally well or better. Although Ref.11 also 
achieves a fidelity of 1 for certain combinations of mio and mmem , the set of these combinations is smaller than 
for the RGQN. Moreover, it is important to note that the RC-inspired design limits the number of trainable 
parameters, making a SWAP-based solution impossible in general. As a result, prior to training, it is more chal-
lenging to guarantee optimal performance of the RC-inspired model, while this is not the case for the RGQN.

Entangler task
The objective of the entangler task is to entangle different states of a time series that were initially uncorrelated. 
The performance of this task is evaluated based on the average logarithmic negativity between output states at 
iterations k and k + S . Negativity12 is an entanglement measure for which higher values indicate greater levels 
of entanglement between the states. Note that if we consider output states with spacing S = 1 , then we aim to 
entangle nearest-neighbor states. This last task is visualized in Fig. 2b for the case where mio = 1 . We choose 
vacuum states as input and hence the circuit S should not be orthogonal as we want to generate states with 
nonzero average photon numbers.

Figure 2.   Setups for the benchmark tasks. (a) STQM task with mio = 2. The RGQN consists of an orthogonal 
symplectic network O. Pulses of different colors represent a time series of quantum states. A state that is sent 
into the RGQN at iteration k should appear at the output at iteration k + D. (b) Entangler task for mio = 1 and 
spacing S = 1. Circles of different colors represent an input time series of vacuum states. Pulses of different colors 
are entangled output states.
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For mio = 1 , Fig. 4a displays the average logarithmic negativity obtained by the RGQN for various values 
of mmem and S. For a given spacing, the performance increases with mmem . This can be attributed to the fact 
that a higher value of mmem leads to a bigger circuit S , such that more entangling operations can be applied. It 
can also be seen that the performance roughly stays the same along the diagonal ( S = mmem ) and along lines 
parallel to the diagonal. This can be explained by the findings of Fig. 3, which indicate that increasing mmem can 
effectively address the increased linear memory requirements of the task that arise from increasing S. Finally, 
our comparison with the RC-inspired model proposed in Ref.11, as shown in Fig. 4b, indicates that the RGQN 
performs better, owing to its larger number of trainable parameters. For instance, when mmem = 5 and S = 1 
the RGQN achieves a logarithmic negativity of 0.565 whereas the RC-inspired model reaches a value of 0.359. 
These values correspond to those of two-mode squeezed vacuum states with squeezing amplitudes 0.283 and 
0.180, respectively.

Quantum communication tasks
Whereas the last section confirmed that the performance of the benchmark task can be increased by using the 
RGQN instead of the RC-inspired strategy, in this section we show that the higher flexibility of our model makes 
it well-suited to tackle quantum communication tasks. For two such tasks, the RGQN will remove some hardware 
restrictions of the currently available methods.

Figure 3.   STQM performance for D = 1 and for different values of mio and mmem . (a) Shows the average fidelity 
between a desired output state and a state resulting from the RGQN. In (b), the corresponding results achieved 
in Ref.11 are subtracted from our results.

Figure 4.   Entangler task performance for mio = 1 and for different values of S and mmem . (a) Shows the 
logarithmic negativity resulting from the RGQN. In (b), the corresponding results achieved in Ref.11 are 
subtracted from our results.
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Superadditivity
First, we show that the RGQN can enhance the transmission rate of a quantum channel that exhibits memory 
effects. When a state is transmitted through such a ‘memory channel’, it interacts with the channel’s environment. 
As subsequent input states also interact with the environment, correlations arise between different channel uses. 
Contrary to memoryless channels, it is known that the transmission rate of memory channels can be enlarged 
by providing them with input states that are entangled over subsequent channel uses24, a phenomenon that is 
known as ‘superadditivity’. Here, we aim to create such entangled input states using our RGQN.

Note the similarity with the definition of the entangler task. Now however, the goal is not to create maximal 
entanglement between the different states, but rather a specific type of entanglement that depends on the memory 
effects of the channel and that will increase the transmission rate.

The setup for the ‘superadditivity task’ is shown in Fig. 5. A RGQN with mio = 1 transforms vacuum states 
into an entangled quantum time series. Information is encoded by displacing each individual state of the series 
over a continuous distance in phase space. These distances are provided by a classical complex-valued informa-
tion stream. Their probabilities follow a Gaussian distribution with zero mean and covariance matrix γmod.

The resulting time series is sent through a memory channel. A number of K consecutive uses of the channel 
are modeled as a single parallel K-mode channel. The memory effects we consider here are modeled by correlated 
noise emerging from a Gauss-Markov process16. The environment has the following classical noise covariance 
matrix γ env:

Here, φ ∈ [0, 1) denotes the strength of the nearest-neighbor correlations and N ∈ R is the variance of the noise. 
In Eq. (1), M(φ) correlates the q quadratures, while M(−φ) anti-correlates the p quadratures.

The transmission rate of the channel is calculated from the von Neumann entropy of the states that pass 
through the channel (i.e. from the Holevo information). Here we adopt the approach and the parameter values 
outlined in Ref.16.

Note that the average photon number that is transmitted per channel use ( ̄n ) has a contribution from both 
the RGQN (i.e. from its squeezers) and from the displacer. Given a value for n̄ , the transmission rate is maxi-
mized by training both the circuit S and γmod under the energy constraint imposed by n̄ . Nonzero squeezing 
values are obtained, leading to an information carrier. This highlights the counter-intuitive quantum nature of 
the superadditivity phenomenon: by spending a part of the available energy on the carrier generation rather 
than on classical modulation, one can reach higher transmission rates, something that has no classical analog.

We now define a quality measure for the superadditivity task. The gain G is the ratio of the achieved trans-
mission rate to the optimal transmission rate for separable input states. For 30 channel uses, Fig. 6 shows G as 
a function of the average photon number n̄ per use of the channel and for different values of the correlation 
parameter φ . We take the signal-to-noise ratio SNR = n̄/N = 3 , where N is defined in Eq. (2). We observe that 
superadditivity is achieved, as the gain is higher than 1 and can reach as high as 1.10. These results agree with the 
optimal gain values that were derived in prior numerical studies of this memory channel (cfr. Fig. 7 of Ref.25).

While a scheme already exists to generate carriers sequentially17 (i.e., generating carriers without creating all 
channel entries simultaneously), our model provides a simpler and more versatile alternative. Unlike the existing 
scheme, our model eliminates the need for Bell measurements, while achieving the same near-optimal gains. 
Additionally, it is known that reconfigurable circuits can learn to compensate for fabrication imperfections as 
these imperfections are taken into account during training18,19.

(1)γ env =

(

M(φ) 0
0 M(−φ)

)

,

(2)Mij(φ) = Nφ|i−j| .

Figure 5.   Setup for the superadditivity task. A RGQN (with mio = 1 ) transforms vacuum states into a quantum 
information carrier that is entangled across different time bins. A displacer (D) modulates this carrier to 
encode classical input information. The resulting signal is sent to a bosonic memory channel16. A number of K 
consecutive uses of the channel are modeled as a single parallel K-mode channel. The channel’s environment 
introduces noise  that leads to correlations between the successive channel uses. As a result of the entangled 
carrier, the transmission rate of the channel can be enhanced.
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Quantum channel equalization
In this section, we use the RGQN as a model for a quantum memory channel. This time, we assume its memory 
effects to be unwanted (unlike the previous section) and compensate for them by sending the channel’s output 
through a second RGQN instance.

Figure 7 shows the setup for the quantum channel equalization (QCE) task in more detail. An ‘encoder’ 
RGQN acts as a model for a memory channel. Because such channels normally do not increase the average 
photon number of transmitted states, we restrict the encoder’s symplectic circuit to be orthogonal and denote 
it as Oenc . This circuit is initialized randomly and will not be trained later. A second ‘decoder’ RGQN is trained 
to invert the transformation caused by the encoder. Similar to the STQM task, we will show that an orthogonal 
symplectic circuit Odec is enough to lead to the desired performance, without requiring optical squeezers, which 
is beneficial for experimental realizations. We will further denote the number of memory modes of the encoder 
and decoder as mmem,enc and mmem,dec respectively. Finally, we introduce a delay of D iterations between the input 
and output time series, similar to the definition of the STQM task (see Fig. 2a).

Assume for a moment that the input time series of the encoder only consists of a single state, i.e. we are 
looking at an impulse response of the system. We send this state to the encoder at iteration 0, and expect the 
decoder to reconstruct it at iteration D . However, a part of the input state may be initially stored in the encoder’s 
memory modes. By choosing D > 0 , multiple states are sent from the encoder to the decoder, thereby depleting 
the encoder’s memory modes. When we increase D , more information about the original input state reaches 
the decoder by the time it needs to start the reconstruction process. A similar reasoning applies when the input 
time series consists of multiple states. This approach effectively addresses the challenge posed by the no-cloning 
principle, which prevents the decoder from accessing information stored in the encoder’s memory or in the 
correlations between the encoder’s memory and output.

For the RC-inspired model of Ref.11, only the case where D = 0 was considered. The no-cloning problem 
was addressed by redundantly encoding the input signals of the encoder. I.e., multiple copies of the same state 
were generated based on classical input information and subsequently fed to the model through different modes 
(‘spatial multiplexing’) or at subsequent iterations (‘temporal multiplexing’). Here, we show that taking D > 0 
allows us to solve the QCE task without such redundancy, ultimately using each input state only once. This not 

Figure 6.   Performance of the superadditivity task for 30 channel uses. The gain in transmission rate is plotted 
as a function of the average photon number per use of the channel ( ̄n ) and for different values of the noise 
correlation parameter ( φ ). Additional parameters are chosen as follows: mio = mmem = 1 , N = n̄/3.

Figure 7.   Setup for the QCE task when mio = 1 and for a delay D . Pulses of different colors represent a time 
series of quantum states. The encoder and decoder respectively consist of orthogonal symplectic networks Oenc 
and Odec . Oenc is initialized randomly and kept fixed. Odec is trained such that an input state that is sent into the 
encoder at iteration k appears at the output of the decoder at iteration k + D.
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only simplifies the operation procedure but also enables us to perform the QCE task without prior knowledge of 
the input states, which is often missing in real-world scenarios such as quantum key distribution. As these input 
states cannot be cloned, our approach significantly increases the practical use of the QCE task. It is important 
to note that such an approach where D > 0 was also attempted for the RC-inspired model26, but this was unsuc-
cessful, which can be attributed to its limited number of trainable interactions.

Additionally, we will show that the QCE performance of the RGQN is influenced by two key factors: the 
memory capacity of the decoder (as determined by the value of mmem,dec ), and the response of the encoder to a 
single input state (observed at the encoder’s output modes).

More formally, we measure the impulse response of the encoder by sending in a single squeezed vacuum state 
(with an average photon number of n̄impulse ) and subsequently tracking the average photon number henc in its 
output modes over time. We denote the impulse response at iteration k by hkenc.

We now define:

Ienc is a re-normalized cumulative sum that represents the fraction of n̄impulse that leaves the encoder before the 
decoder has to reconstruct the original input state.

We now consider 20 randomly initialized encoders with mmem,enc = 2 . The input states are randomly sampled 
from a set of squeezed thermal states (more details in Methods). Figure 8a shows the average fidelity23 between 
an input state of the encoder at iteration k and an output state of the decoder at iteration k + D as a function of 
Ienc and for different values of D −mmem,dec . We see that if D ≤ mmem,dec (blueish dots), the decoder potentially 
has enough memory, and the quality of constructing the input states increases as the decoder receives more 
information from the encoder (i.e. as Ienc increases). If D > mmem,dec (reddish dots), we ask the decoder to wait 
for a longer time before starting to reconstruct the input. This explains why the dots are clustered on the right side 
of the diagram because more information about the input will be received and Ienc will be higher. On the other 
hand, if the delay is too long, it will exceed the memory of the decoder, and the input will start to be forgotten. 
This explains that the darkest dots with the longest delay have the worst performance.

Note that D is a hyperparameter that can be chosen freely. Also note that the optimal choice for the value of 
D is not necessarily D = mmem,dec (light grey dots) and the actual optimum depends on the exact configuration 
of the encoder. Figure 8b shows a subset of the results in Fig. 8a, where the optimal value of D is chosen for every 
encoder initialization and every value of mmem,dec . We conclude that the task can be tackled without redundantly 
encoded input signals. As discussed earlier, such redundancy was required in Ref.11, but often cannot be provided 
in real-world scenarios. We further observe that the performance increases with both mmem,dec and Ienc . For 
mmem,dec = 3 , all 20 encoders are equalized better than is done in Ref.11.

Experimental demonstration of quantum channel equalization
As the RGQN does not contain any non-Gaussian components, it can be constructed using optical compo-
nents that are readily available in the laboratory13–15. In this section, we perform the QCE task on the recently 
introduced quantum processor Borealis15. Because of hardware restrictions, we only consider the case where 
mmem,enc = mmem,dec = 1 . The setup for this task is visualized in Fig. 9. The input time series consists of squeezed 
vacuum states (whereas squeezed thermal states were previously used to simulate the QCE task). Both the 
encoder and decoder are decomposed using beam splitters and phase shifters. Here we use the following defini-
tions for those respective components:

(3)Ienc =
1

n̄impulse

D
∑

k=0

hkenc .

(4)BS(θ) =e
θ(aia

†
j −a†i aj) ,

Figure 8.   QCE performance for 20 randomly initialized encoders that consist of 2 memory modes. The 
results are shown as a function of Ienc , i.e. the fraction of the photon number of a certain input state that 
reaches the decoder within D iterations. In (a), we consider D ∈ {0, 1, ...,mmem,dec +mmem,enc + 1} and 
mmem,dec ∈ {1, 2, ..., 5} . In (b), the optimal value of D is chosen (given an encoder and mmem,dec).
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where a†i  ( ai ) is the creation (annihilation) operator on mode i. Note that the transmission amplitude of the 
beamsplitter is cos(θ).

Whereas Fig. 8 presented the results of training the decoder, here we will visualize a larger part of the cost 
function landscape (including sub-optimal decoder configurations). By doing so, we are agnostic to the exact 
training procedure, such as the parameter-shift rule27,28. Note that while evaluating a certain point of the cost 
function landscape, i.e. while processing a single time series, the parameters of the beam splitters and phase 
shifters are kept fixed. Hence, in Fig. 9, the measurement results are not influenced by the phase shifters outside 
of the loops (i.e. outside of the memory modes). These components can be disregarded. Consequently, we can 
parameterize the encoder (decoder) using only a beam splitter angle θenc ( θdec ) and a phase shift angle φenc ( φdec).

We use a photon-number-resolving (PNR) detector to detect output states. This provides us with the average 
photon numbers of the output states, but not with their phases. Unlike in Fig. 8, we cannot use fidelity as a quality 
measure. Therefore, we will assess the performance of the RGQN using the following cost function:

where n̄kout and n̄ktarget are the average photon numbers of the actual output state and the target output state at 
iteration k respectively. K is the total number of states in the input time series. As the average photon number 
of a squeezed vacuum state increases monotonously with the squeezing parameter r29, i.e. n̄ = sinh2(r) > 0 , the 
cost function quantifies how much the squeezing levels of the output states deviate from the target values. As is 
explained in more detail in Methods, the experimentally obtained PNR results are re-scaled prior to evaluating 
Eq. (6) in order to compensate for hardware imperfections.

The small-scale version of the QCE task (depicted in Fig. 9) is run on the photonic processor Borealis15 
(depicted in Fig. 10). It consists of a single optical squeezer that generates squeezed vacuum states. These states 
are sent to a sequence of three dynamically programmable loop-based interferometers of which the delay lines 
have different lengths, corresponding with propagation times of T, 6T, and 36T ( T = 36µs ). For our experiment, 
we only use the two leftmost loop-based interferometers. More formally, we choose θ = 0 for the rightmost BS 
and φ = 0 for the rightmost PS.

As is explained in more detail in Methods, we can virtually make the lengths of Borealis’ delay lines equal. We 
do so by lowering the frequency at which we send input states and by putting the θ = 0 for the leftmost beam 
splitter in between input times.

We first consider the case where φenc = φdec = 0 , such that all phase shifters can be disregarded. Figure 11 
compares the experimental and numerical performance of the QCE task for D = 1 . We observe that the task is 
solved perfectly when either the encoder or the decoder delays states by D = 1 and the other RGQN transmits 

(5)PS(φ) =eiφa
†
i ai ,

(6)cost =

K
∑

k=0

|n̄kout − n̄ktarget| ,

Figure 9.   Setup for the QCE task where both the encoder and decoder have a single memory mode. The 
matrices Oenc and Odec are decomposed using beam splitters (BS) and phase shifters (PS). A squeezer (S) is used 
to generate input states, while the output states are measured using a photon-number-resolving (PNR) detector. 
As the PSs outside of the loops do not influence the PNR results, they can be disregarded.

Figure 10.   Borealis setup15. A squeezer (S) periodically produces single-mode squeezed states, resulting in a 
train of 216 states that are separated in time by T = 36µs . These states are sent through programmable phase 
shifters (PS) and beam splitters (BS). Each BS is connected to a delay line. From left to right in the figure, the 
lengths of these delay lines are T, 6T, and 36T. The output states are measured by a photon-number-resolving 
(PNR) detector.
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states without delay. The performance is worst when both the encoder and decoder delay states with an equal 
number of iterations (either D = 0 or D = 1 ). Indeed, the cost of Eq. (6) is then evaluated between randomly 
squeezed vacuum states. For beam splitter angles between 0 and π/2 , we find that the cost follows a hyperbolic 
surface. We observe good agreement between simulation and experiment.

We now consider the case where φenc and φdec are not restricted to 0. Note that the Borealis setup (Fig. 10) 
does not have phase shifters inside the loops. However, as is explained in more detail in Methods, we can virtually 

Figure 11.   QCE performance of Borealis when D = 1 and φenc = φdec = 0 . (a) Shows the results from 
numerical simulations, while (b) Shows experimental results. The cost function is defined in Eq. (6). The 
optimal performance occurs when the input states are delayed by D = 1 in the encoder and fully transmitted in 
the decoder ( θenc = π/2 , θdec = 0 ), or when they are fully transmitted in the encoder and delayed by D = 1 in 
the decoder ( θenc = 0 , θdec = π/2).

Figure 12.   QCE performance of Borealis when D = 1 . (a) Simulation where phase shifters are tunable without 
range restriction. (b) Simulation where phase shifters are tunable within [0,π) . (c) Experiment where phase 
shifters are tunable within [0,π) . The columns correspond with different encoders. Each plot shows the QCE 
cost (as defined in Eq. (6)) as a function of the decoder parameters θdec and φdec.
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apply the phase shifts φenc and φdec inside Borealis’ loops by dynamically adjusting the phase shifters positioned 
before those loops over time. Unfortunately, this procedure is hampered by hardware restrictions. The range of 
Borealis’ phase shifters is restricted to [−π/2,π/2] . This is problematic, since in order to apply a single virtual 
phase shift value within a specific loop, the phase shifters preceding that loop need to be tuned dynamically 
across the complete [−π ,π ] range. As a result, about half of the parameter values of the phase shifters cannot be 
applied correctly. When such a value falls outside of the allowed range, an additional phase shift of π is added 
artificially to ensure proper hardware operation.

Figure 12 shows the QCE ( D = 1 ) performance for three different encoders (corresponding to the three 
columns). We compare classical simulation results (rows 1 and 2) with experimental results (row 3). Whereas 
the restricted range of Borealis’ phase shifters is taken into account in rows 2 and 3, it is not in row 1. While 
Fig. 11 (for φenc = φdec = 0 ) showed that the decoder can easily be optimized by considering only θdec = 0 and 
θdec = π/2 , this optimization is less trivial when φenc  = 0 and φdec  = 0 . We observe that the general trends of the 
cost function landscapes agree between rows 2 and 3, although row 3 is affected by experimental imperfections.

Conclusions
We have introduced a new model to process time series of quantum states. Similar to an existing RC-inspired 
model, no detectors are present in our model, which allows the processing to be performed online. This leads to 
conceptually different tasks than the ones considered by temporal models with detectors. We first probed two key 
functionalities of our model: the linear memory capacity and the capability to entangle distinct states within a 
time series. As expected, these functionalities benefit from an RNN structure where all internal interactions can 
be trained (rather than fixing a subset of those interactions to random values). More interestingly, the RGQN 
showed the ability to tackle two quantum communication tasks, a domain where optics naturally is the leading 
hardware platform. First, we demonstrated that the RGQN can enhance the transmission rate of a quantum 
memory channel with Gauss-Markov noise by providing it with entangled input states. The enhancement showed 
to be near-optimal as compared to previous studies, while our generation scheme of the input states is simpler 
(e.g., it does not require Bell measurements). Moreover, our scheme is more versatile as it is known reconfigurable 
circuits can adapt to fabrication imperfections18,19. Second, we showed that the RGQN can mitigate undesired 
memory effects in quantum channels. This task could previously only be solved when redundantly encoded input 
signals could be provided, which often is not the case in real-world scenarios. A small-scale experiment of this 
last task was performed on the photonic quantum processor Borealis15.

Methods
The classical simulations of our RGQN were carried out using the open-source photonic optimization library 
MrMustard30. This allows us to perform gradient-based optimizations of symplectic circuits and orthogonal 
symplectic circuits.

STQM
As is explained in Ref.11, a special purpose cost function f can be used to solve the STQM task. f can be defined 
as a function of the submatrices of the orthogonal symplectic matrix that is associated with the circuit O . With 
slight abuse of notation, we write the orthogonal symplectic matrix that is associated with the circuit O as:

In contrast to Eq. (1), the quadratures are ordered here as follows: (q1, p1, q2, p2, q3, p3, ...) , where qi and pi are 
the quadratures of mode i.

When the delay is nonzero ( D > 0 ), Ref.11 shows that the goal of the STQM task can be redefined as the fol-
lowing system of equations:

Hence, we choose the following cost function:

where � · � is the Frobenius norm. Note that the last sum in Eq. (9) was not used in Ref.11, as these terms appeared 
to worsen the results. However, we have found that their inclusion is beneficial in our work. A numerical param-
eter sweep showed that the factors 0.5, 5, and 0.5 for the terms in Eq. (9), together with a value of T = 10 yield 
good results.

The learning rate is initialized at a value of 0.01 and decreased throughout the training procedure until the 
cost function converges. For each value of (mio,mmem) in Fig. 3, the training is repeated for an ensemble of 100 
initial conditions of the RGQN. After training, a test score is calculated as the average fidelity over a test set of 
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100 states. The fidelity is calculated according to Ref.23. Only the lowest test score in the ensemble of different 
initial conditions is kept, as this corresponds to a degree of freedom that is exploitable in practice.

In order to evaluate the test score, squeezed thermal states are used as input. In the case of a single mode, we 
first generate a thermal state with an expected number of photons n̄th . Afterwards, the state is squeezed according 
to a squeezing magnitude rsq and a squeezing phase φsq . The relevant parameters of this state generation process 
are chosen uniformly within the following intervals: n̄th ∈ [0, 10) , rsq ∈ [0, 1) and φsq ∈ [0, 2π).

If mio > 1 , the state generation is altered as follows. We first generate a product state of single-mode thermal 
states. The M-mode product state is then transformed by a random orthogonal symplectic circuit, followed by 
single-mode squeezers on all modes. A second random orthogonal symplectic circuit transforms the multi-mode 
state to the final input state.

Entangler task
We evaluate the cost function as follows. We send vacuum states to the RGQN for 10 iterations, such that the 
model undergoes a transient process. We numerically check that this transient process has ended by monitoring 
the convergence of the average photon number in the output mode. We then calculate the logarithmic negativity 
of the 2-mode state formed by the output at iteration 10 and 10+ S.

The logarithmic negativity of a 2-mode state is calculated from the determinants of the state’s covariance 
matrix (and its submatrices) as described in Ref.12. We want to emphasize that the definition of the logarithmic 
negativity in Eq. (76) of Ref.12 involves a logarithm, which has previously been implemented in literature both 
as a natural logarithm31 and as a binary logarithm32. Given that the analysis of the RC-inspired model in Ref.11 
utilized a natural logarithm26, we adopt the same convention such that our results can be compared directly. 
Also note that we do not calculate the negativity from the symplectic eigenvalues of the covariance matrix (as is 
done for example in Ref.32), which is beneficial for numerical optimization.

The cost function is defined as the negative of the logarithmic negativity. The training is performed using 
4000 updates of S and with a learning rate of 0.01. For each value of (S,mmem) in Fig. 4, the training is repeated 
for an ensemble of 100 initial conditions of S . Again, only the lowest score in the ensemble is kept.

Superadditivity task
For more details on the calculation of the optimal transmission rate of the quantum channel with Gauss-Markov 
noise, both with and without entangled input states, we refer to Ref.25.

For the case of entangled input, the optimization problem defined by Eq. 9 of this Reference is solved under 
the restriction that the covariance matrix γ in is produced by the RGQN. γmod is a general covariance matrix that 
takes into account the required input energy constraint (Eq. 13 in Ref.25).

The cost function is defined as the negative of the transmission rate. The training is performed using 1000 
updates of S and with a learning rate of 0.5.

Quantum channel equalization
In contrast to the STQM task, here we use the negative of the fidelity (between the desired output and the actual 
output) as a cost function, both during training and testing. The fidelity is calculated according to Ref.23. The 
input states are single-mode squeezed thermal states where n̄th , rsq , and φsq are chosen uniformly within the 
following ranges: n̄th ∈ [0, 10) , rsq ∈ [0, 1) and φsq ∈ [0, 2π).

Oenc and Odec are initialized randomly. Every epoch, 30 squeezed thermal states are sent through the RGQNs. 
In order to account for the transient process at the start of each epoch, the fidelity is only averaged over the last 
20 output states.

The training is performed using 2000 updates of Odec and with a learning rate of 0.05. In Fig. 8, the training 
is repeated for an ensemble of 20 initial conditions of S for every value of (D,mmem,dec) and for each encoder 
initialization. After training, a test score is calculated by simulating a transient process during 10 iterations and 
averaging the fidelity over 100 subsequent iterations. The lowest test score in each ensemble is kept.

Experimental demonstration of quantum channel equalization
This section describes the technical details of both the simulations and the experiments that were presented in 
the context of the QCE experiment. We first describe how the RGQN can be mapped onto the Borealis setup. 
Afterwards, we describe the input state generation, the post-processing of the PNR results, and some other 
relevant parameters for the simulations and experiments.

Mapping the RGQN model on Borealis
We map our model on the Borealis setup of Fig. 10. We choose φ = 0 and θ = 0 for the rightmost phase shifter 
and beam splitter respectively, such that these components and their corresponding delay line can be disregarded. 
After applying these changes, it is clear that the Borealis setup differs from the setup in Fig. 9 in two ways. First, 
the remaining delay lines of the Borealis setup have different lengths, which is not the case in Fig. 9. Second, 
Borealis does not have phase modulators in the delay lines. We can circumvent both of these problems as follows.

First, we can virtually increase the length of the leftmost delay line (i.e. the encoder delay line) from T to 6T 
by performing two changes: (1) we lower the frequency at which we input states from 1T  to 16T  and (2) we store 
the encoder memory state as long as we do not input a new state. More formally, we do the following. Before 
generating a new input state, we put the values of the beam splitter angles to θenc (for the encoder) and θdec (for 
the decoder). Once a state enters the encoder, it interacts with the memory state, leading to an output state and 
a new memory state for the encoder. The output state of the encoder is sent to the decoder. We now put θenc = 0 
for a period of 6T, such that no new inputs can enter the loop. Hence, the new memory state is stored in the delay 
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line of the encoder. During this period, no states are generated and no interactions occur between the encoder’s 
memory mode and input/output mode. Afterward, a new state is generated and the process is repeated.

Second, we can apply virtual phase shifts in the delay lines of Fig. 10 by using the phase shifters in front of 
the loops. To do this, we utilize an existing functionality of Borealis’ control software. This functionality (imple-
mented in StrawberryFields33 as compilers.tdm.Borealis.update_params) is normally 
used to compensate for unwanted phase shifts in the delay lines. Given such a static unwanted phase shift, the 
compensation is performed by adjusting the phase shifters in front of the loops over time, such that they apply 
different phase shifts at different iterations. The actual unwanted phase shifts that are present in the hardware 
can be measured before running an experiment. We now choose to operate the setup as if there were phase offset 
sets φ1,unwanted − φenc and φ2,unwanted − φdec in the first two delay lines respectively. Hence, we apply net virtual 
phase shifts in the loop with values φenc and φdec.

Unfortunately, this procedure is undercut by a hardware restriction of Borealis. The range of these phase 
shifters is limited to [−π/2,π/2] , which means that about half of the desired phase shifts cannot be implemented 
correctly. When a phase shift falls outside of the allowed range, an additional phase shift of π is added artificially 
to ensure proper hardware operation. Listing 1 shows the Python code for this process.

Listing 1. Code to apply virtual phase shifts inside Borealis’ loops. This is an adapted version of the function 
compilers.tdm.Borealis.update_params of StrawberryFields33.

Generating input states, post‑processing PNR results, and simulation parameters
Both for the computer simulations and for the experiments presented in the section on experimental QCE, the 
input states are generated by a single-mode optical squeezer that operates on a vacuum state. In every iteration, 
the squeezing magnitude is chosen randomly as either 0 or 1, effectively encoding bit strings into the quantum 
time series. It is worth noting that public online access to Borealis does not allow for multiple squeezing mag-
nitudes within one experiment. Our experiments were therefore performed on-site.

The output of Borealis consists of the average photon numbers gathered over 216 iterations. Due to the map-
ping described in the previous section, only 36 of these average photon numbers can be used. To account for 
the transient process, the results of the first 10 of these 36 output states are disregarded. The PNR results of the 
remaining 26 output states are used to estimate the decoder’s QCE performance.

For the simulations, 10 runs (each using a different series of input states) are performed per set of gate param-
eter values of the RGQNs. The cost is therefore averaged over 260 output states. For the experiments shown in 
Figs. 11 and 12, the number of runs per data point is 7 and 2 respectively.

In hardware experiments, non-idealities occur that are not considered in the classical simulations. We com-
pensate for two such non-idealities by re-scaling the experimentally obtained average photon numbers. On the 
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one hand, there are optical losses. On the other hand, the optical squeezer suffers from hardware imperfections 
that lead to effective squeezing magnitudes that decrease over time when the pump power is kept constant. The 
re-scaling is performed as follows. At each iteration, we calculate the average of the number of detected pho-
tons over all experiments. We fit a polynomial of degree 2 to these averages. Given an experimental result, i.e. a 
series of average photon numbers, we then divide each value by the value of the polynomial at that iteration. 
The resulting series is rescaled such that the average of the entire series matches the average value of the entire 
series of input states.

Data availability
Data is available from the corresponding author upon reasonable request.
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