
Research Article Vol. 32, No. 13 / 17 Jun 2024 / Optics Express 23561

Opto-electronic machine learning network for
Kramers-Kronig receiver linearization

SARAH MASAAD* AND PETER BIENSTMAN

Photonics Research Group, Department of Information Technology, Ghent University – imec, Belgium
*sarah.masaad@ugent.be

Abstract: We numerically demonstrate the use of an opto-electronic network comprising a
photonic reservoir and an electronic feedforward equalizer (FFE) to linearize a Kramers-Kronig
(KK) receiver. The KK receiver is operated under stringent conditions, with restricted sampling
rates and low carrier powers, resulting in a nonlinear behavior. We propose two different network
configurations, varying in the placement of the FFE component, and evaluate their ability to
linearize the KK receiver. By training these networks on back-to-back systems, we arrive at a
generic solution that significantly enhances the receiver performance, independent of specific
link characteristics. The trained networks are tested in a plug-and-play manner across diverse
short-reach links that employ standard digital signal processing blocks for the qualization. Our
results show significant improvement in receiver linearity, resulting in a reduction in bit error
rate of up to a factor of four.
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1. Introduction

Optical data traffic has evolved from predominantly traversing long-reach networks that cover
extensive distances to being increasingly transported within short-reach networks [1]. This stems
from the surge in inter- and intra- data center traffic, as well as from new emergent applications
where short but fast communication links are needed, including the widespread adoption of cloud
services, the deployment of fiber-to-home networks, and the expanded use of optical front-hauling
in mobile communication. These short-haul networks must be designed with power, footprint
and cost considerations, which impact decisions regarding transceiver technologies and signal
processing methods [2].

A pivotal challenge arises from the sheer volume of transceivers required within these networks.
This demand has led to favoring intensity modulation and direct detection as opposed to coherent
systems, since they are cheaper to deploy and operate. Although cost and complexity are lower,
they come at the expense of poor spectral efficiency. To bridge this gap, self-coherent receivers
have gained traction as potential solutions, since they offer high spectral efficiency at lower costs
[3]. This is primarily achieved through co-propagating the local oscillator with the modulated
message signal, which can reduce the number of hardware components at the receiver. In addition,
fewer photodiodes can be used, followed by different processing techniques to retrieve the complex
signal from the detector outputs. Notable examples include the Gerchberg-Saxton receiver [4], a
silicon photonics based interference cancelling receiver [5], and the Kramers-Kronig receiver [6].

The Kramers-Kronig (KK) receiver, for one, employs a single photodiode and a phase retrieval
algorithm derived from the KK relations to reconstruct the complex signal from the measured
amplitude [7]. Despite its attractive hardware simplicity, ensuring linearity within this receiver
necessitates two operational conditions. First, a minimum-phase signal is required, which is
achieved by maintaining a high carrier-to-signal power ratio (CSPR) of around 9 dB. Second, due
to the inherent nonlinear computations within the KK receiver’s phase retrieval algorithm, at least
6 samples per symbol (sps) are needed for accurate reconstruction. These conditions underscore
the tradeoffs between hardware complexity and processing requirements of self-coherent receivers,
which affects their practicality in short-haul networks. Furthermore, essential digital signal
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post-processing (DSP) operations, including equalization and forward-error correction (FEC),
are operational prerequisites that contribute to the overall complexity and cost.

Indeed, DSP algorithms and circuitry are continuously adapted to provide gains in speed
and reduce power consumption, tailoring them for optimal performance in short-distance
networks. Equalizers integrating machine learning (ML) techniques are also studied under these
constraints to find solutions that are feasible to deploy. While traditional ML focused on digitally
implemented systems, photonic ML has recently gained momentum since photonics can offer
favorable properties including high bandwidth, low power consumption, and a small footprint [8].
Additionally, the use of photonic networks for signal equalization was shown to be successful
in several works. For example, passive photonic networks on an integrated chip were shown
to perform dispersion compensation and nonlinear equalization of intensity modulated signals
numerically [9,10] and experimentally [11,12]. In [13], numerical evaluation of a photonic
network comprising ring resonators showed successful equalization of short-reach PAM4 signals.
Nonlinear equalization in coherent systems was also experimentally demonstrated in [14].

In this paper, we explore using opto-electronic machine learning networks to ease the CSPR
and the sps constraints of KK receivers, such that they are more applicable to short-haul systems.
The optical portion of the network is trained following a machine learning paradigm known as
reservoir computing [8]. The reservoir is cascaded by a trainable electronic feedforward equalizer.
This trainable opto-electronic system sandwiches the KK receiver and is used to compensate for
nonlinear errors arising from a KK receiver operated under severely limited receiver resources.
Namely, the receiver is operated using 3 sps instead of the required 6 and at CSPRs below
9 dB. Numeric results show significant improvement in receiver linearity, which allows for better
integration in a digital signal post-processing pipeline for chromatic dispersion compensation
(CDC) and blind phase search (BPS). Importantly, the optical reservoir replaces a bandpass filter
before the KK receiver, which is typically required in self-coherent systems. Furthermore, the
training is done on a back-to-back system, without requiring knowledge of the link parameters,
allowing the network to be inserted in a “plug-and-play” manner in varying links. We target
short-reach systems of up to 250 km deploying 64 quadrature-amplitude modulation, and show
up to 4 times reduction in bit error rate (BER).

Efforts in utilizing machine learning networks to aid self-coherent receivers have also been
reported in other works, albeit utilizing fully digital neural networks. For example, authors in
[15] report the use of a convolutional neural network that can emulate the behavior of the KK
algorithm while lowering its CSPR requirements. Deep neural networks have also been shown to
lower the complexity and the required CSPR of the Gerchberg-Saxton receiver [16,17].

Compared to our previous work [18], this paper utilizes an opto-electronic network for
equalizing receiver-based nonlinearity, as opposed to a fully optical network for equalizing
channel-based nonlinearity. Furthermore, the opto-electronic network is trained on a back-to-back
transceiver system such that it can be inserted in various links and seamlessly cascaded with a
DSP pipeline for channel impairments. This arrangement allows the network to be utilized for
transceiver impairments while channel impairments like dispersion are deferred to the DSP.

In the next section, the operation of the Kramers-Kronig receiver is reviewed. Section 3 then
introduces photonic reservoir computing and details the architecture used in this paper. Next,
Section 4 describes the full network, the training methods, and the system under study. Section 5
then discusses the achieved results, and the paper is finally concluded in Section 6.

2. Self-coherent Kramers-Kronig receiver

The Kramers-Kronig receiver is a phase-retrieval based self-coherent receiver that uses the known
KK relations to reconstruct a complex-valued signal from its magnitude. While the KK relations
relate real and imaginary parts of a signal, the KK receiver uses a logarithmic trick to relate the
amplitude and phase [19]. Due to the use of the logarithm, the frequency spectrum of the signal
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is broadened and requires at least 3-fold upsampling for correct operation. The reconstruction
accuracy of the KK receiver also depends on having satisfied the minimum-phase condition.
This can be achieved by maintaining a high power ratio between the co-transmitted carrier and
the message signal, which is termed the Carrier-to-Signal Power Ratio (CSPR).

The pipeline of the KK receiver [19] is shown in Fig. 1, with insets of the frequency components
of the signal at different stages. Initially, the optical single-sideband signal is photo-detected and
then sampled using an analog-to-digital converter (ADC). The signal is then up-sampled, the
logarithm is applied, and then the KK relations are applied in the frequency domain. The complex
signal produced after the KK relations is exponentiated to reverse the effect of the logarithm
and is subsequently down-sampled. The reconstructed signal will include the co-propagated
carrier, similar to the optical signal impinging on the photodiode. Further processing is required
to retrieve the message signal, which involves removing the carrier and frequency shifting the
signal.
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Fig. 1. KK receiver pipeline, showing receiver blocks, several signals along the pipeline,
and their frequency spectrum. Receiver blocks: | · |2: Photodiode – ADC: Analog-to-Digital
Converter – ↑: upsamplingln: natural logarithm – FFT: Fast Fourier Transform – KK: KK
relations – IFFT: Inverse Fast Fourier Transform exp: exponential –↓: down-sampling – C.R:
carrier removal (through filtering) – F.S: frequency shifting. Signals: s(t): single sideband
signal (includes unmodulated carrier and message signal) – Fr

n: frequency components of
real signal – Fr

n + jFi
n: frequency components of complex signal – m(t): complex message

signal

Figure 2 illustrates the combined impact of altering the CSPR and samples per symbol (sps)
on the receiver’s performance. It showcases BER vs CSPR in a back-to-back KK transceiver
configuration utilizing 64 QAM signals at an Optical Signal-to-Noise Ratio (OSNR) of 27 dB.
The trendlines depict the influence of employing signals with 6, 4, and 3 sps in the logarithmic
and exponential functions. The figure shows that the bit error rate drops as the CSPR increases,
irrespective of the sampling rate. Since the BER plateaus at around 9 dB and 6 sps, this can be
considered near ideal reconstruction for the system parameters under consideration.

Fig. 2. BER vs CSPR of a back-to-back 64 QAM KK transceiver system operated at 6,4
and 3 samples per symbol

The errors incurred in the back-to-back scenario stem exclusively from the receiver’s non-
linearity. Some of these error values appear relatively low, but since they are the result of
nonlinear transformations, they are expected to significantly impact subsequent digital signal
post-processing stages, which typically require linear receiver operation. For instance, attempts
to compensate for chromatic dispersion are unlikely to achieve full mitigation, leading to a
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significantly higher BER penalty than that seen in a back-to-back system. This will be shown in
Section 5, where we numerically study the impact of the receiver’s distortion when short links are
introduced in the system. We will also show how our proposed solution can positively influence
the receiver’s behavior to result in lower BER at seemingly unfavorable operational conditions.

3. Photonic reservoir computing

Neural networks are machine learning models that are quickly finding applications in several
areas, including telecommunications. Used as universal approximators, they can be applied
to model complex problems such as those that originate from optical fibers and other system
components, which allows using them for equalization [20]. These neural networks vary in
their architecture to make them better suited for certain tasks, but they are generally composed
of function-performing nodes that are connected either recurrently to create memory or in a
feed-forward manner for memoryless tasks. Training the network requires using large datasets to
find the best weights for the different node connections.

In reservoir computing, a recurrent network’s inner connections are left unchanged during
training to simplify an otherwise computationally expensive process [21]. Instead, the output
weights, known as the readout weights, are trained. Figure 3 shows an example of a 16-node
reservoir, where a network of function-performing nodes has fixed weighted interconnects with
trainable output weights.

Neural networks are machine learning models that are quickly finding applications in several 
areas, including telecommunications. Used as universal approximators, they can be applied to 
model complex problems such as those that originate from optical fibers and other system 
components, which allows using them for equalization [20]. These neural networks vary in their 
architecture to make them better suited for certain tasks, but they are generally composed of 
function-performing nodes that are connected either recurrently to create memory or in a feed-
forward manner for memoryless tasks. Training the network requires using large datasets to 
find the best weights for the different node connections. 

Besides simplifying the training of digitally realized networks, reservoir computing also 
enables using physically realized networks, where it is either expensive or not possible 
altogether to have trainable inner network weights. In such physical systems, dynamics that are 
naturally occurring or easily realizable in that physical substrate are used for computing  [22]. 
However, weighting elements that allow controlled manipulation of the signals may not be so 
easy to realize, especially if they are needed for internal connections in the dynamic system. In 
such cases, reservoir computing has been shown as an effective framework for training and 
thus utilizing physical systems to compute [23]. 

To this end, we rely on the reservoir computing framework to enable computing in an 
integrated photonic system. This allows us to leverage the advantages of photonics for 
processing signals, especially those that are transported optically. Our implementation of a 
photonic reservoir consists of 3x3 multimode interferometers (MMIs) connected by spiraled 
waveguides [24]. The MMIs are the nodes of the network and perform linear mixing of the 
inputs in the complex domain. Every node has two inputs that come from within the network 
and two that feed back to the network. The third input allows injecting an external signal at 
each node, and the third output allows connection to the readout. The fixed internal weights of 
the network arise from the waveguide interconnects, which alter the phase and amplitude of the 
signals. Due to the sidewall roughness of the waveguides and random variance of their length 
around the designed value, every reservoir will have a different but fixed set of internal phase 
weights. Trainable complex-valued optical weights are implemented at the readout. 
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Fig. 3. 16-node reservoir showing function performing-nodes and weighted connections.
Input weights (orange) and output weights (green) may be trained, while inner connections
(blue) remain fixed.

Besides simplifying the training of digitally realized networks, reservoir computing also
enables using physically realized networks, where it is either expensive or not possible altogether
to have trainable inner network weights. In such physical systems, dynamics that are naturally
occurring or easily realizable in that physical substrate are used for computing [22]. However,
weighting elements that allow controlled manipulation of the signals may not be so easy to realize,
especially if they are needed for internal connections in the dynamic system. In such cases,
reservoir computing has been shown as an effective framework for training and thus utilizing
physical systems to compute [23].

To this end, we rely on the reservoir computing framework to enable computing in an integrated
photonic system. This allows us to leverage the advantages of photonics for processing signals,
especially those that are transported optically. Our implementation of a photonic reservoir
consists of 3× 3 multimode interferometers (MMIs) connected by spiraled waveguides [24]. The
MMIs are the nodes of the network and perform linear mixing of the inputs in the complex
domain. Every node has two inputs that come from within the network and two that feed back
to the network. The third input allows injecting an external signal at each node, and the third
output allows connection to the readout. The fixed internal weights of the network arise from
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the waveguide interconnects, which alter the phase and amplitude of the signals. Due to the
sidewall roughness of the waveguides and random variance of their length around the designed
value, every reservoir will have a different but fixed set of internal phase weights. Trainable
complex-valued optical weights are implemented at the readout.

This network is composed solely of passive components, since both the MMIs and the
waveguides do not require driving. While this offers a power advantage, it also makes the
reservoir fully linear in the complex domain, thus hindering its use for nonlinear tasks. However,
we have shown that by following the reservoir with a nonlinear receiver, the reservoir behaves as
a pre-distorting filter for a nonlinear kernel (i.e. the receiver), allowing the entire system to solve
nonlinear tasks. This was numerically and experimentally shown to perform well on a variety
of tasks, mainly focusing on channel impairments [25]. In the next section, we detail how this
photonic reservoir can be utilized as part of an opto-electronic network to equalize KK receiver
errors.

4. System details

Our network architecture is composed of a 24-node photonic reservoir co-trained with a 16-tap
electronic feed-forward equalizer (FFE). The photonic reservoir replaces the optical bandpass
filter standardly required before a KK receiver and hence is not an additional component in the
system. Both the reservoir and FFE are composed of generic delay and weighting elements
implemented either in the optical or electrical domain, and are therefore simple to implement.

Naturally, the photonic part of the network is placed before the detector, while the FFE part
is after the detector. The algorithmic portion of the KK receiver can then be performed before
the FFE block or after it. As such, two possible architectures can be modelled and are shown in
Fig. 4. Note that the algorithmic portion of the KK receiver denotes all the blocks in Fig. 1 that
follow the detector, including the carrier removal and the frequency shifting.

𝐴∠𝜃 =

𝑓𝐾𝐾
𝐴 2 ,

𝑠𝑝𝑠 = 3

𝐴∠𝜃 =

𝑓𝐾𝐾
𝑓𝐹𝐹𝐸 ( 𝐴 2),

𝑠𝑝𝑠 = 3

KK Receiver blocks

KK Receiver blocks

Trainable network blocks

Trainable network blocks

Autoencoder – like
configuration

Neural Network– like
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Fig. 4. Two configurations for the opto-electronic network with the KK receiver. The
network is composed of two trainable blocks (blue), namely the photonic reservoir (always
preceding the photodiode) and the electronic FFE. The KK receiver consists of two blocks
(orange), namely the photodiode and the algorithmic steps shown in Fig. 1. The complex-
valued output of the receiver in the top configuration (autoencoder-like) is a direct function of
the raw measured amplitude and the sps. In the lower configuration (neural network-like), the
measured amplitude undergoes an FFE transformation before it continues to the algorithmic
portion of the receiver.
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In the top configuration, the FFE portion of the trainable network comes at the end of the
full KK receiver. The idea is to create a network where a photonic pre-distorting filter imposes
meaningful distortions on the signal making it more robust to the KK receiver’s nonlinearity.
Then, an FFE post-filter is used to negate these distortion effects and reconstruct the message
signal. To better enable a symmetric behavior between the reservoir and FFE, we use a single
input node in the reservoir. However, the input node is chosen in the middle of the reservoir to
allow for richer reservoir dynamics. Note that the reservoir can use the KK receiver’s behavior
as a nonlinear kernel. Both the FFE and reservoir have interconnections that introduce half
symbol-period delays. This architecture bears similarity to equalization autoencoders used in
end-to-end learning of fiber optic systems [26].

In the lower configuration, the KK receiver pipeline is separated by the FFE block, where the
FFE is performed after the detector, but before the KK receiver algorithm. This configuration
separates the KK receiver nonlinearities such that every linear trainable part of the network is
followed by a nonlinear KK receiver transformation. The reservoir’s delay lines are designed to
introduce half symbol-period delays, while the FFE effectively delays the signal by 40% of the
symbol period in every tap. This is because the ADC samples the signal at 2.5 samples/symbol,
and the FFE granularity is set to delay 1 sample per tap. Because we aim to enhance the
reservoir’s dynamics, three input nodes are used: one from the top left corner, one in the center,
and one from the bottom right nodes. This configuration bears resemblance to a two-layer neural
network where a linear layer is followed by a nonlinear activation function.

For training the weights in both configurations, we set up a back-to-back system to ensure that
only the KK receiver errors are compensated for. This facilitates arriving at a generic solution
that will linearize the KK receiver without being trained on a specific channel length. Then,
the resulting architecture can be inserted in a plug-and-play manner into any channel length,
provided that the transceiver operational conditions remain fixed and the channel impairments
are compensated for using DSP modules. In addition to reducing the number of times the system
needs to be trained since it is unrelated to the system length, this method also simplifies the
training process, because the DSP pipeline is not traversed in every training step.

The system schematic is shown in Fig. 5, where the training pipeline is seen in (a) and the testing
pipeline in (b). VPI transmission suite [27] is used to simulate the behavior of the transmitter
and fiber, while the receiver and trainable network are simulated using PyTorch and the photonic
library based on it, Photontorch [28]. The figure shows that three different configurations are
deployed for both the training and testing pipelines. Therese are the two network configurations
shown in Fig. 4 in addition to a benchmark configuration. For the benchmark, an ideal bandpass
filter before the KK receiver is used to filter out the noise pre-detection instead of the trainable
photonic reservoir. The benchmark pipeline also includes a trainable 16-tap FFE equalizer. This
is done to showcase that the added benefits of the proposed solutions do not come from linear
compensations like those achievable by a linear equalizer, despite our trainable network elements
being linear. Rather, the gains from our solution are achieved through leveraging the entire
pipeline to arrive to the autoencoder-like or neural network-like behaviors described in Fig. 4.

The simulation parameters are detailed in Table 1. The setup employs a 64-QAM modulator
transmitting at a rate of 64 Gbaud. This data stream modulates an optical carrier with a linewidth
of 200 KHz. The signal’s average power remains fixed at 3 dBm, and an OSNR of 27 dB is
achieved through gaussian noise loading. Subsequently, an unmodulated continuous wave (CW)
laser, positioned approximately 2 GHz away from the message signal’s left edge, is optically
generated and combined with the signal. The CW laser’s power level is varied to achieve CSPRs
within the range of 5 dB to 8 dB. The KK receiver algorithm is operated at 3 samples per symbol,
which is achieved by upsampling from the ADC’s 2.5 samples.

In the testing pipeline, standard single-mode fiber spanning distances from 20 km to 250 km is
used. Standard DSP blocks are implemented to execute dispersion compensation and blind phase
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Fig. 5. Schematic of (a) training system and (b) testing system. Systems are simulated three
times: with the autoencoder-like configuration, the neural network-like configuration, and a
benchmark configuration. The autoencoder-like and the neural network-like configurations
follow the description detailed in Fig. 4; the benchmark configuration utilizes an optical
bandpass filter before the photodiode and an FFE block after the full KK receiver. Tx:
Transmitter – CW laser: Continuous wave laser – AWGN: Additive white gaussian noise
DC: Directional coupler CDC: Chromatic dispersion compensation – RRC: Root-raised
cosine filter –BPS: Blind phase search

Table 1. Transmission system parameters

Transmitter Fiber

Symbol rate 64 Gbaud Length 20 km – 250 km

OSNR 27 dB Attenuation 0.02 dB/km

Signal power without coupled carrier 3 dBm Nonlinear index 2.6e-20 m2/W

Pulse shape root-raised, 0.01 roll off Dispersion parameter 16 ps/(nm km)

Carrier linewidth 200 Khz Polarization dispersion 0 s/m1/2

CSPR 5 dB – 8dB

Guard band 2 GHz

Carrier linewidth 200 KHz

search (BPS) processes. Note that the training pipeline excludes a BPS block due to the laser
linewidth being set to 0 Hz during training. This deliberate setting expedites the training process
by eliminating the necessity for blind phase searches in every training epoch.

The training data set is composed of over 16,000 symbols that are generated using a Wichmann-
Hill generator [29]. In the first training stage, the network parameters are initialized in preparation
for the second stage which is backpropagation. Initialization of the network parameters is typically
an important aspect when backpropagation is used, since the presence of multiple local minima
can deter the optimizer from finding the optimal solution and instead get stuck at suboptimal ones.
For example, in our networks, a random initialization followed by backpropagation continuously
underperformed the benchmark. As such, Linear Regression (LR) is used to find an initial set of
weights for the reservoir weights. A closed form solution, given by Eq. (1), is found through
fitting the reservoir states to a target signal that is generated similarly to the training pipeline but
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does not include noise.
W = (XHX + αI)−1XHy, (1)

where W is the readout weight matrix, X is the readout state matrix, α is a regularization parameter
to curb overfitting, I is the identity matrix, and y is the target signal. The superscript H refers to
the conjugate-transpose of the matrix, which is needed for complex-valued data. It turns out that
this first LR step conditions the reservoir to behave as a bandpass filter, which is necessary to
avoid signal-noise beating in the detector. Indeed, it has a similar performance as the benchmark
configuration, where such a bandpass filter is explicitly implemented. Initializing the reservoir
for this behavior allows starting at the benchmark performance where noise is filtered from the
signal before attempting to optimize this solution further.

Next, we address the initialization of the FFE weights. The straightforward initialization for the
FFE weights is setting all the weights to 0 except the center tap which is set to 1. This initialization
is used for the autoencoder-like configuration. For the neural network-like configuration, we
were concerned that the first network layer (i.e., the reservoir) would have a more advanced
initialization than the second layer. Since the FFE in this case is also followed by a nonlinear
receiver transformation, it might not be able to take advantage of this if the initialization is near a
suboptimal local minima. As such, we used a genetic algorithm known as CMA-ES (Covariance
matrix adaptation evolution strategy) [30]to find a new initialization point. To allow flexibility,
the algorithm was also able to vary the LR initialization of the reservoir weights. However, we
did not exhaustively investigate the influence of this approach.

After initialization, backpropagation is used to alter the optical reservoir weights as well as
the electrical FFE weights. The same procedure is followed for both configurations. A gradient
descent optimizer with momentum [31] is used to minimize the mean-square error (MSE) loss
between the signal and the target symbols

MSE = ∆I2 + ∆Q2, (2)

where I and Q are in the in-phase and quadrature components of the QAM signal. However,
since the reservoir behaves as a trainable filter, a solution that backpropagation can arrive at is
one where the signal power is attenuated with respect to the carrier. While this would lead to a
higher CSPR and thus to MSE reduction, this is an undesired effect since it achieves performance
improvements without leveraging the network’s behavior and at the expense of signal attenuation.
To prevent this from happening, we introduce in the error function a second term that heavily
penalizes growth of CSPR while also being neutral to the reduction of the CSPR. Such behavior
is found in a softplus [32] function, which is also differentiable and continuous. The training
error is then a sum of the CSPR and MSE errors as described by Eq. (3).

errortraining = errorCSPR + MSE, (3)

errorCSPR =
1
β

ln(1 + exp(β × ∆CSPR)), (4)

∆CSPR = CSPRreservoir − (CSPRtransmitted + α), (5)

where CSPRtransmitted is the desired CSPR to maintain (which corresponds to the CSPR the signal
was transmitted at) and CSPRreservoir is the CSPR measured at the output of the readout. At the
end of the training, CSPRreservoir must be less than or equal to CSPRtransmitted. The hyperparameter
β and α allow optimizing the behavior of the softplus function to appropriately penalize ∆CSPR
with respect to MSE. This ensures that the MSE contribution is still significant and optimized for
during training.

To escape potential local minima, the learning rate (LR) of the optimizer is chosen such that
it is slightly high, causing the training error to temporarily and sporadically increase during
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training. This is because there are two error terms, and allowing the optimization algorithm
to explore options where the CSPR is temporarily increased allows arriving at better overall
solutions. Naturally, the LR should not be too high, as the error can then spiral reaching large
values and getting stuck at a local minima. To showcase the training dynamics, a segment of
the training progress is shown in the Fig. 6. The plot shows errortraining increasing momentarily
during the training before decreasing again. Note that overfitting is not commonly a problem in
these networks since the network’s nonlinearity is limited. As such, we rely on the training error
and do not use a validation set.

𝑒𝑟
𝑟𝑜

𝑟 𝑡
𝑟𝑎

𝑖𝑛
𝑖𝑛

𝑔

Training epoch

Fig. 6. Plot showing a segment of the training error vs epoch. A momentary increase in
error is seen before it starts decreasing again

For the benchmark pipeline, the only trainable block is the FFE since the optical bandpass filter
has fixed parameters. The FFE weights are first initialized with 0s except for the center tap which
is initialized with 1. Then, backpropagation is used to optimize the weights using the MSE error
function of Eq. (2). Note that monitoring the CSPR is irrelevant in this configuration since the
optical bandpass filter is not trainable and will not change the CSPR. However, backpropagation
training contributed to no improvements compared to the performance of the initialized weights.
On the contrary, it worsened the overall BER since optimizing for MSE does not necessarily
lead to better BER. Note that backpropagation cannot use BER as an error function since it is a
non-continuous function. To rule out the possibility of being stuck in a local minimum due to
our initialization, we moved to finding FFE weights through CMA-ES and used BER as a metric
instead of MSE. However, the training resulted in less than 3% improvement, if any, compared to
the initialization. This shows that there are little to no gains achievable through standard linear
equalization. The benchmark results reported in the next section are based on the CMA-ES
solution for the FFE block.

5. Results and discussion

The training BER achieved in back-to-back systems is shown in Fig. 7 for CSPR values between
5 and 8 dB. For each CSPR, a different reservoir with random input and internal phase variations
is simulated and a different dataset is also used. Both proposed network configurations had
substantially lower BERs compared to the benchmark, with the autoencoder-like configuration
outperforming the neural network-like configuration.

For the testing dataset, over 32000 symbols were generated using a Whichmann-Hill generator,
seeded at random and different seeds to the training ones. A different test set was also used for
every CSPR value. Figure 8 shows the achieved test BER against fiber lengths spanning between
20 and 120 km for three CSPR values. Results for the autoencoder-like configuration are shown
on the left subplot and results for the neural network-like configuration are shown on the right
subplot. Results from the proposed networks are shown in solid lines, contrasted against results
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Fig. 7. Back-to-back BER measured during the training phase for CSPRs ranging between
5 and 8 dB and at 3 sps. The two proposed network configurations are shown against the
benchmark pipeline.

from the benchmark configuration which are shown as dashed trendlines. Each color corresponds
to a different CSPR. When compared to a back-to-back system, the fiber channel in the testing
pipeline adds linear errors that are nonlinearly transformed due to the receiver and therefore are
incompletely compensated using standard CDC. As such, the errors of the testing pipeline are
substantially higher than those observed in the training configurations. Note that the nonlinear
Kerr effect in the fiber is negligible at the power levels investigated in this paper.

Fig. 8. results for the testing set showing BER vs fiber length for the autoencoder-like
configuration (left) and the neural network-like configuration (right). Results from the
opto-electronic networks are shown as solid lines, while results from the benchmark pipeline
are shown as dashed lines. The colors refer to the different CSPRs which range between
6 dB and 8 dB.

As the opto-electronic networks enhance the receiver’s linearity, lower BERs are achieved,
with around 3-4 times improvement seen from the autoencoder-like configurations and around 2-3
times improvement from the neural network-like configuration. Furthermore, Fig. 8 indicates that
similar BER results were achieved by the autoencoder-like configuration at 2 dB lower CSPRs
compared to the benchmark, while a 1 dB improvement was contributed by the neural network-like
configuration. These improvements are consistent over the range of lengths investigated in the
paper.

Compensation is also evident from the constellation diagrams in Fig. 9, which show signals with
a CSPR of 7 dB after traversing 120 km for the benchmark pipeline (left), the autoencoder-like
configuration (center), and the neural network -like configuration (right).

Figure 10 shows the impact of evaluating the system at a fiber length of 250 km, i.e. roughly
twice as long as the maximum of Fig. 8, so that dispersion accumulation becomes more
pronounced. A notable increase in errors is observed at 5 dB and 6 dB, attributed to the failure
of the BPS in accurately compensating for the phase noise. While in theory the severity of the
phase noise should remain unaffected by the length of the fiber, in practice however, when the
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Fig. 9. Constellation diagrams for CSPR 7 dB after 120 km when detected by the benchmark
pipeline (left), the auto-encoder like configuration (center), and the neural network -like
configuration (right).

dispersion residual errors are significant, the BPS algorithm will be suboptimal and achieve a
poor phase compensation. To potentially address this issue, a larger averaging window might
improve performance, but this enhancement would demand increased computational resources
and memory allocation.

Fig. 10. BER vs CSPR after 250 km transmission for the opto-electronic networks against
the benchmark pipeline. A spike in the BER is seen in the benchmark pipeline due to residual
phase error.

We then explore the connection between our networks’ performances and the receiver’s
nonlinearity, aiming to discern the extent to which system performance relies on this nonlinearity.
The receiver’s nonlinear behavior is exhibited at the detector when CSPR levels are low, as well
as at the algorithmic portion when the samples per symbol are low. While the CSPR value is an
aspect of the signal itself, the sps is easily adapted on the receiver’s end. As such, we study the
effect of changing the sampling rate of the KK receiver after the networks have been trained for
operation with 3 sps, and do this for two CSPR levels.

Figure 11 shows the BER vs sps of the testing set at 250 km for both configurations. The sps is
varied between more nonlinear (i.e., 2.5 sps) and more linear (i.e., 4 and 6 sps) receiver operation.
Note that the lower sps system can exhibit highly nonlinear behavior which, as seen in Fig. 10,
may lead to residual phase noise and thus a high BER. As such, to ensure the results of Fig. 11
reflect the effects of changing the nonlinearity of the receiver, we set the linewidth of the laser to
zero. The left subplot of Fig. 11 shows the performance of the systems when the CSPR is 6 dB,
and thus the overall receiver is more nonlinear compared to the right subplot with a CSPR of
8 dB.

Both network configurations at both CSPRs continue to have good performance at 2.5 sps,
resulting in errors 2 to 5 times lower than the benchmark. However, as the sps increases above 3,
the neural-network like configuration becomes distorting to the signal and thus performs worse
than the benchmark. This is more nuanced when the CSPR is higher, and thus the overall receiver
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Fig. 11. BER vs SPS for testing pipelines at 250 km. Networks were trained to operate at 3
sps but were tested at sps values between 2.5 (more nonlinear) and 6 (more linear). Both
6 dB CSPR (left) and 8 dB CSPR (right) are shown.

behavior is more linear. In contrast, the autoencoder-like configuration continues to perform
better than the benchmark as the sps increases. However, similar to the neural network -like
configuration it too deteriorates in performance as the CSPR increasing. These results indicate
that the neural network-like configuration is very dependent on the nonlinear behavior from the
receiver’s sampling rate. The autoencoder-like configuration on the other hand continues to
achieve better performance than the benchmark as long as a portion of the KK receiver (i.e., the
CSPR) remains nonlinear.

When constructing the two different configurations, several aspects were varied, including the
placement of the FFE block, the input nodes of the reservoir, the delay line lengths of the FFE
block, and the initialization before backpropagation. These factors make it hard discern which
aspect or combination of aspects led to the difference in achievable BERs. Nonetheless, the
results of both networks indicate that significant BER gains are achievable through leveraging
the autoencoder-like and neural network-like behaviors.

Moreover, the opto-electronic networks reduce the complexity of the KK receiver, especially
at higher baud rates, by halving the system’s sampling rate, thereby streamlining computationally
intensive operations. This reduction in complexity is notable even with the incorporation of the
additional FFE component, as this component functions effectively at low sampling rates and can
be realized in either analog or digital form.

The reservoir and FFE node count were chosen to offer increased degrees of freedom and
higher programmability, although further investigation could focus on minimizing the network
costs. These nodes, alongside their programmability, introduce memory that could potentially
compensate—at least partially—for dispersion. Although this paper does not explore this aspect,
training the reservoir to perform several functions has been explored in other works [33].

Finally, we address two limitations of the opto-electronic network. Since the photonic reservoir
replaces an optical bandpass filter, the network training optimizes the reservoir’s behavior to
achieve suitable cutoff and roll-off characteristics. Consequently, changes in the system’s noise
profile may necessitate new training. Moreover, the performance remains limited when compared
to a fully coherent receiver. Since the opto-electronic neural networks have linear architectures,
they are not comparable to a fully capable machine learning network. Rather, the approach in
this paper offers a simple alternative designed to boost the performance of a less capable system
by harnessing the nonlinear functions inherent in the receiver.

6. Conclusions

We numerically demonstrated the use of an opto-electronic network composed of an integrated
photonic reservoir and an electronic feed forward equalizer for the linearization of a KK receiver
operating at 3 sps and CSPRs below 9 dB. Up to a 4x reduction in BER was achieved on links of
250 km and shorter, without explicitly training the reservoir on these channels and with seamless
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DSP integration. The opto-electronic network components are fully linear which makes them
easily realizable, and they rely on the receiver’s nonlinearity to achieve the desired behavior.
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