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Abstract: Photonic reservoir computing has been used to efficiently solve difficult and time-
consuming problems. The physical implementations of such reservoirs offer low power con-
sumption and fast processing speed due to their photonic nature. In this paper, we investigate
the computational capacity of a passive spatially distributed reservoir computing system. It
consists of a network of waveguides connected via optical splitters and combiners. A limitation
of its reservoir is that it is fully linear and that the nonlinearity – which is often required for
solving computing tasks – is only introduced in the output layer. To address this issue, we
investigate the incorporation of an additional active nonlinear component into the system. Our
approach involves the integration of a single semiconductor laser in an external optical delay
line within the architecture. Based on numerical simulations, we show that the architecture with
this semiconductor laser has a nonlinear computational capacity that is significantly increased
as compared to the original passive architecture, which can be beneficial to solving difficult
computational tasks.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Currently, there is a large and growing interest in machine learning (ML) and neuromorphic
computing in our society. This was recently demonstrated by the large success of ChatGPT,
an artificial intelligence large language model developed by OpenAI [1]. The training of such
artificial neural networks is typically performed by digital computers. However, most machine
learning models contain many parameters which need to be optimized. ChatGPT, for example,
contains billions of trainable parameters, and its successor GPT-4 contains even more [2]. This
means that training such models is computationally difficult and requires a lot of memory, time
and energy. As a result, many different platforms are being researched as potential alternatives to
the current standard of digital machine learning. Photonic implementations of artificial neural
networks can provide such an alternative. This is motivated by their potential for increased
computing speed, high power efficiency and the possibility of high parallelism inherent to
photonics [3–7].

An example of such a photonic neuromorphic framework is photonic reservoir computing
(RC). Reservoir computing systems are based on recurrent neural networks (RNNs) and consist
of three different layers: an input layer, a reservoir and an output layer (also called the readout
layer). The input layer is used to inject data into the system and the output layer is where
predictions are made using the input data. The reservoir is a network layer that contains a large
number of randomly interconnected nodes which functions as a dynamical nonlinear system.
The connection weights of the reservoir are fixed and remain unaltered. The only trainable
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weights are in the output layer, and therefore the total training time of RC is significantly reduced
compared to traditional RNNs [8]. A large variety of (photonic) RC systems have already been
successfully used to solve complex tasks, such as speech recognition and pattern recognition
[7,9–11], time-series predictions [12–14] and nonlinear channel equalization tasks [15,16].
Various integrated implementations using photonics have already been experimentally realized,
such as delay-based RC using a semiconductor with optical feedback [17] and spatially distributed
RC using passive silicon photonics [8,18].

We focus on the computational capacities of a spatially distributed photonic network, which
can also be implemented using an integrated approach. Its nodes are physically implemented
using passive optical components. In this work, we use the passive spatially distributed network
introduced in Ref. [16], referred to as the four-port architecture (FPA), and which we describe in
detail in Section 2.1. Although the reservoir of this network is entirely passive, some nonlinearity
is introduced in this RC system through the input layer (e.g. from the nonlinear transfer function
of a Mach-Zehnder modulator) and/or through the readout layer (e.g. because the readout signal
is measured using photodetectors). These networks have resulted in good performance on a
range of tasks [8,16,19–21]. However, the nonlinearities present in such networks can, for certain
difficult tasks, be too weak and result in a sub-optimal performance [22].

There have already been various attempts to introduce nonlinearities in this reservoir. In one
of the early works of spatially distributed on-chip silicon photonic networks by Vandoorne et al.
[19], the nonlinearities of the nodes were implemented by introducing semiconductor optical
amplifiers (SOAs) in the network to replicate a hyperbolic tangent activation function. Although
simulations of such networks resulted in good performance on benchmark tasks [20,21], such an
approach resulted in a large power consumption and heat production as each node contained an
active SOA.

We therefore want to investigate the effect of placing a single nonlinear component inside
the reservoir. We propose to add extra nonlinearity to this network by introducing a single
semiconductor laser (SL). This differs to previous attempts to introduce nonlinearity within the
passive architecture, where SOAs were placed at every node [19–21]. In this study we use an
SL as active component, as opposed to a SOA. This choice is motivated by the fact that SLs
have a highly nonlinear and fast dynamical response, which results in a much faster operation as
compared to SOAs (which have response times on the order of nanoseconds [23]). Furthermore,
using SOAs usually implies that a spectral bandpass filter has to be incorporated in the setup
to filter out spontaneous emission noise. This makes semiconductor lasers a great candidate
for introducing nonlinearity to the FPA. Additionally, this active component can be helpful to
provide extra power to counter the losses which occur within this network due to its topology.

The paper is organised as follows: in Section 2, we give a short introduction to the FPA. This
architecture is then modified by introducing an SL in an external optical delay line, which we
refer to as the FPA+SL. In Section 3, we investigate - based on numerical simulations - the
performance of the FPA+SL on different benchmark tasks, together with the performance of the
original passive FPA. We also investigate the linear and nonlinear memory capacity of these RC
systems. In Section 4, we give the conclusions of this paper.

2. Numerical implementation of the investigated RC systems

2.1. Four-port architecture

In this work, we focus on the passive reservoir computing architecture first introduced in Ref. [8]
and improved later on in Ref. [16], which is referred to as the four-port architecture (FPA). It
is a linear photonic network which functions as a multipath interferometer and consists of 16
nodes, as shown in Fig. 1. These nodes are arranged in a 4×4 grid and connected by multiple
waveguides. Each node consists of a multi-mode interference (MMI) coupler. The blue circles
represent the nodes of the architecture (i.e. the MMI couplers) which split their input signals
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equally into three output ports. Every node receives input from two neighbouring nodes and feeds
its signal to two other neighbouring nodes. The two remaining ports (one input and one output
port) of the nodes are used for data injection and detection and are indicated in Fig. 1 by "input
ports" on the left-hand side and "output ports" on the right-hand side of the architecture for every
corresponding node. Note that the numbering of the nodes starts at 0 in this work. The optical
power at the computing nodes, nodei, is measured at all the output ports using photodetectors
and is used for calculating weights wi, which we discuss in more detail further in this paper.
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Fig. 1. Illustration of the FPA consisting of 16 3×3 multi-mode interference (MMI) couplers,
shown as blue circles, which represent the nodes and which are arranged in a 4×4 grid. Each
node is connected to 4 ports of neighbouring nodes and contains an input and output port,
used for data injection and detection. The input data u(t) is optically modulated and injected
into the input port by a Mach-Zehnder modulator (MZM) at an injection rate µ. The optical
power at the output ports of the 16 nodes (nodei) is measured using photodetectors in the
readout layer and is used to train linear weights (wi) corresponding to a target output (y).
The internal delay time between nodes is represented by τC. In our simulations, port 1 is
always used as input port.

To numerically implement the FPA, we use the PhotonTorch module to code it as a photonic
element. PhotonTorch [24] is a Python model which allows for highly parallel numerical
simulations of large photonic circuits on graphical processing units (GPUs) and permits easy
access to individual component parameters for optimization. The parameters we use for simulating
the FPA are given in Table 1. The most important parameter for this architecture is the length
of the waveguide between two MMI couplers, which causes an internal delay time τC between
nodes in the architecture and a phase due to propagation. In practice, the internal delay time τC
can be controlled accurately in an integrated setup, while the phase can fluctuate significantly due
to fabrication imperfections leading to geometry variations within the waveguide, and therefore
also to variations in the effective index of refraction. This is because only 50nm of optical path
length difference can result in a phase difference of 0.1π, while an optical path length of 50µm is
needed for a significant time delay of approximately 1 ps [8,25]. In our simulations, we define
the waveguide length between nodes as cτC

ng
, with ng the group index of refraction and c the speed

of light. The internal delay time τC is a parameter we vary, between 2.5 ps and 60 ps. The phase
due to propagation between the nodes is modelled as a random variable drawn from the uniform
distribution [0, 2π] for every waveguide, and is fixed at the initialization of the simulations. Note
that in our simulations no extra delay is modelled for the MMI couplers, as the effect of this
would result in a general delay for all MMI couplers which could be incorporated in the internal
delay time τC, as all MMI couplers are assumed to be identical.
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Table 1. Parameters and their values used in the simulations (unless stated otherwise).

Parameter Symbol Standard value

Simulation timestep dt 0.5 ps

Group refractive index ng 4.564

Waveguide losses 1.50 dB/cm

Wavelength λ 1550 nm

Injection rate µ 100 s−1 or 100
√

10 s−1

Internal delay time between couplers τC Scanned over [2.5,60] ps

Input segment duration τM 30 ps

External delay time (to SL) τD 5 ps

Feedback rate (to SL) η 10
√

2ns−1

Linewidth enhancement factor α 3

Threshold gain g 1 ps−1

Differential gain ξ 5×10−9ps−1

Spontaneous emission noise factor β 10−6

Carrier lifetime τe 1 ns

Normalized threshold pump current rate Jthr 1017s−1

Normalized excess pump current rate (for FPA+SL) ∆J 2Jthr

Modulation amplitude of MZM AMZM
π
2

Bias of MZM ΦMZM
π
4

The injection of discrete input data samples uk is done by a sample-and-hold procedure
resulting in an input data stream u(t), where this input data stream is piecewise constant and where
every segment of u(t) is stretched with a constant input segment duration τM . An illustration of
this procedure is shown in Fig. 2. The ratio τC /τM is an important parameter for the FPA.
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Fig. 2. Illustration of discrete input data samples uk (a) and the input data stream u(t)
consisting of piecewise constant segments, with input segment duration τM , resulting from
the sample-and-hold procedure (b).

If τC /τM >1, the duration of a segment of the input data stream is shorter than the time
required for the sample to travel between two adjacent nodes. This means that a segment of the
input data stream has not reached these nodes before the next sampling event, where we measure
the optical power of the nodes at the readout layer and which occurs every τM . If τC /τM <1, the
segment of the input data stream has reached at least one adjacent node before the next sampling
event occurs. By making this ratio lower, the segment of the input data stream will be able to
reach more nodes within the network before being sampled. However, if τC /τM is too small,
the segment of the input data stream will traverse the network multiple times before the next
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sampling event occurs. This ultimately leads to an almost constant output power from each node
as the optical power is spread over the whole network, resulting in a poor performance as the
nodes’ states are now (almost) independent of the input data.

In Ref. [8], it was found that a ratio of τC /τM = 0.4 was optimal for the 2-bit XOR task for
bit rates between 0.125 and 12.5 Gbs−1 for a spatially distributed RC system similar to the one
used here. The injection of the input data stream u(t) is done using one input port, as shown in
Fig. 1. In this work, we have arbitrarily chosen input port 1, while the other input ports are not
being used. Because of the symmetry in the FPA, we do not expect this choice of input port to be
crucial. This is supported by some tests we have done using some other input ports, showing
similar results. We inject the data optically by using an unbalanced Mach-Zehnder modulator
(MZM), where the output of the MZM is given by

EMZM = Eext

(︂
1 + ei(AMZMu(t)+ΦMZM)

)︂
eiω0t. (1)

Eext = 100 is the amplitude of the injected external field, ω0 is the frequency of this external field
and u(t) is the input data stream normalized between [0, 1] (or [−1, 1] when considering negative
input values). The modulation amplitude is set at AMZM = π/2, and bias of the MZM is set at
Φ = π/4. The resulting electric field EMZM is subsequently injected into the network via a 2×1
MMI coupler, at an injection rate µ, so that the injected signal Einj = µEMZM . Note that the input
is modulated on both the phase and amplitude of the injected signal.

The readout layer is constructed by measuring the optical power of every output port of the
FPA at every sampling event (i.e. every τM), where we use the output of all 16 nodes, indicated
by nodei in Fig. 1. These node states are used for calculating linear weights, wi, during training
on labeled data, and for testing on unseen data.

2.2. Four-port architecture with a semiconductor laser in the external delay line

We now combine the previously mentioned FPA [16] with a single-mode SL in an external optical
delay line. This network is shown in Fig. 3 and we refer to this architecture as the FPA+SL. The
injection of data into this architecture is identical as the procedure described in Section 2.1, i.e.
using the sample-and-hold procedure. The standard input port is again arbitrary chosen to be
port 1. All the other input ports of the architecture are again not being used. For the output
ports, one output port of the architecture is connected with an external optical delay line. This
results in the output of one node not being available for the readout layer, which we refer to as the
feedback port. All other 15 remaining nodes are connected to photodetectors. The signals from
these photodetectors, indicated by nodei in Fig. 3, are used to form the readout layer and are used
for calculating linear weights, wi, during training and for testing on unseen data. The optical
signal from the feedback port is injected into a single-mode SL using an external delay line. The
field emitted by the SL is then coupled back to the 2×1 MMI coupler, that in its turn is connected
to input port 1 of the FPA, thus concluding the feedback loop. The value for the external delay
time τD of the delay line from the FPA to the laser is variable in this paper, with values scanned
between 5 ps and 60 ps. The waveguide between the MZM and 2×1 MMI coupler, and the
waveguide between the 2×1 MMI coupler and FPA are both coded in our simulations to have
a length of zero, so that they do not contribute any extra timing effects. This is because these
delays can always be incorporated in the value of τC or τD. In our simulations, we set τM = 30
ps, unless stated otherwise, as this timescale results in the highest memory capacity [26] for
delay-based reservoir computing when using an SL [27].

The rate equations of the SL [28] for the complex amplitude of the slowly-varying envelope of
the electric field E(t) around a center frequency and the number of carriers in the active medium
available for lasing N(t) (both dimensionless quantities), are given in Eqs. (2,3).

dE(t)
dt
=

1
2
(1 + iα)ξN(t)E(t) + ηEFB(t) + F̃β(t) (2)
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Fig. 3. Illustration of the FPA+SL. The input data u(t) is optically modulated and injected
into the input port by a Mach-Zehnder modulator (MZM) at an injection rate µ and a 2×1
multi-mode interference (MMI) coupler. In our simulations, we use input port 1 to inject
data and use one of the output ports as feedback (FB) port. This feedback port is connected
to an external delay line with delay time τD and a single-mode SL with feedback rate η.
The optical power at the output ports of the other 15 nodes (nodei) is measured using
photodetectors in the readout layer and is used to train linear weights (wi) corresponding
to a target output (y). The internal delay time between nodes is represented by τC. In our
simulations, port 1 is always used as input port, while the feedback port is variable.

dN(t)
dt
= ∆J − N(t)

τe
− (g + ξN(t)) |E(t)|2 , (3)

where α is the linewidth enhancement factor, ξ and g are the differential gain and linear threshold
gain. η represents the fixed feedback rate. ∆J is the excess pump current divided by the elementary
charge, so that ∆J = J − Jthr, with J the normalized pump current rate, and Jthr the normalized
threshold pump current rate of the SL. τe is defined as the carrier lifetime. F̃β(t) represents
complex Gaussian white noise to simulate the spontaneous emission noise. F̃β(t) has a zero mean
⟨F̃β(t)⟩ = 0 and autocorrelation ⟨F̃β(t)F̃β(t′)∗⟩ = βN(t)

τe
δ(t− t′), where β controls the spontaneous

emission noise strength. The EFB(t) term represents the slowly-varying envelope amplitude of
the feedback term, originating from the feedback port of the FPA and which is injected into the
single-mode SL. Remark that we use the same frequency ω0 for the injection laser and for the
center frequency of E(t) in Eq. (2) (i.e. the detuning between Eext and E(t) is set to zero).

3. Numerical results

3.1. Santa Fe prediction task

In this section, we compare the performance of the FPA and the FPA+SL on the Santa Fe
time-series prediction task. Specifically, the goal of this benchmark task is to make a one-step
ahead prediction using the previous input samples. The Santa Fe dataset contains just over 9000
data points sampled from a far-IR laser in a chaotic regime [29]. To train the weights of the
readout layer, we take 3010 data samples from the beginning of this time-series. The next 1010
data samples are used to perform the testing. The 10 first data samples of both sets are discarded
from the training and testing procedures to remove the effects of any transients when initializing
the architectures. As a measure for the performance, we use the normalized mean squared error
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(NMSE) on the test set, where the NMSE is defined as

NMSE(y, ŷ) =
⟨︁(y − ŷ)2⟩︁⟨︁(y − ⟨y⟩)2⟩︁ , (4)

with y the expected output data and ŷ the predicted output data. The best performance corresponds
to the lowest NMSE, with reported best NMSE values for simulated RC systems on the Santa Fe
one-step ahead prediction task being around 10−2 [27,30,31].

In the next two sections, we investigate the influence of the injected power, which is controlled
by the injection rate µ, on the performance of both architectures. We consider two different
situations. The first situation is where we inject data, coming from the MZM, into the architecture
at an injection rate µ = 100 s−1 ps, and which we refer to as the weak data injection regime. The
second situation is where the injection rate is higher, µ = 100

√
10 s−1. This corresponds to a

10-fold increase in the injected power compared to the previous situation. We refer to this as the
strong data injection regime.

3.2. Performance on Santa Fe task in weak data injection regime

To find the optimal combination for the internal delay time τC between nodes and the external
delay time τD of the network, we perform a two dimensional scan of these parameters and
investigate their effect on the performance of the Santa Fe benchmark task. As mentioned
previously, we have fixed the input segment duration to τM = 30 ps. As we initially do not know
whether or not the choice of the feedback port would have a large impact on the results, we
perform simulations using subsequently a different output port as feedback port. The result of
the two dimensional sweep of τC and τD is shown in Fig. 4 for the FPA+SL in the weak data
injection regime for the 16 different choices of feedback port configuration.
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Fig. 4. Performance of the FPA+SL in the external delay line on the Santa Fe task for a
two dimensional sweep of τC and τD, for different feedback port configurations shown as
subplots. The input segment duration τM = 30 ps is held constant for all subplots and the
injection rate µ = 100 s−1.

In Fig. 4, we observe a distinct region of good performance which depends on τC. For all
feedback ports, except feedback port 2, we find that this region of good performance corresponds
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to τC ∈ [2.5, 30] ps (remark that our scan only starts at τC = 2.5ps). This shows that when
considering this architecture, the internal delay time τC should not surpass the input segment
duration τM = 30 ps to avoid a poor performance, which was already known from previous
studies [26]. When the internal delay time τC is longer than the input segment duration τM , a
segment of the input data stream still propagates between the nodes in the network and has yet to
reach the readout layer before the next sampling event occurs. However, the previous segments
will already have reached some of the nodes when this sampling event takes place. Therefore,
when we inject input sample n of the Santa Fe time-series, the readout layer only contains input
samples n − 1 or older while the benchmark task still remains the same, i.e. predicting input
sample n + 1. Thus, the reservoir is now implicitly performing a multi-step ahead prediction,
which is more difficult than the one-step ahead prediction. Note also that the value of the external
delay time τD does not seem to be critical to achieve good performance, as the results do not vary
with τD within the scanned region.

We remark that the performance when using feedback port 2 is different compared to all other
feedback ports. Namely, its performance deteriorates at τC> /τM2 = 15 ps, while for all the
other feedback ports this is at τC>τM = 30 ps. When we use feedback port 2, this output port is
not accessible for the readout layer. As we inject data in port 1, we thus now have to wait for 2τC
before a segment of the input data stream first percolates in the readout layer, and therefore τM
needs to be at least equal to 2τC for good performance.

To compare the performance of the FPA+SL with the FPA, we again fix τM = 30 ps and scan
the internal delay time τC where we repeat the simulation run 10 times with different random
phases between nodes for both architectures. For the FPA+SL, we fix the external delay time
τD to 5 ps. The reason for this specific value for τD is because, according to Fig. 4, it results in
a good performance and because we want to minimize the external delay as much as possible,
to allow for compact future implementations. Figure 5 shows the results of the performance of
the FPA and the FPA+SL. The results for both architectures are shown with their median and
interquartile range (IQR). The reason for using these metrics instead of the mean and standard
deviation is because of their resilience to outliers.
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Fig. 5. Median and interquartile range of the NMSE as a function of τC /τM of the FPA
and the FPA+SL, over 10 simulation runs with different phases between nodes. The external
delay is held constant at τD = 5 ps, the input segment duration at τM = 30 ps and an injection
rate µ = 100 S−1 for both architectures. The performance of the FPA+SL with feedback
from port 2 is shown in red and with feedback from the other ports in blue or green.
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The performance of the FPA is shown as a black curve in Fig. 5. The best performance of
the FPA is found at τC /τM ≤ 1. In Fig. 5, we also show the performance of the FPA+SL, for
the 16 possible feedback port configurations. Due to the different performances of the feedback
port configurations, we classify them into three separate groups based on their performance as
a function of τC /τM . The performance corresponding to feedback port 2 is shown in red, as
it is the only configuration which results in a poor performance for τC>15 ps for the FPA+SL.
The two other groups containing the other feedback port configurations are again split based
on their performance, in this case using an arbitrarily chosen threshold NMSE of 2 × 10−2 for
τC ≤ τM . The first group consists of feedback port configurations (ports 0, 4, 5, 8 to 10, 12 to 15)
which are considered bad, with median NMSE values higher than 2 × 10−2 for τC ≤ τM , shown
in green. The other group consists of feedback port configurations (ports 1, 3, 6, 7 and 11) which
are considered good, with median NMSE values lower than 2 × 10−2 for τC ≤ τM , shown in blue.
We do, however, have to mention that even though the medians of this group correspond to a
lower NMSE compared to the first group, their interquartile ranges still overlap.

The fact that we observe different performances for different feedback port configurations
can be heuristically explained by the optical power present at the different output ports. This
is because of attenuation due to loss within the waveguides and because of the topology of the
architecture, where the optical power is distributed throughout the architecture. As we introduce
the signal via input port 1, we can calculate the path that the light will travel within the FPA. We
can do this by considering the architecture as a directed graph. The shortest distance between
the origin, i.e. node 1, and the other nodes can be calculated via Dijkstra’s algorithm [32], and
the results are shown in Fig. 6(b). The number of occurrences of said shortest distance is also
calculated and given in Fig. 6(c). The numbering of the nodes of the architecture are shown in
Fig. 6(a) for clarity.
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Fig. 6. Numbering of the nodes of the FPA, with the standard choice of the input port as
node 1 highlighted in red (a). Shortest path expressed as multiples of τC between node 1 and
all the other nodes of the FPA (b) and the number of occurrences of this shortest path (c).

Figure 6(b) shows that some nodes are visited within a short distance from the input port at
node 1, while for some nodes the shortest distance to the input node 1 is 6τC. Also, Fig. 6(c)
shows that some ports are visited often within this shortest path, due to the topology of the FPA.

The results from Fig. 6(b) explain why some feedback ports such as at the output ports of nodes
3 and 6 result in good performance. This is because the signal only has to travel 2 waveguides
from the input port at node 1 to those nodes. Therefore, the input signal only passes through
3 MMI couplers before reaching nodes 3 and 6. The power which arrives at these nodes will
therefore be less attenuated due to splitting and waveguide losses when compared to the power in
the nodes which are farther away from the input node.

The fact that nodes 3 and 6 receive significantly more optical power than the other nodes
implies that the external SL can more easily achieve injection locking when it receives its injection
from either of these two nodes. The reason why the feedback port configuration for node 11
shows a good performance, despite its large distance from the input node, is the fact that the
shortest path from node 1 to node 11 occurs multiple times in the FPA, as is shown in 6(c): for
node 11, the shortest path occurs 8 times, thus still allowing for a high power in this node. The
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same argument holds for node 7, which has a distance of only 3 waveguides from node 1, but
which also occurs often. Note that these discussions are based on only the shortest distances.
Different paths taken may add extra optical power to the nodes, but these paths will be longer,
and thus result in more attenuation. We conclude that some feedback port configurations perform
better compared to others on the Santa Fe task due to a higher power available in the feedback
signal that is injected in the SL. In the next section, we further investigate the importance of
injection locking of the laser on the performance for the FPA+SL. We use stronger data injection
into the architecture so that a stronger field is being injected into the single-mode SL. Instead of
the previously injection rate µ = 100 s−1, we now use µ = 100

√
10 s−1. We expect this to more

easily lead to injection locking, and hence we expect improved performance.

3.3. Performance on Santa Fe task in strong data injection regime

In Fig. 7, we repeat the two dimensional parameter scan of τC and τD, at fixed τM = 30 ps, but
now for a larger injection rate of µ = 100

√
10 s−1. Compared to Fig. 4, we notice similar results

with two distinct regions of good and bad performance. However, we observe that the contrast
between the region of good and bad performance is increased, with more points in the good region
having a very good performance. The fact that we observe a large region of good performance
shows that we do not require to carefully fine-tune the hyperparameters τC and τD of the FPA+SL
for this task. Moreover, as the performance does not change much with τC and τD, we are able to
keep the delay times very small, resulting potentially in a small footprint of the FPA+SL. The
timing of the architecture appears to be unchanged, with all the edges between good and bad
performance being unchanged compared to Fig. 4 for all the feedback port configurations, i.e. at
τC = τM = 30 ps for all feedback ports except for port 2.
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Fig. 7. Performance of the FPA+SL on the Santa Fe task for a two dimensional sweep of
τC and τD, for different feedback port configurations shown as subplots. The input segment
duration τM = 30 ps is held constant for all subplots and the injection rate µ = 100

√
10 s−1.

We now compare the performance of the FPA+SL, with a stronger injection compared to
the previous section, with the FPA. We again scan the internal delay time τC and repeat the
simulations 10 times with different random phases between nodes, at fixed τM = 30 ps. We again
fix the external delay time τD to 5 ps for the FPA+SL, limiting the length of the external delay
line. The results of the simulations, indicated by the median NMSE and the NMSE’s interquartile
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range, as a function of τC are shown in Fig. 8. We find that the NMSE of the FPA barely differs
from the results found in Fig. 5, where a weaker injection was used. However, we now observe
that all feedback port configurations for the FPA+SL, shown in blue, have similar performance, as
opposed to the weak injection regime. This means that the choice of the feedback port becomes
less relevant for high injection strengths. This is most likely due to the stronger injection, so that
it is easier to achieve injection locking in the laser for all feedback ports, which allows for a more
consistent response as compared to the weak injection regime shown in Fig. 5 [33]. Additionally,
all feedback port configurations, apart from port 2, show similar performance to the FPA for
all values of τC /τM . We observe that the performance remains very good for τC ≤ τM , with
an NMSE ≈ 10−2. Note also that an NMSE of 10−2 is already among the best performance
values reported in reservoir computing literature on the Santa Fe task, so that we expect that an
even lower NMSE is very difficult to achieve. As with Fig. 5, we observe that when τC>τM , the
performance of the FPA+SL starts to deteriorate drastically for all feedback ports except for port
2. For feedback port 2, shown in red, we again observe a deteriorating NMSE at τC>τM /2 , as
was present in Fig. 5.
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FPA+SL, FB-port = 2
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Fig. 8. Median and interquartile range of the NMSE as a function of τC /τM of the FPA and
the FPA+SL, over 10 simulations runs with different phases between nodes. The external
delay is held constant at τD = 5 ps, the input segment duration at τM = 30 ps and an injection
rate µ = 100

√
10 s−1 for both architectures. The performance of the FPA+SL with feedback

from port 2 is shown in red and with feedback from the other ports in blue.

The similar performance of the FPA and the FPA+SL seems to indicate that for the Santa
Fe prediction task, the additional nonlinearity of the SL in the feedback loop does not lead to
better performance on this specific task, and that the nonlinearity of the MZM and photodetectors
is sufficient. However, with our architecture, we are able to outperform other architectures on
the Santa Fe task with a lower error while using fewer nodes. For example, if we compare our
architecture to the parallel and deep reservoir computing system [11], we are able to achieve
a similar performance, but with fewer nodes (15 versus 800 nodes). Likewise, we are able to
achieve a similar performance as the on-chip photonic neural field [18] (15 versus 1300 nodes).
Remark that for other tasks, this will likely be different. Furthermore, it is not straightforward to
compare these results with other works - e.g. where they have incorporated SOAs instead of
SLs as nonlinearities into passive architectures [19–21] - as their benchmarks differ from the
Santa Fe task we use as benchmark. Instead of focusing on these other benchmark tasks, we will
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quantify the performance of the FPA and FPA+SL using computational capacities which can be
generalized to the performance on any other task.

3.4. Memory capacity of the architectures

In the previous section, we have investigated the performance of the FPA and the FPA+SL on
the one-step ahead Santa Fe time-series prediction task. However, the Santa Fe task does not
quantify the amount of nonlinearity of both systems. The added nonlinearity from the SL could
be beneficial to more complex benchmark tasks, such as e.g. the NARMA10 task. Instead of
selecting specific benchmark tasks that might benefit from this added nonlinearity, we have
chosen to study a task-independent measure of the computational capacity which can quantify this
increased nonlinearity. We quantify - based on numerical simulations - the linear and nonlinear
memory capacity of the FPA and the FPA+SL. We scan the internal delay time τC and the input
segment duration τM . We again fix the external delay for the FPA+SL at τD = 5 ps, i.e. the
same value as in the previous section. As done in the previous sections, we use input port 1 to
inject the input data. For the choice of the feedback port, we use output port 1. This allows
us to introduce the nonlinearity early in the architecture, and which reduces the losses due to
propagation. A different choice for the feedback port can have a different result on the calculated
memory capacity, but this is outside the scope of this work.

We calculate the memory capacity using the techniques from Ref. [34]. We inject an input
data stream, originating from a sample-and-hold procedure of discrete input samples uk- drawn
from a uniform distribution between [−1,+1]. Next, we train the readout layer to reconstruct
products consisting of normalized Legendre polynomials of l-delayed previous input samples
uk−l. We limit this delayed input to l ≤ 10. In total, we inject 500 010 input samples from the
uniform distribution, and again discard the first 10 samples which are used for initialization of
the architecture. To have strong injection, we use the parameter values from Section 3.3.

The target data yk is constructed by the product of normalized Legendre polynomials Pδ(·), of
a given degree δ, from previous inputs. Note that there are multiple combinations of Legendre
polynomials when considering combined polynomial degrees larger than 1. For example, if the
combined degree d = 3, we need to take into account all the product combinations of Legendre
polynomials with degrees: δ ∈ {(1, 1, 1), (1, 2) and (3)}. To illustrate this, the combination
δ = (1, 2) for the third degree can be written as a product of Legendre polynomials with degrees
1 and 2:

yk,(δ=(1,2),(l1,l2,l3)) = P1(uk−l1 )P2(uk−l2 , uk−l3 ), (5)

where (l1, l2, l3) are the set of indices of past input samples, and which we have limited to li ≤ 10
here. Therefore, there also exist many different possible combinations for these sets of indices,
adding to the complexity when calculating the memory capacity. The mean squared error (MSE)
between the expected signal yk, such as for the example shown in Eq. (5), and the predicted signal
ŷk can be calculated for all input samples. The MSE, for a specific product combination δ and a
set of specific indices of past inputs (l1, . . . ), is used for calculating the memory capacity,

Cδ,(l1,... ) = 1 −
⟨︁(y − ŷ)2⟩︁⟨︁

y2
⟩︁ , (6)

where Cδ,(l1,... ) ∈ [0, 1] and with the average taken over all input samples. If we then sum over all
possible combinations of the delayed elements (l1, . . . ), for a specific combination of Legendre
polynomials δ, and sum over all possible Legendre combinations which result in the combined
degree of d, we have the memory capacity of degree d,

Cd =
∑︂
δ

Cδ =
∑︂
δ

∑︂
(l1,... )

Cδ,(l1,... ). (7)
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If we sum over all memory capacities over all degrees, we can find the total computational
memory capacity of the system, MC.

The theoretical upper limit for the total memory capacity MC for both RC systems is given by
the total number of nodes within the architecture, as proven in Ref. [34]. Note, however, that
the total memory capacity does not provide a clear indication for the performance on different
benchmark tasks. The individual memory capacities per degree provide a much better indication
for this, as shown in Ref. [22]. Note also that we only use a finite number of input data samples,
meaning that we could potentially overestimate the value of the memory capacity Cd. To avoid
this situation, we implement a threshold capacity Cthr ≈ 2 × 10−4, so that values for Cδ,(l1,... )
below Cthr are not considered when calculating the memory capacity, as discussed in Ref. [34].

In Fig. 9(a)-(e), we show the memory capacity for the first five degrees, and the cumulative
(total) memory capacity up to the fifth degree for the FPA in Fig. 9(f). In Fig. 9(a), we observe
that the linear memory capacity (i.e. degree 1, Cd=1), is the highest when the internal delay time
τC is equal to the input segment duration τM , i.e. τC = τM . For the second degree, Cd=2, shown
in Fig. 9(b), we observe the highest memory capacities when τC ⪅ τM . This can also be seen for
the third degree, Cd=3, shown in Fig. 9(c), although the region of high memory capacity is in that
case reduced to 2τC ⪅ τM . For the fourth and fifth degrees, Cd=4 and Cd=5, shown in Fig. 9(d)
and Fig. 9(e), we observe negligible memory capacities. The total memory capacity, shown in
Fig. 9(f), shows a nearly uniform distribution, except for τC>τM . Note that we only calculate
memory capacities up to degree d = 5, which means that we might somewhat underestimate the
total memory capacity MC for this architecture. However, the memory capacity up to the fifth
degree should already provide a good indication for the nonlinearities within the architecture.

10 30 50 70 90
M (ps)

30

25

20

15

10

5

C
 (p

s)

(a)

Degree 1 (Cd = 1)

10 30 50 70 90
M (ps)

(b)

Degree 2 (Cd = 2)

10 30 50 70 90
M (ps)

(c)

Degree 3 (Cd = 3)

10 30 50 70 90
M (ps)

(d)

Degree 4 (Cd = 4)

10 30 50 70 90
M (ps)

(e)

Degree 5 (Cd = 5)

10 30 50 70 90
M (ps)

(f)

Total

2.5 5.0
Memory Capacity

2.5 5.0
Memory Capacity

1 2
Memory Capacity

0.5 1.0
Memory Capacity

0.0 0.5
Memory Capacity

5 10 15
Memory Capacity

Fig. 9. Memory capacity per degree for the FPA (a)-(e), and the total memory capacity (f).
The internal delay time τC and input segment duration τM are varied. The injection rate is
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√
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For the linear memory capacity of the FPA we observe the largest memory capacity when τC =
τM . One potential reason for this can be as follows. The linear memory capacity of an architecture
represents the ability of recalling past inputs that are unmixed with other inputs, as the target data
is constructed using Legendre polynomials of degree 1. Reminding the reader we inject data in
node 1, when τC = τM the segment of the input data stream has reached its neighbouring node,



Research Article Vol. 32, No. 14 / 1 Jul 2024 / Optics Express 24341

i.e. node 2, when the next sampling event occurs. This means that the readout layer contains
information where no mixing with other inputs has taken place. When τC<τM , the segment of
the input data stream is able to reach more nodes before a sampling event occurs. Therefore,
the information available in the readout layer when a sampling event occurs, will be a mixture
of various previous inputs which have been propagating longer in the architecture. This has a
negative effect on the linear memory recall of a single input.

For the quadratic memory capacity, we find the highest memory capacities when τC ⪅ τM .
This could be attributed to the increased mixing of input samples at the nodes which occurs
if τC ≤ τM . At τM = 6τC, we now find the highest quadratic memory capacity. We make the
observation that 6τC is the shortest time it takes for a signal to loop around the architecture and
return back to that same node. This is the shortest loop possible within the architecture, and
thus with the lowest loss, and can be encountered often within the architecture. For example, an
original input injected in node 1 loops around the FPA following the shortest loop and mixes
with another input back at node 1 after 6τC. This path, corresponding to traveling 6 waveguides,
is illustrated in green in Fig. 10(a).
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Fig. 10. Illustration of the spatially distributed FPA, with the shortest path which loops
from input node 1 to itself depicted in green (a) and for the FPA+SL in the external
delay line (b).
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degree should already provide a good indication for the nonlinearities within the architecture.
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architecture represents the ability of recalling past inputs that are unmixed with other inputs, as
the target data is constructed using Legendre polynomials of degree 1. Reminding the reader
we inject data in node 1, when 𝜏𝐶 = 𝜏𝑀 the segment of the input data stream has reached its
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Therefore, the information available in the readout layer when a sampling event occurs, will be a

Fig. 10. Illustration of the spatially distributed FPA, with the shortest path which loops
from input node 1 to itself depicted in green (a) and for the FPA+SL in the external delay
line (b).

The trend of high memory capacities for internal delays τC smaller than the input segment
duration τM continues also for the cubic memory capacity. However, the region of high memory
capacities is slightly reduced to values 2τC ⪅ τM . This can be explained due to the fact that more
signal mixing with other inputs is required for higher degrees of the memory capacity. However,
this becomes difficult to fully explain in detail, as the calculation of the mixing of such signals
becomes very cumbersome for all possible paths a signal can travel within the architecture. For
the cubic memory capacity, we observe a high memory capacity around τM = 12τC. As we
have mentioned previously, the shortest time it requires for an input sample to loop around the
FPA and mix with another input sample is 6τC. This means that 12τC corresponds to looping
twice around the FPA, resulting in three input samples mixing with each other. If we consider
τC ≪ τM , the cubic memory capacity will decrease. It is possible that this is due to large amount
of waveguides a signal has to travel through to mix with another input sample, leading to a high
amount of power loss.

The values for the fourth and fifth degree of memory capacity are negligible for the FPA,
indicating the limited amount of higher order nonlinearity present in this architecture.

The total memory capacity has lower values for τC>τM , which can be explained due to the fact
that signals injected at t = 0 have not yet reached the next computing node at the next sampling
event, when we sample at t = τM . Note also that the maximum total memory capacity does not
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reach its theoretical upper limit, given by the number of nodes (i.e. 16), which is most likely due
to the amount of noise present in the system and due to correlations between nodes.

We now want to compare the memory capacity of the FPA with that of the FPA+SL. Therefore,
we show in Fig. 11 the memory capacity up to the fifth degree for the FPA+SL. For the linear
memory capacity, Cd=1, shown in Fig. 11(a), we again observe that the largest memory capacity is
achieved when the internal delay time τC is equal to the input segment duration τM , i.e. τC = τM .
For the second degree, Cd=2, shown in Fig. 11(b), we observe the highest memory capacities
when τC ⪅ τM . We also observe a region where the quadratic memory capacity is decreased,
namely at τC = 5 ps for τM ⪆ 40 ps. The region of good cubic memory capacity, Cd=3, shown in
Fig. 11(c), can be found around 2τC ⪅ τM , as is the case for the FPA. For the fourth and fifth
memory capacity degrees, Cd=4 and Cd=5, shown in Fig. 11(d) and 11(e), we observe a region
where these higher order memory capacities are not negligible, as opposed to the FPA. The total
memory capacity, shown in Fig. 11(f), shows again a nearly uniform distribution over all τC and
τM ranges, except for τC>τM .
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If we compare the memory capacity of the FPA (shown in Fig. 9) with that of the FPA+SL
(shown in Fig. 11), we observe that the linear and the total MC is very similar in both architectures.
The FPA+SL, however, does offer a significant increase in the memory capacity of the fourth and
fifth degree when compared to the FPA. As the total memory capacity MC is unchanged, this
increase goes together with a corresponding decrease in the quadratic memory capacity of the
FPA+SL [34,35]. We observe this shift of the nonlinear memory capacity to higher degrees not
for all values of τC and τM , but only when τM is much larger than τC. For example, if τC = 5 ps,
we see a strong increase in the memory capacity of the fourth and fifth degree for τM ⪆ 40 ps.
This timescale coincides with the time needed for a segment of the input data stream to travel
through the smallest loop in the FPA plus the time needed to travel through the external feedback
loop. This path is indicated in green in Fig. 10(b), and the time needed to follow this path is
7τC + τD = 40 ps.
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The fact that we observe increased nonlinear memory capacities for higher degrees at low
internal delay times τC, i.e. at τC = 5 ps, has several advantages. By reducing τC, and therefore
also shortening the coupling lengths between MMIs on-chip, we can reduce the fabrication cost
and relax the demands on the optical power budgets as waveguide losses decrease with decreasing
τC. Note, however, that the newly introduced SL in the external delay line comes at the cost of
losing a physical computing node compared to the FPA. Nonetheless, this is a good compromise
if we want to increase the nonlinearity in the reservoir of the RC system. To utilise this additional
higher nonlinearity, we have to remark that an increased input segment duration τM needs to be
used, which reduces the computation bandwidth of the combined system.

The similar performance of both systems on the Santa Fe task, shown in Figs. 5 and 8, can be
understood heuristically by the results of the memory capacity. It seems that the Santa Fe task
requires mainly a memory recall, and some low-order nonlinearity, such that we obtain good
performance (i.e. low NMSE) when the linear and quadratic memory capacities are high. As
these two memory capacities are similar for both systems, we can now understand the similar
(good) performances on the Santa Fe task for τC ≤ τM .

We also double-checked whether the SL is essential to the architecture for achieving the high
nonlinear memory capacities, or if simply using an external delay is sufficient for this. This
was done by looking into a simpler architecture without the SL in the external delay line. For
this version of the architecture (not shown here), we have not observed any improvement in the
fourth and fifth degrees of the memory capacity when compared to the FPA. This indicates that
it is indeed the nonlinear behavior of the SL which increases these higher degrees of memory
capacities and not the limited change to the architecture topology.

Future work aimed at further increasing the nonlinearity within the reservoir of this system
could be fruitful. This can be done via various changes to the architecture, as we only have the
requirement of using a delay line with a nonlinearity. For example, one could compare the effects
of multiple delay lines coupled with different nodes in the architecture or investigate the effect of
distributing a single feedback to different input nodes instead of one node, as done here. We
expect that some improvements can be achieved with respect to increasing the nonlinearities,
due to increased mixing of signals inside the architecture. Ultimately, this could result in a
redistribution of the (non)linear memory capacity. Another interesting approach would be to use
multiple input ports to inject data into the architecture, instead of using only a single input port.

4. Conclusion

In this paper, we have numerically investigated the effect of incorporating an additional nonlinearity
in a passive photonic spatially distributed reservoir computing architecture, referred to as the FPA.
This FPA lacks nonlinearity inside its reservoir. We have added a single nonlinear component
to this FPA in the form of a single-mode SL in an external delay line. We find a comparable
performance of both architectures on the Santa Fe one-step ahead time-series prediction task.
Additionally, we observe that the delay in the feedback loop does not need to be optimized as the
performance is largely independent of it. As a result, we can take a small external delay time so
that the overall footprint of the system does not increase greatly. The time delay between the
nodes of the spatially distributed system plays an important role in the performance. Still, precise
tuning of this time delay is not needed on this task as long as it remains shorter than the time
during which an input sample is injected. Moreover, we show that the added nonlinearity can be
beneficial for more complex benchmark tasks, compared to the Santa Fe prediction task, reflected
by the higher memory capacities for higher degrees when we combine the FPA with the SL. This
increased nonlinearity of the reservoir can thus be achieved by adding only a single nonlinear
element in the network. The higher nonlinearity indicates that the FPA+SL will enhance the
task solving capability and result in better computational performance when a more complex
nonlinearity is required for a more complex benchmark task.
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