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Programmable photonic integrated circuits (PPICs) emerge as a novel technology with an enormous potential for
ground-breaking innovation. Different architectures are currently being considered that dictate how waveguides
should be connected to realize a broadly usable circuit. We focus on the effect of varying connectivity architectures
on the routing of light. Three types of uniform meshes are studied, and we introduce a newly developed mesh that
is called ring-connected straight lines. We provide an analytical formula to calculate exact distances in these
meshes and introduce several metrics relating to routing to compare these meshes. We show that hexagonal tiles
are the most promising, but the ring-connected straight lines architecture has a use case as well. Besides this, the
effect of defect couplers is also studied. We find that the effects of these failures vary greatly by type and severity
on the routability of the mesh. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.523986

1. INTRODUCTION

Photonic integrated circuits (PICs) are implemented on the
surface of a chip, where they guide and manipulate light
through waveguides, beam couplers, modulators, lasers, and
photodetectors. Presently, most PICs are custom-designed ap-
plication-specific photonic integrated circuits (ASPICs), which
come with a long development cycle and high fabrication costs.
There is a growing interest, akin to the evolution in electronics,
in programmable PICs as the next logical progression. This will
lower the threshold for testing new photonic functionality
[1,2]. These chips can be programmed to execute various func-
tions, eliminating the need for custom designs. The programm-
ability is facilitated through tunable couplers connecting two
waveguides, each with different modes governing light flow.
Bar mode lets the light continue in its current waveguide,
whereas in cross mode the light crosses over to the neighboring
waveguide. An intermediate coupling mode distributes the
light over both waveguides. By smartly choosing the correct
mode for each coupler, a wide variety of functions are realizable.
Programmable PICs could give a tremendous speed-up in pro-
totyping, enabling new potential breakthroughs in areas such as
quantum optics [3,4], communication [5,6], and machine
learning [7,8]. In Ref. [9], the author argues that the potential
of photonics can only be realized through an efficient combi-
nation of several photonic advantages. Programmable photon-
ics has the potential to substantially improve the feasibility of

achieving this combination. A showcase of the potential for
programmable photonics is given in Ref. [10].

In Section 2, we review related work. Section 3 introduces
the necessary definitions. In Section 4, we present different ar-
chitectures, detailing the layout and connectivity of waveguides
through couplers. We analyze how efficiently different architec-
tures can route single signals in Section 5.A and which restric-
tion they impose. Section 5.B provides an analytical distance
for each tile shape. To conclude this part, in Section 5.C,
we evaluate whether certain layouts are more suitable for ac-
commodating multiple paths concurrently. Additionally, given
that a percentage of components fail, we examine the
impact of these failures on routability. Section 6 discusses this
impact and provides a rule of thumb to determine the necessary
redundancy.

2. RELATED WORK

In this paper, we discuss two topics. First, we compare the rout-
ability of different architectures for meshes. This is in contrast
to Refs. [11,12] where the authors study the effect of different
architectures on optical functionality. In Ref. [13], the authors
take an analytical approach and investigate which path lengths
are realizable in meshes with either square or hexagonal tile
shapes. Complementary to their work, we provide analytical
formulas for the distance between two points in the different
mesh architectures. Although hexagonal tiles are the most
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popular, this is definitely not a settled debate. For example,
Refs. [13–15] use square tiles as their main tile shape.

The other is, to the best of our knowledge, not yet studied
before and concerns the effect of component failure on routing.
Several papers investigate circuit yields [16] and the impact of
imperfect coupling [17–19], but the effects of coupler failure
on routing remain largely undiscussed. Using the integer pro-
gram and routing algorithm described in Ref. [20], we assess
the impact of failure on the routing capabilities of photonic
meshes.

3. DEFINITIONS AND KEY METRICS

A photonic mesh comprises waveguides and tunable couplers
that manipulate the flow of light between waveguides. Each cou-
pler can assume a bar, cross, or coupling state, allowing the pos-
sible connections to be represented as a graph, as illustrated in
Fig. 1 [21]. The external ports, depicted as colored nodes, serve
as interfaces for coupling light into and out of the mesh. The
couplers of one hexagon are indicated as well. The mesh directs
light from the source port to the destination port through the
use of couplers and waveguides. A commodity is defined as a
pair of ports, forming a source-destination pair. The objective,
given a list of commodities, is to identify an appropriate route
within the mesh for each commodity, ensuring a path from
source to destination, as depicted in Fig. 3 (shown later). A rout-
ing is valid when no two paths utilize the same routing resources.
The translation of each mesh into a directed graph facilitates the
application of various graph-based routing algorithms. For more
details on this translation, see Ref. [21]. A more comprehensive
discussion of this problem, including a rigorous problem state-
ment and various solutions, is provided by Ref. [20].

In this paper, we investigate the effect on routing that differ-
ent architectures have. We limit ourselves to recirculating

meshes, as these provide greater flexibility in comparison to for-
ward-only meshes [2]. We measure through key metrics the
ability of a mesh to route. These are (1) the number of signals,
i.e., commodities, that a mesh can route at the same time. The
greater number of commodities shows that the mesh is more
flexible, as it can be used more intensely. (2) The average path
length, expressed in the number of couplers that are present in
the path. We argue that it is logical to measure the path length
in the number of couplers that are present in the path, in con-
trast to measuring the absolute length of a path, which ranges
from hundreds of micrometers up to a few millimeters. As dis-
cussed in Ref. [22], the main figures of merit for paths in
photonic circuits are insertion loss or attenuation, power con-
sumption, basic unit length, which is the sum of the tunable
coupler length and the arc length of the access waveguides, and
the basic unit delay [23]. Given the total size of the mesh, as
well as the speed (≈0.5c) at which signals propagate [24], the
total length does not contribute a lot to latency, nor is it a large
source of attenuation. Using figures from Ref. [10], the propa-
gation losses are around 2 dB/cm, which is a largely negligible
source of attenuation. The insertion loss, however, is 0.48 dB
per coupler. This is highly relevant, as even in smaller meshes
the architecture can cause a difference in path length of six cou-
plers, which equates to an additional 3 dB attenuation, or
around 50% reduction in signal strength. In larger meshes this
can easily increase to 12 or more couplers, giving a 75% reduc-
tion in optical power. Power consumption is an important mea-
sure besides attenuation. The more couplers in a path, the
higher the energy consumption is to drive all the couplers in
this path. How much influence this has, relies on the actual
implementation of the couplers. Couplers are also a source
of imperfection and production variations. Fewer couplers in
a path mean less cumulative production variation. These rea-
sons explain why all lengths are expressed in the number of
couplers in the path, as opposed to micrometers. We now in-
troduce the various architectures that are studied in this paper.

4. DIFFERENT SHAPES

A distinction is made between tile shapes and the overall con-
tour of the mesh. As expected, the tile shape refers to the shape
of a single tile. These are triangles, squares, hexagons, or ring-
connected straight lines in this paper. In contrast, the overall
contour of the mesh refers to how the different tiles are laid
out, and which pattern they form. Often this is square, but
it is rather natural to arrange hexagonal tiles in a hexagonal con-
tour as well. For example, in Fig. 1, the overall contour is hex-
agonal, and the tiles are hexagons as well. Compare this to
Fig. 2(c), where the overall contour is rectangular while the tiles
are still hexagons.

As mentioned before, a port is the connection of a mesh
with the outside. An arm of a coupler not connected to further
waveguides is considered a port. In the various figures, these
ports are indicated by colored nodes. In this paper, the overall
contour is always assumed to be square, and we study the im-
pact of different tile shapes. This contour was chosen because
all tile shapes lend themselves well to form a square contour.
Furthermore, the three most common choices are square, rec-
tangular, and hexagonal contours. We argue that the results in

Couplers

Fig. 1. Graph representation of the possible connections in a seven-
tile hexagonal waveguide mesh. The overall contour of the mesh is
hexagonal, and the tiles are hexagons as well. There are 42 couplers.
The hexagonal shape of the tiles is not completely straightforward
but becomes apparent when one focuses on the six couplers making
up the tile.
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this paper are the same when the contour is rectangular instead.
This is based on the fact that square and rectangle are rather
similar. Except for the hexagonal tile shape, the other tiles do
not lend themselves well to form a hexagonal contour, which
would reduce the validity of the comparison.

The first three tile shapes are straightforward, consisting of
the three regular tessellations: triangles, squares, and hexagons,
as depicted in Fig. 2(a), Fig. 2(b), and Fig. 2(c), respectively.
Whenever two tiles share a side, a coupler is placed there. We
propose a fourth novel alternative, ring-connected straight lines
(RCSLs), illustrated in Fig. 2(d), which offers several benefits.

When comparing paths from point A to point B using dif-
ferent tile shapes, the directness of the paths varies. For in-
stance, in a mesh with triangular tiles, some paths are
inefficient, as shown in Fig. 3. After each coupler, a path bends
by 120°, causing it to zigzag through the mesh. Particularly, in
the left path of Fig. 3, for every four couplers, only one pro-
ceeds straight to the destination, while the other three accom-
modate these 120° bends. Similarly, in a mesh with square tiles,
if the source and destination are vertically aligned, every
other coupler moves left or right, unnecessarily lengthening
the path.

This phenomenon is further examined with the following
consideration: looking at a single commodity in a mesh, the
light’s flow is significantly deviated after each coupler due to

the natural bends in the mesh-on average, 60° with hexagonal
tiles, 90° with square tiling, and 120° with triangles. This
deviation results in inefficient routing, as a straight path is never
achievable, thus consuming more routing resources and leaving
fewer resources for other paths. Consequently, the total number
of routable light signals in the mesh is reduced.

(a)
(2,0)(1,0)(0,0)

(0,4) (1,4) (2,4)

(3,2)

(0,3) (1,3) (2,3)

(1,1) (2,1)(0,1)

(0,2) (1,2) (2,2)

(3,3)

(3,1)

(-1,2)

(-1,3)

(-1,1)

A B

(b)

(c) (d)

Fig. 2. Four studied architectures and the number of couplers that compose them organized in a square contour. (a) A mesh with triangular tiles:
45 couplers. (b) A mesh with square tiles: 24 couplers. (c) A mesh with hexagonal tiles: 56 couplers. (d) A mesh with ring-connected straight lines:
60 couplers.

Fig. 3. Mesh with a parallelogram contour with triangular tiles and
two commodities with a shortest path. The leftmost path seems to be
rather wasteful, needing three additional couplers for every coupler on
the straight line from source to destination.
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Based on this insight, we explore whether an alternative til-
ing could improve performance. Ensuring that each coupler al-
lows for either 0° deviation (going straight) or 90° deviation
(turning left or right) achieves this. Each coupler is positioned
to connect one side to a straight waveguide and the other side to
a waveguide making a 90° turn. The key question is how to
decide the direction of the bend for each coupler. A balanced
distribution of left and right bends is necessary to maximize
general routability.

After evaluating different alternatives, the most promising
scheme emerged, as shown in Fig. 2(d). Along a straight line,
an alternating pattern of left and right bends is chosen. If the
desired bend is unavailable at a coupler, the next coupler along
the straight waveguide bends in the opposite direction.
Adjacent straight lines start with bends in opposite directions,
forming a square pattern of straight lines where half of the facets
contain a ring, resembling a chessboard. This pattern, referred
to as ring-connected straight lines (RCSLs), is designed to op-
timize routing efficiency.

The necessary framework has been introduced, and the ef-
fects of architecture on routing are studied in the next section.

5. COMPARISON OF DIFFERENT TILE SHAPES

In this section, the impact of tile shapes is analyzed. This effect
is two-fold. First, the impact on an individual commodity is
studied. For example, not all mesh architectures can always
realize a path between two ports. To combat this issue, we pro-
vide a modification to the relevant architectures. Second, we
introduce metrics that express how well a tile shape can route
many commodities at the same time. These are compared for
the different tile shapes and trade-offs are discussed.

A. Effect on Single Commodities
None of square tiling, ring-connected straight lines, and trian-
gles can always realize a path between two ports. For example,
in Fig. 2(b) once the signal has entered the mesh through one of
the ports located at (1,0), it can never exit the mesh through the
ports located at (–1,1), (–1,3), (1,4), (3,1), and (3,3).
Regardless of the input port, half of the ports are not reachable.
This is a systematic problem of these meshes.

We give a proof that this is always the case. Suppose the
signal enters through one of the ports located at (1,0). Now,
the signal can either enter the square tile that is left adjacent
in a counterclockwise direction, or the right adjacent tile in
a clockwise direction. When the signal then continues to a
neighboring tile, it always reverses the rotation it had before,
i.e., from clockwise to counterclockwise or vice versa. This ro-
tation-reversion happens each time the signal enters another
tile. In total, this produces a checkerboard-like partition, where
half of the squares can only be traversed in a clockwise direc-
tion, and the other half of the squares only in a counterclock-
wise direction as indicated by the red arrows. Now, we can see
that the port at (1,4) is unreachable, as this would require
reaching either square A in a counterclockwise direction, or
to reach B in a clockwise direction. This is impossible when
following the checkerboard pattern of rotations. A similar rea-
soning can be applied to both triangles and RCSLs. This always
causes half of the ports to be unreachable for a fixed input port.

This is in stark contrast to hexagonal tiling, where between
every two ports a possible path exists.

This limitation could be remedied by slightly changing the
outer structure, and adding one additional layer of couplers, as
seen in Fig. 4. Looking at this additional layer, a light signal can
enter any tile in either rotation. This alleviates the limitation. In
Ref. [13], the authors provide an additional outer layer as well,
but this does not resolve the aforementioned problem. In the
rest of this paper, we do not use this additional layer to adhere
to the majority of other papers on this topic.

As mentioned before in Section 4, in a mesh with triangular
tiles, every path zigzags rather inefficiently in the mesh.
Similarly with square tiles, the paths that signals take often
seem indirect and wasteful. This idea is captured with the fol-
lowing calculation, which results in a ratio where lower value
means more efficient routing.

We want to express the physical distance between a source
and a destination, expressed in how many couplers are needed
to cover this physical distance. For this, we assume that all cou-
plers have a length of one, and everything else has a length of
zero in the mesh. This is similar to introducing a coordinate
system for each mesh. Now, we calculate the distance between
ports using Pythagoras’ theorem. For example, in Fig. 6,
the distance between the ports at (0,0) and (0,4) isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0 − 0�2 � �0 − 4�2
p

� 4. The distance between (0,0) and
(3,3) is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3 − 0�2 � �3 − 0�2

p
� ffiffiffiffiffi

18
p

. We compare this dis-
tance with the actual shortest path in the mesh. Between
(0,0) and (3,3), the shortest path contains six couplers. Now
we get the desired ratio by dividing the shortest path length
by the distance between these two ports, or 6ffiffiffiffi

18
p � ffiffiffi

2
p

. For
the pair (0,0) and (0,4), the shortest path length is four,
and the distance is four as well; hence the ratio for this pair
is 4

4
� 1. This coincides with the intuitive idea that the shortest

path between (0,0) and (0,4) is really efficient, as it goes in a
direct line from source to destination. On the other hand, the
shortest path from (0,0) to (3,3) goes a bit more indirect. This
translates into a higher ratio. We can repeat this process of
introducing a coordinate system and calculating the distance

Fig. 4. Indicated structure adds an additional layer. If this is added
to the entire outer layer, every two ports can be connected by a path,
overcoming a serious limitation of the square/triangle tile shape and
RCSL layout.
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between every pair of ports with Pythagoras’ theorem. Then we
compare this with the actual shortest path length and calculate
the ratio for all tile shapes.

The ratio varies within the mesh in all architectures. It de-
pends on the relative location of the source and destination. We
define this relative location as the angle between the following
two lines. For a source port on either the north or the south side
of the mesh, draw a vertical line through this port. Draw the
second line through the source and destination port. The rel-
ative location is now the angle between these two lines. For a
port on the west or east side of the mesh, the first line is hori-
zontal instead. Going back to the example, we calculate the
angle between (0,0) and (3,3) in Fig. 6. The first line goes ver-
tically through (0,0) and the second line goes through (0,0) and
(3,3). The angle between these two lines is thus 45° or π

4 radi-
ans. In comparison, the angle for the ports (0,0) and (0,4) is 0°
or 0 radians as well, as both lines coincide.

Figure 5 expresses this ratio as a function of the relative po-
sition. In an ideal mesh, this ratio is as close as possible to one,
no matter how the source and destination are positioned. This
data is calculated on a sufficiently large mesh, such that a dense
collection of angles is realizable.

It can be seen that RCSL tiling manages to achieve a ratio of
one when the angle is 0° and 90°, i.e., 0 and π

2. It is specifically
designed with this in mind. On average, hexagonal tile shapes
and RCSL achieve a similar ratio. Both RCSL and hexagonal
tiling always provide shorter paths than a mesh with square tile
shapes. The triangle tile shape behaves a bit special. Its ratio
varies between two and four, and it is not only dependent
on the angle towards the destination. The input ports can also
be divided into two partitions of the input ports; all the ports
inside the partition behave similarly. This phenomenon can be
seen in Fig. 3 where the left path has a ratio of four, while the
right path has a ratio of two, but there is a very small relative
location difference. These two belong to different partitions,
hence the two different lines for triangle tiles.

B. Analytical Distance in a Mesh
An analytical formula is provided to calculate the length of the
shortest path in a mesh. The length is expressed in terms of the
number of couplers in the path. This analytical formula is de-
rived for the tile shapes: square, hexagon, and RCSL. The tri-
angle tile shape is omitted here, given the more complicated
nature with many different cases that need to be distinguished.

To derive the analytical formula, it is assumed that the over-
all contour of the mesh is square, although just a requirement of
convexity would suffice. These formulas do not take the restric-
tions into account that not all ports have a path between them.
The formula for square tile shapes and RCSL is exact, whereas
for hexagons it is an approximation. A more careful analysis can
give an exact formula there as well; see Appendix A.

1. Square Tile Shapes
In this section, the exact analytical distance is described in a
mesh with square tiles. We introduce a coordinate system;
see Fig. 2(b). The coordinate system mainly matters for the
ports on the sides, but it has been extended throughout the
mesh. Notice that there are always two ports with the same
coordinates. These are reachable by the same coupler; hence
these are interchangeable. Let the coordinates of the source port
be s � �sx , sy� and the coordinates of the destination port be
t � �tx , ty�. Suppose the two ports are now on opposite sides,
e.g., the north and south sides. If there is a path between these
two ports, then the length of the shortest path is

d�s, t� � 2max�jsx − tx j, jsy − tyj� − 1:
Similarly, for ports on the adjacent side, if there is a path, the
shortest path has length d �s, t� � 2max�jsx − txj, jsy − tyj�: If
the ports are on the same side and there is a path, this distance
becomes 2max�jsx − tx j, jsy − tyj� � 1.

2. Ring-Connected Straight Lines
A similar coordinate system as for square tiles is used; see Fig. 6.
Given that the source and destination ports have coordinates
s � �sx , sy� and t � �tx , ty�, the following formula describes
the distance between two ports, if there is a path:

Fig. 5. Ratio of the actual path length compared to a straight line
from source to destination. On the x-axis is the relative position of the
source and destination node.

(0, 1)

(0, 2)

(0, 3)

(-1, 1)

(-1, 2)

(-1, 3)

(1, 1)

(1, 2)

(1, 3)

(2, 1)

(0,0) (1,0) (2,0)

(0,4) (1,4) (2,4)

(2, 2)

(2, 3)

(3, 1)

(3, 2)

(3, 3)

Fig. 6. Mesh with RCSL tiles and the appropriate coordinate system
to easily calculate the analytical distance.
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d �s, t� � jsx − tx j � jsy − tyj:
If both ports are on the same side, the formula changes slightly
to d �s, t� � jsx − tx j � jsy − tyj � 2.

3. Hexagon Tile Shapes
For a mesh with hexagonal tiles, a special coordinate system is
introduced. These are the cube coordinates, or equivalently, the
axial coordinate system. See Fig. 2(c). A good introduction is
given online [25]. On the shortest path between two ports,
roughly two couplers are used to traverse every hexagon in be-
tween these two ports. The distance is now approximately twice
the number of hexagonal tiles between their respective hexa-
gons. In the cubic system, this is equal to the sum of the ab-
solute differences of the first two coordinates. Given the
coordinates to be s � �sq1 , sq2 , sq3� and t � �tq1 , tq2 , tq3�, the
distance between two ports becomes

d �s, t� � 2�jsq1 − tq1 j � jsq2 − tq2 j�:
This is an estimation, which is only off by a constant number of
couplers. See Appendix A for an exact formula.

C. Effect on Multi-commodities
1. Approach to Allow a Fair Comparison
In this section, it is outlined how a fair comparison is achieved
when looking at the routing capabilities for multi-commodity
routing. As mentioned before, couplers are the main cause of
energy consumption and insertion loss. It thus makes sense to
try to minimize the number of couplers, while maximizing the
routing capabilities. Now, how can we have a fair comparison
between different tile shapes and how do we measure which tile
shape is better?

As outlined before, a square contour is used for all compar-
isons. As an added benefit, there is an unambiguous north, east,
south, and west side of the mesh. We will use this as well.
However, a fixed contour comes with a drawback. Given a spe-
cific number of couplers, chances are small that a mesh with
exactly this number of couplers can be constructed. For exam-
ple, see Fig. 2(b). This is a 4 by 4 mesh made out of square tiles
and has exactly 24 couplers. The next size, 5 by 5, has 40 cou-
plers. For any other value between 24 and 40, no mesh with
square tiles and an overall square contour exists. To further
complicate the matter, different tile shapes have different values
for which a mesh is possible. Hence, there does not exist a
quantity of couplers such that there is a mesh for every tile
shape with that exact number of couplers. Additionally, even
when the number of couplers is similar, the number of ports
still greatly differs. Often, there is no one-on-one comparison
between the number of ports of two different meshes, even
when their size is roughly equal.

The lack of a one-on-one match between ports is a tricky
problem. Having more ports seems to be an advantage at first
glance, but if these ports cannot be used in a meaningful way,
then this is rather wasteful. This difference in ports makes it
impossible to run the same problem on two different tiled
meshes. If the number of ports is fixed instead such that there
is a one-on-one match between the ports of meshes consisting
of different tile shapes, then the number of couplers in the two
meshes can differ greatly, again raising doubts on how fair this
comparison is. To avoid these difficulties, routing problems are

defined in such a way that they can easily be solved on different
meshes with varying amounts of ports while still staying largely
the same. This is done as follows.

Ports are numbered on every side from west to east and from
south to north. (West, 3) unambiguously specifies the third
port on the west side when counting upwards, from south
to north. Instead of exactly defining where a commodity should
go, a real number between zero and one is chosen and a side.
Every real number and a side are now associated with a single
port on that side. Say that there are 10 ports on the west side
and the number is 0.32. Then the interval between zero and
one is divided into 10 equally sized intervals with the first in-
terval being �0, 1

10�, the second interval � 110 , 2
10�, and so on. The

interval in which the real number falls is then the correspond-
ing port. In this case, the number 0.32 lies in the fourth in-
terval, [0.3,0.4]; hence this corresponds to the fourth port
on the chosen side, counted from south to north side. Now
a general problem is defined as a set of source-destination pairs,
where both the source and the destination are a side and a real
number between zero and one. As mentioned before, the
meshes of some tile shapes do not allow to draw a path between
every possible pair of ports. After the source port is chosen, the
destination port is chosen as the closest port to the real number
that is reachable from this input port. The methodology above
shows how a general problem can be transformed into a prob-
lem on a real mesh.

Suppose the general problem is a single commodity with
source (West, 0.05) and destination (East, 0.9). Then no mat-
ter the tile shape, this commodity is always converted to a com-
modity going from the west side roughly in the south corner to
the east side roughly in the north corner. The same general
problem is translated to similar problems on different architec-
tures. This is the basis for a fair comparison between different
tile shapes.

2. Different Types of Problems
Monte Carlo simulations are the primary method of compari-
son between different tile shapes. The lack of realistic usage
data makes it hard to construct representative problems.
Being completely random appears then as the best choice.
These are constructed by randomly choosing a side and a real
number between zero and one for every source and destination
of a commodity. The destination side is never chosen to be the
same side as the source. When translating a general problem to
a mesh with a specific tile shape, small constraints are taken into
account, to avoid accidentally choosing unroutable configura-
tions. For example, the same port cannot be chosen twice for
different commodities. In total, 2058 random test cases are
used and these are solved on meshes between 15 and 532
couplers.

Besides this, some predetermined patterns are also studied.
These were chosen upfront, to highlight the difference between
random routing, and more structured patterns that might occur
as well. For example, it was expected that RCSL would perform
very well on problem I, almost by design. These problem types
are now explained and can be seen in Fig. 7.

I. Take n evenly spaced ports on the south side and make
them the source for n corresponding destination ports on the
north side, such that each destination is right above its source.
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Now take additional n evenly spaced ports on the west side, and
make these the sources of n evenly spaced destination ports on
the east side, again such that each destination is right across. We
call this Type I.

II. A similar problem to Type I takes the same n evenly
spaced ports on opposite sides, but instead for each commodity,
if the source port is the nth port counting from the left on the
south side, then the destination port becomes the nth port
counting from the right on the north side. The ports on the
west and east sides are connected similarly. This problem is
called Type II.
III. This problem is similar to the first, but only the source

and destination ports on the north and south sides are consid-
ered; hence there are no commodities that go from east to west.
This is Type III.

D. Results and Discussion
Given a fixed problem type and tile shape, the problem is solved
for meshes of various sizes with the four studied tile shapes. A
solution is calculated by an integer program for smaller problem
sizes, and the Aurora algorithm for larger problems, both de-
scribed in Ref. [20]. The Aurora algorithm iteratively calculates
the least-weighted path for every commodity, and by cleverly
updating the weights of the various routing resources, discour-
ages multiple commodities from using the same path simulta-
neously. The integer program states that all routing resources
can be used by at most one path. Besides this, other constraints
force a path between every source and destination. The objec-
tive function is designed to minimize the total number of
routing resources. To calculate the maximum number of com-
modities, a greedy approximation algorithm is used. Given a list
of n commodities �c1, c2,…, cn�, first �c1� is routed. The next
commodity is added after every successful routing. If at a cer-
tain point, �c1,…, ci � is routable, but �c1,…, ci, ci�1� is not,
then ci�1 is removed from the list, and ci�2 is added instead.
At the end of this process, the length of this list is the maximum
number of commodities routable at the same time.

We define the following three metrics as expressing how well
a mesh can route a problem. These metrics are always inter-
preted as a function of the number of couplers in the mesh,
as couplers are the main source of attenuation and power con-
sumption. As mentioned before, an important caveat is given
for RCSL. Many crossings are located in this mesh, which
causes additional loss. The advantage or disadvantage of

RCSL depends on the relative loss of couplers and crossings.
This is discussed later in this paragraph.

1. The maximum number of commodities routable at the
same time.

2. The average path length.
3. The shortest path for each commodity, regardless of the

other commodities present in the mesh.

In Fig. 8, the average number of routable commodities is
displayed. Here a clear trend can be seen, with triangles and
squares losing out in favor of RCSL and hexagons.
Especially hexagonal tile shapes do well. The problem that there
are no meshes with exactly the same number of commodities
can be reasonably well taken into account if linear interpolation
is used. Using this for a hypothetical mesh of 480 couplers,
hexagons could route on average 22.1 commodities, RCSL
18.5, squares 15.0, and triangles 15.7. Thus hexagonal tile
shapes can route around 20% more commodities than
RCSL. This percentage increases to 40% and 47% more com-
modities for squares and triangles, respectively. We now look at
all meshes between 24 and 480 couplers; there, hexagonal tile
shapes can route on average 16% more commodities than
RCSL, 39% more commodities than squares, and 49% more
than triangles.

These results come with a large caveat that random routing
might not be representative, which is why the other three test

(a) (b) (c)

Fig. 7. Simplified representation of the different problem types. (a) Type I, (b) Type II, and (c) Type III.

Fig. 8. Average maximum number of commodities routable at the
same time.
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set types are introduced. The results of these can be seen in
Fig. 9. As expected, RCSL performs well, especially on the
Type I problem. Somewhat surprisingly, square tile shapes
are the best-performing tile shapes on problem Type III.
This can be partially explained by the fact that squares do
not use a lot of couplers to form a square, four exactly, and
thus a mesh of n couplers contains more squares than, for
example, an n coupler mesh of hexagons. Now, a square-
tile-shaped mesh is wider than a similarly sized hexagonal-
tile-shaped mesh. It can easily route many commodities from
the north side to the south side, by configuring all vertical cou-
plers in bar mode, while all horizontal couplers are chosen to be
cross mode. This in turn leads to many commodities that have a
path, and a high maximum number of commodities.

In Fig. 10, the average length of a path in the solution and
the average length of the shortest path are graphed. Here, RCSL
does well, and always offers shorter paths. This is not surpris-
ing, given the fact that this mesh was specifically designed to
have short paths. As predicted, triangular tiles produce espe-
cially long paths. Square and hexagon tiles give mostly similar
paths. Using interpolation again, on a hypothetical mesh of 480
couplers, the average length of the path in hexagonal tiles is
46.9 couplers, in RCSL this is 36.8, for square tiles 47.5,
and for triangles 65.3. Using hexagonal tiles as the base refer-
ence again, RCSL has on average 22% shorter paths. The paths
in square-shaped tiles are roughly the same, while in triangular
tiles these are 39% longer.

At first glance, it is surprising that square and hexagonal tiles
give about the same average length given the unequal shortest

length discussed in Section 5.A. We offer an explanation that is
two-fold. First, in a hexagonal-tile-shaped mesh, there are more
commodities routed. This increases the chance of detours and
thus an increase in path length. Second, notice that the two
ports of a commodity lie physically further away in a hexagonal-
tile-shaped mesh because hexagons take up more space than
squares even if you adjust for the number of couplers in the
shape, hence, an increased average length.

In Fig. 11 the average path lengths can be seen for the pre-
determined patterns. The results are largely the same as for the

Fig. 9. Maximum number of commodities routable at the same time for the predefined patterns.

Fig. 10. Average length of a path.
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problems with randomly chosen source and destination ports.
One remark can be made for the noticeably larger difference
between shortest paths and paths in the solution for RCSL
in problem Type III. In this problem, RCSL efficiently packs
additional paths for commodities by zigzagging as can be seen
in Fig. 12. This explains this phenomenon, as these zigzagging
paths are a lot longer than their shortest paths.

In conclusion, looking at routing capabilities, it is clear that a
preference should be given to hexagonal tile shapes and RCSL
over triangular and square tile shapes. Although square tiles per-
formed well for some predefined patterns, in more complex rout-
ing schemes, the routing capabilities seem to be inferior.
Hexagonal tile shape and RCSL are superior in the maximum
number of commodities routed, and RCSL can also boast shorter
paths, both for single commodities and while routing multiple
commodities. Hexagons especially shine when the routing prob-
lem is complex with many paths having to cross each other.

If the mesh is not expected to be densely used and the loss of
crossings is around 25% compared to that of couplers, then
ring-connected straight lines should be chosen. Otherwise, hex-
agonal tile shapes are the best performers in densely used
meshes. Currently, internal figures estimate these crossings
to add around 0.2 dB additional loss. Compared to the inser-
tion loss of a coupler of 0.48 dB as in Ref. [10], this is around
40%. This would make RCSL less interesting as an option.
However, it is hard to estimate how the insertion loss of both
these structures will evolve. In Ref. [26], the authors demon-
strate a crossing with a loss of 0.03 dB. This is sufficient to

make crossing loss almost negligible. Crossings are passive as
well; hence RCSL has a strong advantage over hexagonal tile
shapes when looking at power consumption.

Fig. 11. Average path length in the solution, with the average length of the shortest path marked with a dashed line.

Fig. 12. By smartly routing the green and brown commodities, one
additional commodity can be routed.
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6. IMPACT OF DAMAGE IN MESH

In this section, the impact of the failure of couplers on the mesh
performance is analyzed. Different types of failures are dis-
cussed and their impact on the routability of the mesh.
Three types of failures are considered: one where the coupler
completely fails, and the attenuation in the coupler is 100% for
all possible paths; the other two types are where the coupler’s
driving mechanism fails, and the coupler gets stuck in either
cross or bar mode. In Fig. 13, the different types of failure
can be seen. A fourth option is that the coupler is stuck in par-
tial coupling mode. If this coupler is used, then this causes a
severe degradation of the signal strength, as well as an addi-
tional unwanted signal that needs to be transported to an out-
put port. One could try to recombine both these signals again,
but interference can appear, again degrading the signal strength
for some wavelengths. This would both use up many additional
routing resources, and complicate routing. To avoid these is-
sues, we treat couplers stuck in partial coupling mode as com-
pletely failed. Depending on the actual implementation of the
couplers, certain types of failure are more likely than other
types. For example, when the coupler has a heat actuator as
a driving mechanism, it can get stuck in cross mode when
the heater fails. If the driving mechanism of a microelectrome-
chanical coupler [27] fails, then this causes a coupler to be stuck
in bar mode. The combination of both bar and cross mode
failure for the different coupler devices using the same imple-
mentation seems to be less likely for current coupler implemen-
tations but it is included nonetheless.

A. Routability Impact
Given a problem instance that is known to be feasible, i.e., that
has a known legal solution, the influence of damage is studied.
A percentage of couplers are designated as damaged. The level
of damage ranges from 0% to 80% of couplers that are dam-
aged. These damaged couplers are then assigned a damage type
in several ways:

1. all couplers are stuck in cross mode;
2. all are stuck in bar mode;
3. all have completely failed;
4. half are stuck in cross mode, half in bar mode;
5. half are stuck in cross mode, and half have completely

failed;
6. one-third are stuck in cross mode, one-third in bar

mode, and one-third have completely failed.

Once the damage is assigned and a problem is chosen, two
quantities are measured. For every problem, the first quantity is
the percentage of commodities that still have a path, indepen-
dent of other commodities. The second quantity is then the
percentage of commodities still routable at the same time.
To find the maximum number of commodities still routable

efficiently, the same greedy algorithm is employed as in
Section 5.D; a list is constructed of routable commodities
and when a commodity is added that leads to unroutability,
it is replaced by the next commodity.

One last distinction is made for problems that use a mesh
more “densely”. On the same mesh, a problem that consists of
many commodities is more severely impacted by failure than a
mesh with few commodities. This is logical because there were
already few routing resources available, hence little space to re-
route affected paths. In Appendix B, we define minimum rout-
ing resources ratio, which is the metric used to measure this
density. The 25%of problems that score the highest on this met-
ric, is contained in “Simultaneous—Dense”. “Simultaneous”
is the average of all problems.

In total, 1203 different random feasible problems with vary-
ing numbers of commodities were used in this test. The tile
shape is always chosen to be hexagonal, given that this is
the best-performing tile shape. Given that the other shapes
are less flexible routing-wise, the impact of damage will likely
only be exacerbated.

B. Results and Discussion
Different types of failures have different effects. As can be seen
in Fig. 14(a), if damaged couplers are stuck in cross mode, the
effects are rather limited, as long as less than 50% of couplers
are damaged. Once three in four couplers are damaged, then
the overall performance declines rapidly as well. Compare this
to the effects in Fig. 14(b), where the loss of routability occurs
more rapidly, with a 50% loss in routing capabilities occurring
when only 40% of couplers are damaged. When couplers com-
pletely fail, as can be seen in Fig. 14(c), only a 15% loss of
couplers already leads to a 50% loss in routing capabilities.
If the damage is a mix of different types, then the effects
are also similar to a combination of the effects of the damages
separately.

In conclusion, the effects of damage greatly depend on the
type of damage. Whereas couplers stuck in cross mode still al-
low for a great deal of routability, complete failure of couplers
quickly impedes the ability of the mesh to route anything at all.
If couplers fail in cross mode, then a 30% to 40% failure rate is
still mostly acceptable and leads to a modest loss in routability
of single-digit percentages. On the other hand, when 40% of
the couplers fail completely, almost all routing functionality of
the mesh is completely gone, and close to 0% of all commod-
ities can still be routed. When couplers are stuck in bar mode,
the effect is less pronounced as a complete failure, but it still
seriously affects the routing ability of the mesh. A 30% loss of
couplers equates to around a 30% loss in routability. While
these meshes are partially resilient against couplers that are
stuck in cross or bar mode, a complete failure of couplers
immediately leads to severe losses in routing capabilities, and

(a) (b) (c) (d)

Fig. 13. Comparison of the different ways a coupler can break. (a) Normal, (b) complete failure, (c) only bar mode, and (d) only cross mode.
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should be avoided as much as possible. This leads to the con-
clusion that from a routing perspective, coupler driving mech-
anisms that fail in cross mode as opposed to bar mode or
complete failure are preferable.

C. Damage Compensation
These charts can provide a general indication of how much
larger a mesh should be, to provide sufficient redundancy in
case of coupler failure. Supposing that it is calculated with a
perfect mesh, the photonic chip would need 500 couplers to

fulfill the required routing. Suppose that the fabrication process
is known to have a yield of 90%; thus 10% of couplers are
imperfect. Of that 10%, about half of these have completely
failed, while the other half are stuck in cross mode. Looking
at Fig. 14(d), at 10% damage, around 80% of the routing capa-
bilities are still present. Hence this warrants an increase of the
mesh with 2

8 � 25%. If the mesh is expected to be used densely,
the percentage still routable is around 75%. This can be com-
pensated for by multiplying our expected size by the multipli-
cative inverse of 75%, which is 4

3 � 133%. This reasoning is

(a) (b)

(c) (d)

(e) (f)

Fig. 14. Impact of different types of coupler failure. Simultaneous—Dense is a subset of problems where there are many different paths and thus
the mesh is densely used. (a) Damaged couplers are stuck in cross mode. (b) Damaged couplers are stuck in bar mode. (c) Damaged couplers have
failed completely. (d) Half are stuck in cross mode and half have failed completely. (e) Damaged couplers are split in half cross mode and half bar
mode. (f ) One-third in cross mode, bar mode, and complete failure.
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strongly dependent on the fact that the coupler yield does not
change depending on the mesh size and that the routing is ap-
proximately random.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the effect of different tile shapes
on the routing capabilities of photonic meshes. We have shown
that hexagonal tile shapes provide the best routing capabilities
when the source and destination ports are randomly distributed
among the outside of the mesh. Additionally, hexagonal tiles
can maintain sufficiently short connections. When a mesh is
not expected to be used as densely, our newly introduced design
of ring-connected straight lines provides short paths, both from
a theoretical perspective and in Monte Carlo simulations.

Furthermore, we have studied the influence of damage on
meshes. We have shown that the type of damage matters greatly
in the effect it has on the routing capabilities. Once the yield
and damage mechanisms are known, an increase in the mesh
size can provide redundancy to keep the mesh working as
expected.

This work solely focuses on the difference in routing capa-
bilities. A comparable analysis where filter synthesis and place-
ment are taken into account could be insightful once more
mature algorithms are available. Instead of meshes with regular
tile shapes, irregular meshes might provide added benefit in
this case.

APPENDIX A: EXACT ANALYTICAL DISTANCE
FORMULA FOR HEXAGONAL TILES

This section gives an exact formula for the analytical distance
between two ports in a mesh with hexagonal tiles. This formula
is only provided for a fixed source port, but a proper rotation
and movement of at most two couplers can immediately bring
the port to the same position as the source port that is now
chosen.

A schematic representation of a hexagonal mesh is used here.
A coordinate system is introduced, where the width is described
in the length of a coupler, whereas the height is described in

ffiffi
3

p
2

of the length of a coupler. This is the same as the height that a
non-horizontal coupler traverses. This coordinate system is in-
dicated in Fig. 15. For example, the position indicated with A
has coordinates (1.5,1). In the following explanation, the co-
ordinates of the destination port �x, y� are assumed to be in
the quadrant where both x, y ≥ 0. The derived formula is valid
for all quadrants, as long as one takes the absolute values of the
coordinates jxj and jyj.

Now, all ports have two classes of possible values for their
x-coordinate. This is either x � 1.5k or x � 1.5k � 0.5 for a
k ∈ N. Notice that the shortest path to all ports on and under
the dashed line consists of only taking couplers to the left.
These are studied first. Here, the y-coordinate does not matter.
Now, every two subsequent couplers taken increases the
x-coordinate by 1.5, vice versa, if x � 1.5k; then exactly
2k � 4x

3 couplers are needed. If x is not a multiple of 1.5, then
the distance to the start of the coupler of that port is calculated,
which has an x-value of x − 0.5. From there, the length is in-
creased by one. This is summarized with the following:

• if x � 1.5k, then the distance is 4x
3
;

• if x � 1.5k � 0.5, then the distance is 4�x−0.5�
3

� 1.

One port under the dashed line cannot be reached by only tak-
ing couplers to the left; this is the port at (3,0), or more gen-
erally all ports at (3k, 0) for k ∈ N . This can be resolved by
calculating the path to the coordinates of the beginning of
the coupler that forms this port, in this case (3.5,1). This length
plus one is then the total length to (3,0).

We now turn our attention to destinations above the dashed
line. All of these have a shortest path that can be decomposed
into two parts: the part that first follows the dashed line until
vertically below the destination port; then, the second part goes
up by taking alternating couplers that go upwards left and
right. The previous formula can be used for the first part.
The length of the second part is the difference in y-values be-
tween the start and end of the second part. The y-coordinate of
the beginning of this part can again be derived from the pre-
vious formula. The y-coordinate of the dashed line is express-
ible in its x coordinate. For every two couplers taken on the
dashed line, the height is increased by exactly one, i.e., if
x � 1.5k, then y � 3x

2
. If x � 1.5k � 0.5, then y �

2�x−0.5�
3 � 1. We summarize this with the following cases:

• if x � 1.5k, then the distance is 4x
3 �max�0, y − 2x

3 �;
• if x � 1.5k � 0.5, then the distance is

4�x−0.5�
3 � 1�max�0, y − 2�x−0.5�

3 − 1�.
This expresses the distance to all ports. The first term is the

calculation for the path on or below the dashed line. The sec-
ond part, i.e., max�0, y − 2x

3 �, gives the path that purely goes
upwards if there is such a path needed in the first place. If
not, y − 2x

3 is negative; hence max�0, y − 2x
3 � is equal to zero.

If x � 1.5k, then the calculations are similar, but with an addi-
tional correction term applied.

APPENDIX B: DENSELY USED MESHES

In this section, we define when a mesh is densely used with
respect to a problem. For this, we introduce the concept
of minimum routing resources ratio, which expresses the
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Fig. 15. Coordinate system used to describe an exact analytical
distance.
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percentage of the routing resources that have to be used in any
solution to the problem.
Definition 1 (minimum routing resources ratio). Given a mesh
and a problem instance C , compute for each commodity c of
the problem instance its shortest path irrespective of the other
commodities and call this l c . Denote the total amount of rout-
ing resources in the mesh with rtot. The minimum routing re-
sources ratio is now

P
c∈C l c
r tot

:

Any solution to this problem instance needs, almost by defini-
tion, at least this percentage of the routing resources. Now in
this paper, we use this value as a proxy for how densely used
the mesh is by different problems. In the particular case of
Section 6.A, the problems are ranked on their minimum rout-
ing resources ratio from low to high, and the upper quartile is
classified as densely used.
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