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Advancements in optical coherence control'* have unlocked many cutting-edge
applications, including long-haul communication, light detection and ranging
(LiDAR) and optical coherence tomography® 8. Prevailing wisdom suggests that using
more coherent light sources leads to enhanced system performance and device
functionalities® ™. Our study introduces a photonic convolutional processing system
that takes advantage of partially coherent light to boost computing parallelism
without substantially sacrificing accuracy, potentially enabling larger-size photonic
tensor cores. The reduction of the degree of coherence optimizes bandwidth use in
the photonic convolutional processing system. This breakthrough challenges the
traditional beliefthat coherence is essential or even advantageous inintegrated
photonicaccelerators, thereby enabling the use of light sources with less rigorous
feedback control and thermal-management requirements for high-throughput
photonic computing. Here we demonstrate such a system in two photonic platforms
for computing applications: a photonic tensor core using phase-change-material
photonic memories that delivers parallel convolution operations to classify the gaits
of ten patients with Parkinson’s disease with 92.2% accuracy (92.7% theoretically) and
asilicon photonic tensor core withembedded electro-absorption modulators (EAMs)

to facilitate 0.108 tera operations per second (TOPS) convolutional processing for
classifying the Modified National Institute of Standards and Technology (MNIST)
handwritten digits dataset with 92.4% accuracy (95.0% theoretically).

Over the past century, notable progress in optical coherence control
has enabled the generation of light with linewidth ranging from tens
ofterahertz (THz) toless than1kilohertz (kHz). This enhanced control
has revolutionized light sources, from fluorescence’, light-emitting
diodes (LEDs)?and lasers>*to distributed-feedback lasers* and stabi-
lized continuous-wave lasers®?, laying the foundation for numerous
transformative applications, such as long-haul optical-fibre communi-
cations®, LIDAR’, optical coherence tomography®™* and so on. Despite
the challenges in stabilizing and maintaining high optical coherence,
researchers have sought to make use of the superior properties of
coherent light by using partially coherent light in combination with
post-processing reconstruction methods as a compromised solu-
tion®™, Taking a more direct approach, many studies have aimed to
generate more coherent light from incoherent light sources™®, with
arecent achievement in obtaining spatio-temporal coherence with
an incoherent white-light source for coloured vortex-beam genera-
tion using miniaturized spiral phase plates integrated with structural
colour filters'. As a result, increasing optical coherence has become
aguiding principle forimproving the performance and functionalities
of cutting-edge optical devices and systems.

Deep learning has made agreatimpact onvarious fields' %2, with two

recent highlights being GPT-4 and Midjourney. The success of deep
learningrelies on training huge artificial neural networks with billions
oftrainable parameters, necessitating the doubling of hardware-data
processing capability every 3.5 months?. To keep up with this expo-
nentially growing need for processing capability, photonic convolu-
tional processing is believed to be a key to hardware-based artificial
intelligence (Al) accelerators® ¢, Photonic processors can access
awide bandwidth of tens of THz by exploiting wavelength-division mul-
tiplexing and eliminate capacitive delay and charge/discharge energy
dissipation, as photons require no potential difference to transit?.
Various system architectures for photonic convolutional processing
have been proposed, all using coherent light sources in accordance
with the guiding principle. Coherent nanophotonic circuits distrib-
ute light from a single coherent light source to the inputs of a Mach-
Zehnder interferometer (MZI) array™**°, Operating these circuits
requires the precise control of numerous phase shifters to ensure the
desired coherent interference in the circuit. A broadcast-and-weight
protocol based on cascaded microring resonator (MRR) arrays has
been demonstrated®>*, The optical input is created by multiplexing
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coherentlightacross several wavelengths, with each wavelength being
weighted by a corresponding tunable MRR of varying radii and com-
bined in acommon bus waveguide. Convolutional processing based
on the broadcast-and-weight protocol requires precise control over
asubstantial number of MRRs, and one convolution operation on an
N-dimensional vector requires N distinct coherent lights at different
wavelengths. On-chip diffractive optical neural networks have been
showcased, performing matrix-vector multiplication (MVM) opera-
tions within an ultra-compact footprint through coherentinterference
of accurately controlled diffractive light*?¢, To achieve in-memory
photonic convolutional processing, which eliminates the need for data
movement between the memory and photonic processors, a photonic
tensor coreincorporating phase-change-material photonic memories
was proposed and demonstrated®*, A silicon nitride MRR was pumped
by a coherent laser to generate a frequency comb. In a photonic ten-
sor core consisting of Ninputs and M outputs, N different wavelength
components must enter their corresponding inputs to prevent meas-
urable interference effects, which could result in unwanted intensity
fluctuations. Data carried by each input coherent light at different
wavelengths are weighted by the phase-change-material photonic
memories and combined inacommon bus.

Here we demonstrate that decreasing optical coherence canenhance
photonic convolutional processing. We present a photonic convolu-
tional processing system that takes advantage of decreased temporal
coherence, hereafter referred to asa partially coherent system, to boost
processing parallelism without substantially sacrificing accuracy and
potentially enable large-scale photonic tensor cores. This approach
eliminates the need for precise control of numerous phase shifters or
MRRs and eases the requirements for stringent feedback control and
thermal management by using partially coherent light sources. We
showcase the broad applicability of partial coherence processing in
two photonic platforms for computing applications: first, we conduct
parallel convolutional processing with a 3 x 3 photonic tensor core
using phase-change-material photonic memories for classifying the
gaits of ten patients with Parkinson’s disease and achieve an accuracy of
92.2%; and second, we implement a high-speed 0.108 TOPS convolution
processor using a 9 x 3 silicon photonic tensor core with embedded
EAMs for vector encoding and weight setting, combined with on-chip
photodetectorsto classify the MNIST handwritten digits dataset with
anaccuracy of 92.4%.

Partial coherence as key to enhanced parallelism

State-of-the-art photonic tensor cores use coherentlight sources, such
asdistributed-feedback lasers and frequency combs, for computation.
Ageneralized unit cell to perform multiply-and-accumulate operations
isshownin Fig.1a. Lightis equally split into two arms, with multiplication
performedineach arm and the multiplication results summedinacom-
monbus waveguide. The fluctuationin transmission intensity resulting
fromfluctuation of phase difference (Ag) is determined by the coherence
property of input light. Figure 1aillustrates the dependence of intensity
fluctuation on phase difference. For a coherent light source at a fixed
single frequency E = %, the output intensity |E + Fe*?|> changes sinu-
soidally with phase difference. For anidealized incoherent light source
thatspansthe entire frequency range, the outputis unaffected by phase
fluctuation. A partially coherent light source providesimmunity to phase
fluctuations but only makes use of a limited optical bandwidth, which
makes it compatible with wavelength-division multiplexing. Partially
coherentlight progressively loses dependency on phase fluctuationas
the phase difference increases. For small phase differences, the intensity
fluctuates, resembling coherent light; at larger phase differences, the
intensity remains stable, asin the case of incoherent light.

A system that makes use of partially coherent light for parallelized
photonic computing is proposed in Fig. 1b. The light source does not
need to be a coherent light source that demands precise feedback
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control and thermal management. Instead, we can use a superlu-
minescent diode (SLED)***° or filtered light from a broadband light
source, enabling simplerintegration and less stringent circuit manage-
ment. The partially coherent lightis then evenly distributed to Ninput
channels, with each channel modulated to generate the input vector
(x; -+ xy)".MVMis performed by the photonic tensor core with weights
encoded inthe photonic crossbar array. The weighting elements can be
any photonic device that enables amplitude modulation, such as the
phase-change-material photonic memories or EAMs used here. This par-
tially coherent system offers much higher parallelism when compared
to a coherent system. As shown in Fig. 1c, a Gaussian-shaped optical
carrier canbesent toallinput channels and summedinabus waveguide,
asintensity fluctuation caused by phase fluctuations is eliminated. By
contrast,inacoherentsystem, differentinput channels should receive
optical carriers at distinct wavelengths to avoid intensity fluctuation.
Consequently, one MVM operation for input vectors of dimension N
requires only one optical band when using partially coherent light
but consumes N optical bands if coherent light is used. The enhance-
ment in parallelism is thus N-fold when using partially coherent light
ascompared to coherent light. Thisalsoimplies better scalability of the
photonictensor core. The scalability of a partially coherent system will
notbe limited by the spectral window of photonic components, as the
input optical bandwidth does not scale with input vector dimension.

Coherence properties of light sources

Coherent and partially coherent light is generated from a coherent
laser and by filtering the amplified spontaneous emission (ASE) of an
erbium-doped fibre amplifier (EDFA), respectively. The wavelength
spectra of the investigated light sources centred around 1,550 nmare
showninFig. 2a, including a Gaussian-shaped coherent source with a
linewidth narrower than 70 pm, a Gaussian-shaped partially coherent
source with 0.8-nm bandwidth filtered by a demultiplexer (DEMUX)
onITUgrid channel C34 and four non-Gaussian-shaped partially coher-
ent sources with 2.0, 4.0, 8.0 and 16.0 nm bandwidths filtered by an
optical tunable band-pass filter. All light sources are operated in
continuous-wave mode. A thermo-optically controlled MZl array with
increasing path differencesis used to determine the coherence lengths
of all lights (Supplementary Fig.1). The concept proposed in Fig.1a is
verified in Fig. 2b, whichillustrates diminishing phase sensitivity with
increasing length differences. The degree of coherence, defined by
the interference strength mx"min s extracted from Fig. 2b and pre-
sentedinFig.2c.The degreggfcn(;rﬁerence of coherent light maintains
alevel around unity at a large length difference of 4,000 pm. By con-
trast, that of partially coherent light decreases notably with increasing
length differences, with agenerally lower degree of coherence accom-
panied by a wider optical bandwidth. Quantitatively, the coherence
length, defined as the length difference for which the degree of coher-
ence decreases to 0.5, is inversely proportional to the optical band-
width (Fig. 2d), in agreement with theory*. A comparison between
Gaussian-shaped and non-Gaussian-shaped partially coherent light
reveals a negligible difference in the degree of coherence and coher-
ence length (Supplementary Fig. 2).

We investigate the effect of optical bandwidth and noise of filtered
ASE on optical modulation. For coherent light, the noise remains at a
low level above the system noise floor and exhibits aweak dependence
ontheintensity received at the photodetector (Supplementary Fig. 3).
Conversely, for partially coherentlight, the noise increases linearly with
the intensity received at the photodetector and isinversely related to
optical bandwidth. This observation can be explained by the stochastic
properties of an EDFA*2, which introduce inherently elevated noise lev-
els compared with coherent light. However, this noise canbe reduced by
increasing theratio of optical bandwidth to electrical bandwidth. The
linearly increasing noise leads to a saturated signal-to-noise ratio (SNR)
inpartially coherent light (Fig. 2e), implying that coherent light holds
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Fig.1| Concept of partial-coherence-enhanced parallelized photonic
computing. a, Intensity fluctuation with respectto anincreasing phase
difference Aginasingle computation unit cell for multiply-and-accumulate
operations whenacoherent, incoherent or partially coherent light source is

an advantage in high-intensity scenarios in which partially coherent
lightis hampered by acompromised SNR. Nonetheless, in integrated
photonic circuits, the signal (intensity received at the photodetec-
tor) typically spans from 0.1 uW to 0.1 mW. In this range of interest to
many applications, the SNR of partially coherent light from EDFA ASE
is not substantially lower compared with that of coherent light. The
viable SNR of partially coherent light is verified by measuring 2-GHz
eye diagrams at 0.05-mW signal (Fig. 2f). Although the eye diagram of
0.8-nm-bandwidth C34 partially coherent light is ambiguous compared
with coherent light, the clarity of the eye diagram markedly improves
with an enlarged optical bandwidth, becoming clear at 4.0-nm band-
width and beyond. At alower modulation speed of 100 MHz, all eye
diagrams are clear (Supplementary Fig. 4).

Eliminating intensity fluctuation

The elimination of intensity fluctuation caused by phase fluctuation
withinasingle MZI has been verified in Fig. 2b. When transferring this
concept from asingle-device level to a system level, we must account
for potential complexities and further variables that may influence
the stability and reliability of the entire photonic system, requiring
further verification at the system level. A photonic tensor core using
phase-change photonic memories featuring the architecture proposed
in Fig. 1b, hereafter referred to as photonic memory tensor core, is

used. Gauss(w|w,, Aw) represents a Gaussian distribution witha mean value of
w,and standard deviation Aw. b, Working principle of parallelized photonic
computing using partially coherentlight. ¢, N-fold enhancementin parallelism.
Nisthe dimension of input vectors.

fabricated to perform enhanced parallelized photonic computing.
Asaproof of concept, the photonic memory crossbar array represents
a3 x 3 weight matrix (Fig. 3a) and the working principle is described
inSupplementary Text 1. The weights are encoded in non-volatile phase-
change-material photonic memories. Using the pump-probe weight-
setting scheme*, the non-volatile amplitude modulation enabled by
controlling the crystalline state of phase-change-material photonic
memories enables 4-bit operations. The maximum transmission change
Tnax — Tminis greater than 20% (Supplementary Fig. 6). The transmission

Tmax * Tmin

levels Tare mapped to weights win [-1, 1] by definingw = ﬁ
In this work, the mapping isimplemented by post-processinig ona
computer (Methods). This mapping approach canbe implementedin
hardware using a balanced photodetection scheme (Supplementary
Text 2).Onthe other hand, besides changing the hardware architecture,
the neural networks themselves can be modified to adapt to the non-
negative nature of photonic computing systems*.

Figure 3b presents the schematic of the setup used to investigate the
intensity fluctuation when using coherent or partially coherent light
(0.8-nm-bandwidth C34). A path difference of 1 m between adjacent
inputs is introduced by incorporating 1-m-long fibre delays. This 1-m
path difference is substantially longer than the measured coherence
length of 550 pm in 0.8-nm-bandwidth C34 partially coherent light,
which will effectively eliminate intensity fluctuations. When coherent
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lightissplitand directed to three input channels, strong intensity fluc-
tuations are observed (Fig. 3c), resulting from phase fluctuations along
the optical paths. On the contrary, when partially coherent light is
used, intensity fluctuations are eliminated (Fig. 3d). This immunity
of transmission intensity to phase fluctuation is the desired property
offered by partially coherent light that will enable higher parallelism.
Specifically, using partially coherent light, light in one optical band
can be distributed to all input channels to perform MVM operations,
allowing for full bandwidth use.

Parallelized convolution of gait signals from patients
with Parkinson’s disease

As a proof-of-concept example to showcase the capability of partial-
coherence-enhanced parallelized photonic computing, we construct
asystem using the photonic memory tensor core to identify patients
with Parkinson’s disease by analysing their gaits. The enhanced paral-
lelism offers a way to simultaneously monitor a large number
of patients. The partially coherent light has abandwidth of 0.8 nm,
modulated at1kHz. As shown in Fig. 4, gait signals from patients with
Parkinson’s disease originally in the form of time series are recorded.
The gaitsignal from patientjat timeiis represented by x;. x;is carried
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coherence.d, Coherencelengths extracted from careinversely proportional
to opticalbandwidth. e, Dependence of SNR on signal (intensity received at the
photodetector). f, Two-GHz eye diagram at 0.05-mW signal.

by wavelength A;and sentinto optical channeli. Taking the gait signal
from patient 1 for example, the input vector is (xy;, X,;, X3;)" carried by
A;. The 3 x 3 photonic memory crossbar array defines three kernels of

Wy Wy Wi '

dimension 3 x 1, represented by the weight matrixW=|wy Wy, W,
Wy W3 Wi
T 1 T 1 T
Specifically, therows of Waresetto| 1 | ,| 1| and| 1 |, performing
-1 1 1

right-edge extraction, peak suppression and left-edge extraction,
respectively. Using an extra wavelength A,, the system can perform
convolutional processing for patient 2 in parallel. For comparison, the
schematic of acoherent system toimplement the same convolutional
processing is described in Supplementary Text 3. Notably, in the par-
tially coherentsystem, the same wavelength can enter differentinput
waveguide channels because the intensity fluctuation is eliminated.
The ability to enable the same wavelength to enter different input chan-
nels provides superior advantages compared with the conventional
computing system that uses coherent light. The optical bandwidth is
fully used because no further wavelength channels are required to
avoidintensity fluctuation. In comparison with our partially coherent
system, which uses two wavelengths, a coherent system will require
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six wavelengths. This advantage scales up with the desired parallelism
and the size of the photonic tensor core. For a parallelism of P (that is
processing gait signals from P patientsin parallel) and aphotonic ten-
sor core with dimension Nby M, the reductioninthe required number
of wavelengthsis (N-1) x P.

The convolution results obtained using the partially coherent sys-
tem are shown in Fig. 4b-e and compared with the results obtained
using acoherent system. For a typical gait signal, the desired features
are successfully extracted in both computing systems, as shown in
Fig.4b. Theoretical convolution results obtained by a central process-
ing unit (CPU) are presented in Supplementary Fig. 9. The convolu-
tion results of all gait signals from all ten patients are presented in
Supplementary Figs. 10 and 11. Figure 4c shows the accuracy of the
convolution operation. The two computing systems show similar
accuracy. The respective errors follow Gaussian distributions and
show close mean values and standard deviations. Using these con-
volution results obtained by the photonic systems, we construct a
convolutional neural network (CNN) to identify patients with Par-
kinson’s disease (Fig. 4d). The CNN s first implemented by a CPU to
test the necessity of the convolution layer. Using a convolution layer,
the classificationaccuracyisimproved from 84.4%t0 92.7% (Fig. 4e).
When the convolution layerisimplemented by photonic systems, the
classification accuracy reaches more than 92.2% in both computing
systems, showing a performance close to the CPU implementation.
The confusion maps of CNN classification results are presented in
Supplementary Fig.12. The evolution of CNN loss and accuracy with
respecttoincreasing epochs are presentedin Supplementary Fig.13.
The partially coherent system achieves similar performance to the
coherent system, but with much fewer wavelength channels and less
stringent light-source requirements.

High-speed convolution of MNIST datasets

The applicability of partially coherent systems extends beyond the
photonic memory tensor core described above, which is operated at
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intensity fluctuation. The partially coherentlight is 0.8-nm-bandwidth C34.
c,d, Timetrace of transmission with differentinput channels turned onwhen
using coherentlight (c) and partially coherentlight (d).

amodest modulation speed of 1 kHz for specialized applications such
as gait-signal classification. The versatility of the general approach
caterstoany photonic weighting device using amplitude modulation
and is proficient at performing high-speed convolutional processing
for diverse Al tasks. This is demonstrated through a high-speed 9 x 3
silicon photonictensor core using EAMs, equipped withanintegrated
input EAM array and output photodetector array (Fig. 5a,b). The chip
isfabricated using IMEC’s iSiPP50G silicon photonics platform, which
provides the active components at a higher integration level. Here-
after we refer to this system as a photonic EAM tensor core. Using a
field-programmable gate array (FPGA)-controlled electro-opticinter-
facetothe photonic EAMtensor core, we perform convolutional pro-
cessing on the MNIST handwritten digits dataset at a data-loading
rate of 2 gigasamples per second (GSas™) in each channel, using
8.0-nm-bandwidth partially coherentlight. This 2 GSa s data-loading
rate brings the total system processing speed to 0.108 TOPS consid-
ering the size of the photonic tensor core, and an estimated energy
efficiency of 1 TOPS W (Supplementary Text 4). Supplementary
Fig. 14 illustrates the configuration and data flow of the entire sys-
tem, which operates analogously to the 3 x 3 photonic memory tensor
coredescribed above. Using the digit ‘0’ from the MNIST dataset as an
example (Fig. 5¢), the 2 GSa s™ partially coherent system effectively
extracts edges using Sobel G, and Sobel G filters, albeit with increased
background noise. As the noise originates from the stochastic proper-
ties of the ASE light source, it can be mitigated by averaging further
convolutions per sample. Quantitatively, the normalized standard
deviation of the error is 0.094 without averaging (Fig. 5d), which is
reduced to 0.049 by four-pointaveraging (Fig. 5e). When the convolu-
tionresults are used as input to a CNN for classification (Fig. 5f), accu-
racies of 92.4% without averaging and 93.9% with four-point average
are achieved, closely aligning with the theoretical accuracy of 95.0%
attained from CPU-implemented convolutions. The corresponding
confusion maps and evolution of loss and accuracy with respect to
increasing epochs are presented in Supplementary Figs. 15 and 16.
Furthermore, the convolutional processing on the MNIST fashion
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Fig. 4 |Parallelized convolution of gait signals from patients with
Parkinson’s disease. a, Schematic of the computing system using the 3 x 3
photonic memory tensor core. The partially coherent lightsinuseare 0.8-nm-
bandwidth C34 and C33.b, Convolutionresults of atypical gait signal from
three differentkernels when using a partially coherent systemin (i) and a
coherentsystemin (ii). All of the convolutions are performed once. The error
bands represent the standard deviation of convolution results from 50 gait

products dataset, executed using the same system, reveals similar
performancetrends, detailed in Supplementary Text 5. We wish to note
thatthe 2 GSas™ data-loading rate is limited by the digital-to-analogue
converters (DACs) of the FPGA and not the photonic chip. The partially
coherent light can provide a data-loading rate of at least 30 GSa s™
(Supplementary Fig. 21), which brings the total system processing
speedto1.62 TOPS per optical carrier. Furthermore, using an ASE opti-
calbandwidth of 40 nm for ten optical carriers (4 nmoptical bandwidth
per optical carrier), the partially coherent systemis expected toreach
16.2 TOPS system processing speed.
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signals generated by the same patient, showing the variation of gait signals
from this patient. ¢, Convolution accuracy of using a partially coherent system
in (i) and acoherent systemin (ii). A total of 43,500 pairs of expected and
measured resultsare compared ineach system. The insets show the Gaussian
distribution of normalized errors.d, CNN architecture. e, Comparison of CNN
classification results. a.u., arbitrary units; PD, photodetector.

Discussion and conclusion

We have demonstrated that decreasing optical coherence canlead to
enhanced performance in photonic computing systems, challenging
the conventional wisdom that a higher degree of coherence is always
advantageous. By decreasing the degree of coherence, we effectively
exploit the optical bandwidth to boost parallelism without substantially
degrading convolutionaccuracy. Specifically, reducing the coherence
oftheinputlight sources enables the same wavelength to be distributed
across all input channels of a photonic tensor core. This also implies
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Fig.5|High-speed convolution of the MNIST handwritten digits dataset.
a, Opticalimage of the 9 x 3 photonic EAM tensor core. The inputlightis
8.0-nm-bandwidth partially coherent light. Scale bar,100 um. b, Opticalimage
ofthebonded photonic EAMtensor core. Theblue boxindicates the region
shownina.c, Edge detection of digit ‘0’ using Sobel G, and Sobel G, filters.

better scalability of photonic tensor cores, as the input optical band-
width does not scale with the input vector dimension and thus is not
limited by the spectral window of photonic components. In a system
withan N x Nphotonictensor coreand P x Navailable wavelengths, par-
tially coherent light facilitates P x N parallel convolutional processing
operations, whereas coherent light facilitates P parallel operations. The
limitations of partially coherent systems are related to the intrinsically
reduced SNR, which s attributed to the stochastic properties of ASE.
Considering these advantages and limitations, aquantitative compari-
sonbetween coherentand partially coherent systemsis shownin Sup-
plementary Text 6. This comparison suggests that, although coherent
systems exhibit advantages at the small scale by delivering high SNRs
and modest parallelism, partially coherent systems surpass them at
larger scales by offering enhanced parallelism and comparable SNRs.
Furthermore, the SNR of partially coherent light may be improved by
the substitution of EDFA ASE with broadband SLEDs* and further opti-
mized by coupling with saturated semiconductor optical amplifiers*.

d,e, Convolutionaccuracy of using a partially coherent system without
average (d) and with four-point average (e). A total of 100,000 pairs of
expected and measured results are compared inbothdande. Theinsets
show the Gaussian distribution of normalized errors. f, CNN architecture.
g, Comparison of CNN classification results.

SLEDs have high spatial coherence with the benefit of easier coupling
to the waveguide, moderate optical bandwidth (a few nanometres to
tens of nanometres) for partial coherence controland favourable opti-
cal power®*°, We also note that the long delay lines required in large
partially coherent systems are challenging toimplement. The solutions
to address this long delay line issue are discussed in detail in Supple-
mentary Text 7. Assuming that we require the loss of the longest delay
line to be below 3 dB and we use only one ASE source with an optical
bandwidth of 4 nm, the system can support approximately amaximum
of 59 input channels on a silicon nitride-on-silicon platform with a
propagationloss of 0.4 dB cm™ (refs. 47,48). To realize larger partially
coherent systems, we can use an array of independent ASE sources
working at the same wavelength, with each ASE source driving a few
tens of input waveguide channels. Theseindependent ASE sources are
uncorrelated, eliminating the need for longer delay lines to overcome
the coherencelength of asingle source. Using numerous ASE sources is
stilladvantageous compared with using numerous lasers because each
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laser can only drive one input channel and independent lasers should
still use different wavelengths to avoid undesired interference***°,

As a proof of concept, we used partially coherent light in a system
featuring a 3 x 3 photonic memory tensor core to demonstrate the
parallel convolution of two gait signals from patients with Parkinson’s
disease. These convolution results were subsequently used for CNN
classification. Comparable convolutional processing and CNN clas-
sification accuracies were achieved as compared with using coher-
ent light, while conserving four optical bands. To illustrate the broad
applicability of partially coherent systems for high-speed convolutional
processing in more complex Al tasks, we demonstrated 0.108 TOPS
convolutional processing on MNIST handwritten digits dataset using
a9 x 3 photonic EAM tensor core with integrated input modulators
and output photodetectors. The CNN classification accuracy reaches
92.4%, slightly below the theoretical accuracy of 95.0%, yetimprovable
t093.9% through four-point average. A comparative analysis with other
prevailing state-of-the-art photonic computing systemsis providedin
Supplementary Text 8. Our partially coherent system uniquely features
phase insensitivity throughout the whole system. This technological
shiftaway from coherentlight considerably alleviates system require-
ments by circumventing stringent light-source specifications and elimi-
nating the need for numerous precise phase controls, MRR controls and
thermal management. Our findings suggest that EDFA ASE, SLEDs or
othersimplelight sources can be used to bolster photonic computing
performance rather than diminish it. This insight has the potential to
revolutionize photonic computing systems as they evolve to accom-
modate increasingly complex computational tasks and continue to
scaleup tolarge Nand Pvalues.
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Methods

Device fabrication

MZI array. The fabrication started from a silicon-on-insulator wafer
(SOITEC) with a 220-nm silicon (Si) device layer and a 2-pm buried
oxide layer. A 200-nm-thick positive e-beam resist (CSAR 62) was
spin-coated onadiced 1 cm x 1 cmsilicon-on-insulator chip, followed
by 3 min pre-bake at 150 °C. The e-beam resist was patterned by e-beam
lithography (EBL;JEOLJBX-5500 50 kV) and developed in AR 600-546
for30 s, MIBK for 15 sand IPA for 15 sin sequence. The waveguide pat-
terns were transferred to the Si device layer (etch depth =110 nm) by
reactiveion etching (Oxford Instruments PlasmaPro) with SF,and CHF;
gases, followed by O, plasma cleaning of CSAR. A 1-um-thick silicon
dioxide (Si0O,) was deposited by plasma-enhanced chemical vapour
deposition (Oxford Instruments PlasmaPro) as the upper cladding
layer to isolate waveguides from thermo-optic phase shifters. Next,
a2-pm-thick double-layer PMMA (PMMA 495 A8 and PMMA 950 A4) was
spin-coated on the chip, followed by EBL patterning and development
inMIBK:IPA = 1:3 for 1 min to define the heater patterns. A200-nm-thick
NiCr layer was sputtered using amagnetron sputtering system (physi-
cal vapour deposition, AJA International), followed by PMMA lift-off
to form NiCr heaters. Gold pads of 100 nm thickness were fabricated
using a similar process as NiCr heater fabrication, but with e-beam
evaporation (Plassys MEB550S). A 3-5-nm Cr layer was deposited before
golddepositiontoserve asanadhesion layer. The opticalimage of the
fabricated MZl array is shown in Supplementary Fig. 1.

Photonic memory crossbar array. The Si photonic circuit was fab-
ricated using the foundry multi-project wafer service provided by
CORNERSTONE. The detailed specifications of CORNERSTONE stand-
ard waveguide components can be found at https://cornerstone.
sotonfab.co.uk/. The fabricated Si photonic circuit has al-um-thick SiO,
upper cladding. SiO, windows were patterned by EBL and opened by
hydrogen fluoride for the following deposition of the Ge,Sb,Te; (GST)/
indiumtin oxide (ITO) stack. Next, GST/ITO stack windows were opened
by the above-mentioned PMMA process. A 10-nm-thick/10-nm-thick
GST/ITO stack was deposited on the waveguide using a magnetron
sputtering system (physical vapour deposition, AJA International). The
GSTandITOtargets were respectively sputtered at 30 W RF power with
3 sccm Ar flow and 40 W RF power with 3 sccm Ar flow at a base pres-
sure of 107 torr. The stack was then lifted offin acetone for 180 min at
50 °C. Next, the thermo-optic phase shifters were fabricated using the
method described for the MZI array. Finally, the chip was annealed ona
hotplate for 5 minat 250 °Cto fully crystallize the GST. The fabricated
photonic memory crossbar array is shown in Fig. 3a.

Photonic EAM tensor core. The photonic EAM tensor core was fab-
ricated using the foundry multi-project wafer service provided by
IMEC: iSiPP50G, with details at https://www.imeciclink.com/en/asic-
fabrication/si. This platform provides the monolithic integration of
passive waveguide circuits, integrated EAMs and integrated photo-
detectors used in the photonic EAM tensor core.

Measurement setup

Coherence property measurement. The coherent light was generated
by a tunable coherent laser (Santec, TSL-550) operating at 1,550 nm.
The 0.8-nm-bandwidth C34 partially coherent light was generated
by filtering the ASE from an EDFA (Pritel FA-33) with a passive DEMUX
module (Gezhi, DWDM-100G-DEMUX) operating at channel C34 of the
ITU grid. The 2.0, 4.0, 8.0 and 16.0-nm-bandwidth partially coherent
light sources were generated by filtering the same ASE with an optical
tunable band-pass filter (Santec, OTF-350) operating at a centre wave-
length of 1,550 nm. The spectra were measured by an optical spectrum
analyser (Anritsu, MS9710C). For eye diagrams, light was modulated by
apulsegenerator (Agilent, 8133A) through an electro-optic modulator

(Lucent2623N) and received by a photodetector (Newport New Focus
1611) connected to an oscilloscope (Tektronix, TDS7404B).

System setup for parallel convolutional processing. The experi-
mental setup for parallel convolutional processing on two gait signals
is shown in Fig. 4a. The photonic memory crossbar array has three
input channels and three output channels, representing a d,,; matrix
consisting of three d,,; kernels. Theinput light was switchable between
an EDFA (Pritel FA-33) and atunable pump laser (Santec, TSL-550) using
anoptical switch (Gezhi GZ-12C-1x2-SM). The phase-change-material
photonic memoryin each cell of the photonic memory crossbar array
wasfirst set to the desired weight to correctly define kernels. The tun-
able pump laser was used in phase-change-material weight setting.
The amplified pump light passed through a DEMUX module (Gezhi,
DWDM-100G-DEMUX) so that different wavelengths were routed to dif-
ferentinput channels (4,=1,550.12nmtoCh1,4,=1,550.92nmto Ch 2
and A;=1,551.72 nm to Ch 3). After setting all phase-change-material
weights, parallel convolution was performed using the ASE from the
EDFA. The DEMUX module was used to separate two wavelengths with
aspacing of 0.8 nm to two different channels (4, =1,550.12 nm and
1,=1,550.92 nm). Each wavelength was splitinto three channels by an
opticalsplitter (FSPLCsplitter). The three channels serve as theinput
lighttothe threerespective input waveguide channels of the photonic
memory tensor core. Adjacent channels have a 1-m path difference,
using a further 1-m-long fibre to eliminate the coherence among all
three input light sources. The gait-signal data were loaded into each
channel using a variable optical attenuator (VOA; Thorlabs V1550A).
The VOAs were driven by adigital signal processor (DSP; NI USB-6259).
The polarization of output light from the VOA was controlled by a po-
larization controller (Thorlabs FPC032). Different wavelengths carry-
ingthe gait signal at the same time index from different patients were
thengrouped by aMUX array (Gezhi, DWDM-100G-MUX) to form three
inputs to the respective input channels of the photonic memory ten-
sor core. Convolutions were performed naturally as light propagated
through the photonic memory crossbar array. Each output channel of
the photonic memory tensor core contained both wavelengths A, and
A,. The two wavelengths were demultiplexed to obtain the outputs
and detected by aphotodetector array (Newport New Focus 2011) and
finally read out from the DSP.

System setup for high-speed convolutional processing. The experi-
mental setup for high-speed convolutional processing on the MNIST
datasetsis shownin Supplementary Fig.13. The whole system operating
at2 GSa s was controlled by a FPGA evaluation board (Xilinx, Zynq
UltraScale+RFSoCZCU216) with a processing system unit, a program-
mable logic unit, 16 DACs and 16 analogue-to-digital controllers. The
opticalinput was the 8.0-nm-bandwidth partially coherent light equally
splitintonineinput grating couplers. The MNIST datawere read by the
processing system unit, stored inits DDR4 memory and accessed by the
programmable logic unit to output at nine analogue-to-digital control-
lers that modulated optical signals through the input EAM array. The
weights on the photonic EAM crossbar array were set by a low-speed
DSP. The three convolutional processing outputs werereceived by the
integrated photodetector array connected to three transimpedance
amplifiers and analogue-to-digital controllers, routed back to the pro-
cessing system unit and stored in DDR4 memory.

Mapping non-negative transmission to negative convolution
results

The input gait signals and image data presented in this work are
non-negative, thatis, x € [0, 1]. The kernels involve negative values,
thatis, w € [-1, 1]. The measurable outputs from the photonic system
arenon-negative as aresult of thembeing physical quantities. We need
to map these non-negative outputs to convolutionresultsin the range
[-1,1]. This is done by the following steps:
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(a) Wenormalize every gait signal orimage data to [0, 1] using software
and load these normalized data to the photonic tensor core using
modulators.

(b) We represent the input data x using the output power of the
modulator by setting P =Xx(P.x = Pmin) + Pmin, in which P, and P,
are the maximum and minimum outputs from the modulator,
respectively.

(c) Werepresent the weight wusing the transmission level of the phase-
change material or the EAM by setting T=w ( T"“*X; Tin ) 4 T’“"‘; Tmin
inwhich T,,,and T, are the maximum and minimum transmission
levels of the weight-setting device, respectively.

(d) Wesettheinput vector x tothe targetinput dataand set the kernel
wto the target weights. The measured output is:

ZiPixnzz |:( max mm)(M

T+ T Tax— T T+ T
ITIHX2 min +Pmm[ ITIZ‘]X2 mlnj +Pm1n ITIZ‘]X2 m|n:|

)XW +( max Pmin)
@

Step (d) should be performed for every input vector x.
(e)Wesetallx=0andallw=0.ThusallP=P_,andall T=
The measured output is:

Tmax *+ Tmin

z,' PminTmaX; Tmin

Step (e) only needs to be performed once for the whole system.
(f) We set all x = 0 and set w to the target weights. Thus all P=P,_;, and
T=w (M) 4 Tma
i i 2

%Tm‘“. The measured outputis:
Trnax = T
Zi |:Pmin[ max2 mln)uji+

Step (f) needs to be performed once for each kernel.
(g) We set x to the target input data and set all w=0. Thus P;=

X{(Prax = Pain) + Pminand all T= M. The measured output is:

(2)

3

min 2

P Tmax + Tmin:|

Tmax t T Toiax + T
Z,- |:(Pmax_Pmin) maX2 I-nmxi+Pmin max2 mlni| (4)

Step (g) should be performed for every input vector x.
(h) We perform post-processing on a computer using the measured
output fromsteps (d)-(g) as:

Result= (1) = (3) - (4) + (2) = (Pnax~ mm)(%r'"'"jz Xw; (5)

(i) We normalize the results to [-1, 1] using software because all
results share the same factor of (Byay = Prin) (05— T"“‘" )andx e[0,1]
andwe[-1,1].

We can see that the hardware computation is doubled using this
mapping approach, yet this mapping approach can be implemented
without doubling by hardware implementation involving a balanced
photodetection scheme (Supplementary Text 2).

Generation, convolution and output of gait signals
The properties of the original gait-signal data collected by force sen-
sors (Ultraflex Computer Dyno Graphy, Infotronic) are described in
the next section ‘CNN model; Gait-signal dataset’.
For parallel convolution of the middle three time-domain data
X X2
of two gait signals, the input matrix is a d;., matrix: X=| X1 X |.
X1 X3
Thejth column of X contains the middle three time-domain data of the
Jth gait signal (Fig. 4). The ith row of X contains the ith time-domain
data of two gait signals. A DSP drove VOAs to load gait signals into the

optical domain. The photonic memory tensor core was then effectively
performing:

.
Wy Wp Wga||Xyp Xp
Y=WxX=|Wy Wy Wy||Xy Xpn
Wi Wiy Wiz || X1 X3
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inwhich y, =y 1W,X,,; Tepresents the convolution result of the mid-
dle three time- domaln data of the jth gait signal using the ith kernel.
Eachrow of Ywas output fromthe respective photonic memory tensor
core output channel.

CNN model

Gait-signal dataset. Gait signals from ten patients with Parkinson’s
disease were taken from the ‘Gait in Parkinson’s Disease’ database in
PhysioNet®*, This database includes the vertical ground reaction force
records ofindividuals as they walked at their usual, self-selected pace
for approximately 2 min on level ground. The corresponding clinical
information of ten patientsis provided in Supplementary Table 1. Fifty
gait pulses were extracted from each patient, leading to atotal of 500
gait pulses. Each pulse hasal.2-sduration. The original electrocardio-
gram signals have a 0.01-s time resolution. Gait pulses were extracted
with a time interval of 0.04 s (that is, one out of every four original
data), leading to 31 data in the extracted gait pulses. The 0.04-s time
interval was carefully chosen to minimize the extracted dataset while
maintaining the key features from the original gait pulses. Eighty per
cent of pulses were used for training and 20% were used for testing,
thatis, atotal of 400 pulses for training and 100 pulses for testing.

MNIST dataset. The test dataset of MNIST handwritten digits and MN-
IST fashion products were respectively taken from https://git-disl.
github.io/GTDLBench/datasets/mnist_datasets/and https://developer.
ibm.com/exchanges/data/all/fashion-mnist/. In both cases, the 10,000
testimages were splitinto atraining set with 8,000 images and atesting
set with 2,000 images.

CNN architecture. The CNN architecture for the classification of the
gaits dataset is shown in Fig. 4d. The input layer takes the gait signal,
whichisinthe form of a d,,,, 1D array. The 1D array is passed to a con-
volution layer consisting of three d,,; kernels. Convolution operations
were implemented with a stride of 1 and ‘valid padding’, resulting in
a ds.1.3:) OUtput. The output was activated by a rectified linear unit
layer and flattened to a dg,., vector. The flattened activated output was
then fed to a fully connected layer with ten neurons. The output from
the fully connected layer was converted to probabilities by a softmax
layer. Finally, the classification result was obtained. The gait signals
were classified into ten categories, representing ten patients with
Parkinson’s disease. The convolution operations were implemented
using the photonic memory tensor core. The convolution results were
processed by the following CNN layers using the MATLAB R2021b Deep
Learning Toolbox. Weights of the fully connected layer were trained
by the Adam optimizer. A hundred epochs were used to reach the final
CNNoutcomes. The CNN architecture for the MNIST datasets is similar
to that for the gaits dataset, as shown in Fig. 5d. We will only mention
the key differences here. For the MNIST datasets, besides the trivial
differenceinlayer dimensions, theimages were convolved with ‘same
padding’ implemented by the photonic EAM tensor core. We used 50
epochstoreachthe final CNN outcomes.
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Data availability

The data that support the findings of this study are available from
the corresponding author on request. The gait dataset analysed in
this study is available from the open source ‘Gait in Parkinson’s Dis-
ease’in PhysioNet at https://doi.org/10.13026/C24H3N. The MNIST
handwritten digits dataset is available at https://git-disl.github.io/
GTDLBench/datasets/mnist_datasets/. The MNIST fashion products
datasetis available at https://developer.ibm.com/exchanges/data/all/
fashion-mnist/. Source data are provided with this paper.

Code availability
The code used in this work is available from the authors on request.
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