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Partial coherence enhances parallelized 
photonic computing

Bowei Dong1,2,6, Frank Brückerhoff-Plückelmann3,6, Lennart Meyer3, Jelle Dijkstra3, 
Ivonne Bente4, Daniel Wendland4, Akhil Varri4, Samarth Aggarwal1, Nikolaos Farmakidis1, 
Mengyun Wang1, Guoce Yang1, June Sang Lee1, Yuhan He1, Emmanuel Gooskens5, 
Dim-Lee Kwong2, Peter Bienstman5, Wolfram H. P. Pernice3,4 & Harish Bhaskaran1 ✉

Advancements in optical coherence control1–5 have unlocked many cutting-edge 
applications, including long-haul communication, light detection and ranging 
(LiDAR) and optical coherence tomography6–8. Prevailing wisdom suggests that using 
more coherent light sources leads to enhanced system performance and device 
functionalities9–11. Our study introduces a photonic convolutional processing system 
that takes advantage of partially coherent light to boost computing parallelism 
without substantially sacrificing accuracy, potentially enabling larger-size photonic 
tensor cores. The reduction of the degree of coherence optimizes bandwidth use in 
the photonic convolutional processing system. This breakthrough challenges the 
traditional belief that coherence is essential or even advantageous in integrated 
photonic accelerators, thereby enabling the use of light sources with less rigorous 
feedback control and thermal-management requirements for high-throughput 
photonic computing. Here we demonstrate such a system in two photonic platforms 
for computing applications: a photonic tensor core using phase-change-material 
photonic memories that delivers parallel convolution operations to classify the gaits 
of ten patients with Parkinson’s disease with 92.2% accuracy (92.7% theoretically) and 
a silicon photonic tensor core with embedded electro-absorption modulators (EAMs) 
to facilitate 0.108 tera operations per second (TOPS) convolutional processing for 
classifying the Modified National Institute of Standards and Technology (MNIST) 
handwritten digits dataset with 92.4% accuracy (95.0% theoretically).

Over the past century, notable progress in optical coherence control 
has enabled the generation of light with linewidth ranging from tens 
of terahertz (THz) to less than 1 kilohertz (kHz). This enhanced control 
has revolutionized light sources, from fluorescence1, light-emitting 
diodes (LEDs)2 and lasers3,12 to distributed-feedback lasers4 and stabi-
lized continuous-wave lasers5,13, laying the foundation for numerous 
transformative applications, such as long-haul optical-fibre communi-
cations6, LiDAR7, optical coherence tomography8,14 and so on. Despite 
the challenges in stabilizing and maintaining high optical coherence, 
researchers have sought to make use of the superior properties of 
coherent light by using partially coherent light in combination with 
post-processing reconstruction methods as a compromised solu-
tion9,15,16. Taking a more direct approach, many studies have aimed to 
generate more coherent light from incoherent light sources17,18, with 
a recent achievement in obtaining spatio-temporal coherence with 
an incoherent white-light source for coloured vortex-beam genera-
tion using miniaturized spiral phase plates integrated with structural 
colour filters10. As a result, increasing optical coherence has become  
a guiding principle for improving the performance and functionalities 
of cutting-edge optical devices and systems.

Deep learning has made a great impact on various fields19–22, with two 
recent highlights being GPT-4 and Midjourney. The success of deep 
learning relies on training huge artificial neural networks with billions 
of trainable parameters, necessitating the doubling of hardware-data 
processing capability every 3.5 months23. To keep up with this expo-
nentially growing need for processing capability, photonic convolu-
tional processing is believed to be a key to hardware-based artificial 
intelligence (AI) accelerators24–26. Photonic processors can access  
a wide bandwidth of tens of THz by exploiting wavelength-division mul-
tiplexing and eliminate capacitive delay and charge/discharge energy 
dissipation, as photons require no potential difference to transit27. 
Various system architectures for photonic convolutional processing 
have been proposed, all using coherent light sources in accordance 
with the guiding principle. Coherent nanophotonic circuits distrib-
ute light from a single coherent light source to the inputs of a Mach–
Zehnder interferometer (MZI) array11,28–30. Operating these circuits 
requires the precise control of numerous phase shifters to ensure the 
desired coherent interference in the circuit. A broadcast-and-weight 
protocol based on cascaded microring resonator (MRR) arrays has 
been demonstrated31–34. The optical input is created by multiplexing 
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coherent light across several wavelengths, with each wavelength being 
weighted by a corresponding tunable MRR of varying radii and com-
bined in a common bus waveguide. Convolutional processing based 
on the broadcast-and-weight protocol requires precise control over 
a substantial number of MRRs, and one convolution operation on an 
N-dimensional vector requires N distinct coherent lights at different 
wavelengths. On-chip diffractive optical neural networks have been 
showcased, performing matrix-vector multiplication (MVM) opera-
tions within an ultra-compact footprint through coherent interference 
of accurately controlled diffractive light35,36. To achieve in-memory 
photonic convolutional processing, which eliminates the need for data 
movement between the memory and photonic processors, a photonic 
tensor core incorporating phase-change-material photonic memories 
was proposed and demonstrated37,38. A silicon nitride MRR was pumped 
by a coherent laser to generate a frequency comb. In a photonic ten-
sor core consisting of N inputs and M outputs, N different wavelength 
components must enter their corresponding inputs to prevent meas-
urable interference effects, which could result in unwanted intensity 
fluctuations. Data carried by each input coherent light at different 
wavelengths are weighted by the phase-change-material photonic 
memories and combined in a common bus.

Here we demonstrate that decreasing optical coherence can enhance 
photonic convolutional processing. We present a photonic convolu-
tional processing system that takes advantage of decreased temporal 
coherence, hereafter referred to as a partially coherent system, to boost 
processing parallelism without substantially sacrificing accuracy and 
potentially enable large-scale photonic tensor cores. This approach 
eliminates the need for precise control of numerous phase shifters or 
MRRs and eases the requirements for stringent feedback control and 
thermal management by using partially coherent light sources. We 
showcase the broad applicability of partial coherence processing in 
two photonic platforms for computing applications: first, we conduct 
parallel convolutional processing with a 3 × 3 photonic tensor core 
using phase-change-material photonic memories for classifying the 
gaits of ten patients with Parkinson’s disease and achieve an accuracy of 
92.2%; and second, we implement a high-speed 0.108 TOPS convolution 
processor using a 9 × 3 silicon photonic tensor core with embedded 
EAMs for vector encoding and weight setting, combined with on-chip 
photodetectors to classify the MNIST handwritten digits dataset with 
an accuracy of 92.4%.

Partial coherence as key to enhanced parallelism
State-of-the-art photonic tensor cores use coherent light sources, such 
as distributed-feedback lasers and frequency combs, for computation. 
A generalized unit cell to perform multiply-and-accumulate operations 
is shown in Fig. 1a. Light is equally split into two arms, with multiplication 
performed in each arm and the multiplication results summed in a com-
mon bus waveguide. The fluctuation in transmission intensity resulting 
from fluctuation of phase difference (Δφ) is determined by the coherence 
property of input light. Figure 1a illustrates the dependence of intensity 
fluctuation on phase difference. For a coherent light source at a fixed 
single frequency E = e ω ti 0 , the output intensity |E + EeiΔφ|2 changes sinu-
soidally with phase difference. For an idealized incoherent light source 
that spans the entire frequency range, the output is unaffected by phase 
fluctuation. A partially coherent light source provides immunity to phase 
fluctuations but only makes use of a limited optical bandwidth, which 
makes it compatible with wavelength-division multiplexing. Partially 
coherent light progressively loses dependency on phase fluctuation as 
the phase difference increases. For small phase differences, the intensity 
fluctuates, resembling coherent light; at larger phase differences, the 
intensity remains stable, as in the case of incoherent light.

A system that makes use of partially coherent light for parallelized 
photonic computing is proposed in Fig. 1b. The light source does not 
need to be a coherent light source that demands precise feedback 

control and thermal management. Instead, we can use a superlu-
minescent diode (SLED)39,40 or filtered light from a broadband light 
source, enabling simpler integration and less stringent circuit manage-
ment. The partially coherent light is then evenly distributed to N input 
channels, with each channel modulated to generate the input vector 
(x1 ⋯ xN)T. MVM is performed by the photonic tensor core with weights 
encoded in the photonic crossbar array. The weighting elements can be 
any photonic device that enables amplitude modulation, such as the 
phase-change-material photonic memories or EAMs used here. This par-
tially coherent system offers much higher parallelism when compared 
to a coherent system. As shown in Fig. 1c, a Gaussian-shaped optical 
carrier can be sent to all input channels and summed in a bus waveguide, 
as intensity fluctuation caused by phase fluctuations is eliminated. By 
contrast, in a coherent system, different input channels should receive 
optical carriers at distinct wavelengths to avoid intensity fluctuation. 
Consequently, one MVM operation for input vectors of dimension N 
requires only one optical band when using partially coherent light 
but consumes N optical bands if coherent light is used. The enhance-
ment in parallelism is thus N-fold when using partially coherent light 
as compared to coherent light. This also implies better scalability of the 
photonic tensor core. The scalability of a partially coherent system will 
not be limited by the spectral window of photonic components, as the 
input optical bandwidth does not scale with input vector dimension.

Coherence properties of light sources
Coherent and partially coherent light is generated from a coherent 
laser and by filtering the amplified spontaneous emission (ASE) of an 
erbium-doped fibre amplifier (EDFA), respectively. The wavelength 
spectra of the investigated light sources centred around 1,550 nm are 
shown in Fig. 2a, including a Gaussian-shaped coherent source with a 
linewidth narrower than 70 pm, a Gaussian-shaped partially coherent 
source with 0.8-nm bandwidth filtered by a demultiplexer (DEMUX) 
on ITU grid channel C34 and four non-Gaussian-shaped partially coher-
ent sources with 2.0, 4.0, 8.0 and 16.0 nm bandwidths filtered by an 
optical tunable band-pass filter. All light sources are operated in 
continuous-wave mode. A thermo-optically controlled MZI array with 
increasing path differences is used to determine the coherence lengths 
of all lights (Supplementary Fig. 1). The concept proposed in Fig. 1a is 
verified in Fig. 2b, which illustrates diminishing phase sensitivity with 
increasing length differences. The degree of coherence, defined by 
the interference strength I I

I I
−
+

max min

max min
, is extracted from Fig. 2b and pre-

sented in Fig. 2c. The degree of coherence of coherent light maintains 
a level around unity at a large length difference of 4,000 µm. By con-
trast, that of partially coherent light decreases notably with increasing 
length differences, with a generally lower degree of coherence accom-
panied by a wider optical bandwidth. Quantitatively, the coherence 
length, defined as the length difference for which the degree of coher-
ence decreases to 0.5, is inversely proportional to the optical band-
width (Fig. 2d), in agreement with theory41. A comparison between 
Gaussian-shaped and non-Gaussian-shaped partially coherent light 
reveals a negligible difference in the degree of coherence and coher-
ence length (Supplementary Fig. 2).

We investigate the effect of optical bandwidth and noise of filtered 
ASE on optical modulation. For coherent light, the noise remains at a 
low level above the system noise floor and exhibits a weak dependence 
on the intensity received at the photodetector (Supplementary Fig. 3). 
Conversely, for partially coherent light, the noise increases linearly with 
the intensity received at the photodetector and is inversely related to 
optical bandwidth. This observation can be explained by the stochastic 
properties of an EDFA42, which introduce inherently elevated noise lev-
els compared with coherent light. However, this noise can be reduced by 
increasing the ratio of optical bandwidth to electrical bandwidth. The 
linearly increasing noise leads to a saturated signal-to-noise ratio (SNR) 
in partially coherent light (Fig. 2e), implying that coherent light holds 
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an advantage in high-intensity scenarios in which partially coherent 
light is hampered by a compromised SNR. Nonetheless, in integrated 
photonic circuits, the signal (intensity received at the photodetec-
tor) typically spans from 0.1 µW to 0.1 mW. In this range of interest to 
many applications, the SNR of partially coherent light from EDFA ASE 
is not substantially lower compared with that of coherent light. The 
viable SNR of partially coherent light is verified by measuring 2-GHz 
eye diagrams at 0.05-mW signal (Fig. 2f). Although the eye diagram of 
0.8-nm-bandwidth C34 partially coherent light is ambiguous compared 
with coherent light, the clarity of the eye diagram markedly improves 
with an enlarged optical bandwidth, becoming clear at 4.0-nm band-
width and beyond. At a lower modulation speed of 100 MHz, all eye 
diagrams are clear (Supplementary Fig. 4).

Eliminating intensity fluctuation
The elimination of intensity fluctuation caused by phase fluctuation 
within a single MZI has been verified in Fig. 2b. When transferring this 
concept from a single-device level to a system level, we must account 
for potential complexities and further variables that may influence  
the stability and reliability of the entire photonic system, requiring 
further verification at the system level. A photonic tensor core using 
phase-change photonic memories featuring the architecture proposed 
in Fig. 1b, hereafter referred to as photonic memory tensor core, is 

fabricated to perform enhanced parallelized photonic computing.  
As a proof of concept, the photonic memory crossbar array represents 
a 3 × 3 weight matrix (Fig. 3a) and the working principle is described 
in Supplementary Text 1. The weights are encoded in non-volatile phase-
change-material photonic memories. Using the pump–probe weight-
setting scheme43, the non-volatile amplitude modulation enabled by 
controlling the crystalline state of phase-change-material photonic 
memories enables 4-bit operations. The maximum transmission change 
Tmax − Tmin is greater than 20% (Supplementary Fig. 6). The transmission 

levels T are mapped to weights w in [−1, 1] by defining w =
T −

T T

T T

max + min
2

max − min
2

. 

In this work, the mapping is implemented by post-processing on a 
computer (Methods). This mapping approach can be implemented in 
hardware using a balanced photodetection scheme (Supplementary 
Text 2). On the other hand, besides changing the hardware architecture, 
the neural networks themselves can be modified to adapt to the non-
negative nature of photonic computing systems44.

Figure 3b presents the schematic of the setup used to investigate the 
intensity fluctuation when using coherent or partially coherent light 
(0.8-nm-bandwidth C34). A path difference of 1 m between adjacent 
inputs is introduced by incorporating 1-m-long fibre delays. This 1-m 
path difference is substantially longer than the measured coherence 
length of 550 µm in 0.8-nm-bandwidth C34 partially coherent light, 
which will effectively eliminate intensity fluctuations. When coherent 
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Fig. 1 | Concept of partial-coherence-enhanced parallelized photonic 
computing. a, Intensity fluctuation with respect to an increasing phase 
difference Δφ in a single computation unit cell for multiply-and-accumulate 
operations when a coherent, incoherent or partially coherent light source is 

used. Gauss(ω|ω0, Δω) represents a Gaussian distribution with a mean value of 
ω0 and standard deviation Δω. b, Working principle of parallelized photonic 
computing using partially coherent light. c, N-fold enhancement in parallelism. 
N is the dimension of input vectors.
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light is split and directed to three input channels, strong intensity fluc-
tuations are observed (Fig. 3c), resulting from phase fluctuations along 
the optical paths. On the contrary, when partially coherent light is 
used, intensity fluctuations are eliminated (Fig. 3d). This immunity 
of transmission intensity to phase fluctuation is the desired property 
offered by partially coherent light that will enable higher parallelism. 
Specifically, using partially coherent light, light in one optical band 
can be distributed to all input channels to perform MVM operations, 
allowing for full bandwidth use.

Parallelized convolution of gait signals from patients 
with Parkinson’s disease
As a proof-of-concept example to showcase the capability of partial-
coherence-enhanced parallelized photonic computing, we construct 
a system using the photonic memory tensor core to identify patients 
with Parkinson’s disease by analysing their gaits. The enhanced paral-
lelism offers a way to simultaneously monitor a large number  
of patients. The partially coherent light has a bandwidth of 0.8 nm, 
modulated at 1 kHz. As shown in Fig. 4, gait signals from patients with 
Parkinson’s disease originally in the form of time series are recorded. 
The gait signal from patient j at time i is represented by xij. xij is carried 

by wavelength λj and sent into optical channel i. Taking the gait signal 
from patient 1 for example, the input vector is (x11, x21, x31)

T carried by 
λ1. The 3 × 3 photonic memory crossbar array defines three kernels of 

dimension 3 × 1, represented by the weight matrix W
w w w
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right-edge extraction, peak suppression and left-edge extraction, 
respectively. Using an extra wavelength λ2, the system can perform 
convolutional processing for patient 2 in parallel. For comparison, the 
schematic of a coherent system to implement the same convolutional 
processing is described in Supplementary Text 3. Notably, in the par-
tially coherent system, the same wavelength can enter different input 
waveguide channels because the intensity fluctuation is eliminated. 
The ability to enable the same wavelength to enter different input chan-
nels provides superior advantages compared with the conventional 
computing system that uses coherent light. The optical bandwidth is 
fully used because no further wavelength channels are required to 
avoid intensity fluctuation. In comparison with our partially coherent 
system, which uses two wavelengths, a coherent system will require 
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six wavelengths. This advantage scales up with the desired parallelism 
and the size of the photonic tensor core. For a parallelism of P (that is 
processing gait signals from P patients in parallel) and a photonic ten-
sor core with dimension N by M, the reduction in the required number 
of wavelengths is (N − 1) × P.

The convolution results obtained using the partially coherent sys-
tem are shown in Fig. 4b–e and compared with the results obtained 
using a coherent system. For a typical gait signal, the desired features 
are successfully extracted in both computing systems, as shown in 
Fig. 4b. Theoretical convolution results obtained by a central process-
ing unit (CPU) are presented in Supplementary Fig. 9. The convolu-
tion results of all gait signals from all ten patients are presented in 
Supplementary Figs. 10 and 11. Figure 4c shows the accuracy of the 
convolution operation. The two computing systems show similar 
accuracy. The respective errors follow Gaussian distributions and 
show close mean values and standard deviations. Using these con-
volution results obtained by the photonic systems, we construct a 
convolutional neural network (CNN) to identify patients with Par-
kinson’s disease (Fig. 4d). The CNN is first implemented by a CPU to 
test the necessity of the convolution layer. Using a convolution layer, 
the classification accuracy is improved from 84.4% to 92.7% (Fig. 4e). 
When the convolution layer is implemented by photonic systems, the 
classification accuracy reaches more than 92.2% in both computing 
systems, showing a performance close to the CPU implementation. 
The confusion maps of CNN classification results are presented in 
Supplementary Fig. 12. The evolution of CNN loss and accuracy with 
respect to increasing epochs are presented in Supplementary Fig. 13. 
The partially coherent system achieves similar performance to the 
coherent system, but with much fewer wavelength channels and less 
stringent light-source requirements.

High-speed convolution of MNIST datasets
The applicability of partially coherent systems extends beyond the 
photonic memory tensor core described above, which is operated at 

a modest modulation speed of 1 kHz for specialized applications such 
as gait-signal classification. The versatility of the general approach 
caters to any photonic weighting device using amplitude modulation 
and is proficient at performing high-speed convolutional processing 
for diverse AI tasks. This is demonstrated through a high-speed 9 × 3 
silicon photonic tensor core using EAMs, equipped with an integrated 
input EAM array and output photodetector array (Fig. 5a,b). The chip 
is fabricated using IMEC’s iSiPP50G silicon photonics platform, which 
provides the active components at a higher integration level. Here-
after we refer to this system as a photonic EAM tensor core. Using a 
field-programmable gate array (FPGA)-controlled electro-optic inter-
face to the photonic EAM tensor core, we perform convolutional pro-
cessing on the MNIST handwritten digits dataset at a data-loading 
rate of 2 gigasamples per second (GSa s−1) in each channel, using 
8.0-nm-bandwidth partially coherent light. This 2 GSa s−1 data-loading 
rate brings the total system processing speed to 0.108 TOPS consid-
ering the size of the photonic tensor core, and an estimated energy 
efficiency of 1 TOPS W−1 (Supplementary Text 4). Supplementary 
Fig. 14 illustrates the configuration and data flow of the entire sys-
tem, which operates analogously to the 3 × 3 photonic memory tensor 
core described above. Using the digit ‘0’ from the MNIST dataset as an 
example (Fig. 5c), the 2 GSa s−1 partially coherent system effectively 
extracts edges using Sobel Gx and Sobel Gy filters, albeit with increased 
background noise. As the noise originates from the stochastic proper-
ties of the ASE light source, it can be mitigated by averaging further 
convolutions per sample. Quantitatively, the normalized standard 
deviation of the error is 0.094 without averaging (Fig. 5d), which is 
reduced to 0.049 by four-point averaging (Fig. 5e). When the convolu-
tion results are used as input to a CNN for classification (Fig. 5f), accu-
racies of 92.4% without averaging and 93.9% with four-point average 
are achieved, closely aligning with the theoretical accuracy of 95.0% 
attained from CPU-implemented convolutions. The corresponding 
confusion maps and evolution of loss and accuracy with respect to 
increasing epochs are presented in Supplementary Figs. 15 and 16. 
Furthermore, the convolutional processing on the MNIST fashion 
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products dataset, executed using the same system, reveals similar 
performance trends, detailed in Supplementary Text 5. We wish to note 
that the 2 GSa s−1 data-loading rate is limited by the digital-to-analogue 
converters (DACs) of the FPGA and not the photonic chip. The partially 
coherent light can provide a data-loading rate of at least 30 GSa s−1  
(Supplementary Fig. 21), which brings the total system processing 
speed to 1.62 TOPS per optical carrier. Furthermore, using an ASE opti-
cal bandwidth of 40 nm for ten optical carriers (4 nm optical bandwidth 
per optical carrier), the partially coherent system is expected to reach 
16.2 TOPS system processing speed.

Discussion and conclusion
We have demonstrated that decreasing optical coherence can lead to 
enhanced performance in photonic computing systems, challenging 
the conventional wisdom that a higher degree of coherence is always 
advantageous. By decreasing the degree of coherence, we effectively 
exploit the optical bandwidth to boost parallelism without substantially 
degrading convolution accuracy. Specifically, reducing the coherence 
of the input light sources enables the same wavelength to be distributed 
across all input channels of a photonic tensor core. This also implies 
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better scalability of photonic tensor cores, as the input optical band-
width does not scale with the input vector dimension and thus is not 
limited by the spectral window of photonic components. In a system 
with an N × N photonic tensor core and P × N available wavelengths, par-
tially coherent light facilitates P × N parallel convolutional processing 
operations, whereas coherent light facilitates P parallel operations. The 
limitations of partially coherent systems are related to the intrinsically 
reduced SNR, which is attributed to the stochastic properties of ASE. 
Considering these advantages and limitations, a quantitative compari-
son between coherent and partially coherent systems is shown in Sup-
plementary Text 6. This comparison suggests that, although coherent 
systems exhibit advantages at the small scale by delivering high SNRs 
and modest parallelism, partially coherent systems surpass them at 
larger scales by offering enhanced parallelism and comparable SNRs. 
Furthermore, the SNR of partially coherent light may be improved by 
the substitution of EDFA ASE with broadband SLEDs45 and further opti-
mized by coupling with saturated semiconductor optical amplifiers46. 

SLEDs have high spatial coherence with the benefit of easier coupling 
to the waveguide, moderate optical bandwidth (a few nanometres to 
tens of nanometres) for partial coherence control and favourable opti-
cal power39,40. We also note that the long delay lines required in large 
partially coherent systems are challenging to implement. The solutions 
to address this long delay line issue are discussed in detail in Supple-
mentary Text 7. Assuming that we require the loss of the longest delay 
line to be below 3 dB and we use only one ASE source with an optical 
bandwidth of 4 nm, the system can support approximately a maximum 
of 59 input channels on a silicon nitride-on-silicon platform with a 
propagation loss of 0.4 dB cm−1 (refs. 47,48). To realize larger partially 
coherent systems, we can use an array of independent ASE sources 
working at the same wavelength, with each ASE source driving a few 
tens of input waveguide channels. These independent ASE sources are 
uncorrelated, eliminating the need for longer delay lines to overcome 
the coherence length of a single source. Using numerous ASE sources is 
still advantageous compared with using numerous lasers because each 
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laser can only drive one input channel and independent lasers should 
still use different wavelengths to avoid undesired interference49,50.

As a proof of concept, we used partially coherent light in a system 
featuring a 3 × 3 photonic memory tensor core to demonstrate the 
parallel convolution of two gait signals from patients with Parkinson’s 
disease. These convolution results were subsequently used for CNN 
classification. Comparable convolutional processing and CNN clas-
sification accuracies were achieved as compared with using coher-
ent light, while conserving four optical bands. To illustrate the broad 
applicability of partially coherent systems for high-speed convolutional 
processing in more complex AI tasks, we demonstrated 0.108 TOPS 
convolutional processing on MNIST handwritten digits dataset using 
a 9 × 3 photonic EAM tensor core with integrated input modulators 
and output photodetectors. The CNN classification accuracy reaches 
92.4%, slightly below the theoretical accuracy of 95.0%, yet improvable 
to 93.9% through four-point average. A comparative analysis with other 
prevailing state-of-the-art photonic computing systems is provided in 
Supplementary Text 8. Our partially coherent system uniquely features 
phase insensitivity throughout the whole system. This technological 
shift away from coherent light considerably alleviates system require-
ments by circumventing stringent light-source specifications and elimi-
nating the need for numerous precise phase controls, MRR controls and 
thermal management. Our findings suggest that EDFA ASE, SLEDs or 
other simple light sources can be used to bolster photonic computing 
performance rather than diminish it. This insight has the potential to 
revolutionize photonic computing systems as they evolve to accom-
modate increasingly complex computational tasks and continue to 
scale up to large N and P values.
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Methods

Device fabrication
MZI array. The fabrication started from a silicon-on-insulator wafer 
(SOITEC) with a 220-nm silicon (Si) device layer and a 2-µm buried 
oxide layer. A 200-nm-thick positive e-beam resist (CSAR 62) was 
spin-coated on a diced 1 cm × 1 cm silicon-on-insulator chip, followed 
by 3 min pre-bake at 150 °C. The e-beam resist was patterned by e-beam 
lithography (EBL; JEOL JBX-5500 50 kV) and developed in AR 600-546 
for 30 s, MIBK for 15 s and IPA for 15 s in sequence. The waveguide pat-
terns were transferred to the Si device layer (etch depth = 110 nm) by 
reactive ion etching (Oxford Instruments PlasmaPro) with SF6 and CHF3 
gases, followed by O2 plasma cleaning of CSAR. A 1-µm-thick silicon 
dioxide (SiO2) was deposited by plasma-enhanced chemical vapour 
deposition (Oxford Instruments PlasmaPro) as the upper cladding 
layer to isolate waveguides from thermo-optic phase shifters. Next,  
a 2-µm-thick double-layer PMMA (PMMA 495 A8 and PMMA 950 A4) was 
spin-coated on the chip, followed by EBL patterning and development 
in MIBK:IPA = 1:3 for 1 min to define the heater patterns. A 200-nm-thick 
NiCr layer was sputtered using a magnetron sputtering system (physi-
cal vapour deposition, AJA International), followed by PMMA lift-off 
to form NiCr heaters. Gold pads of 100 nm thickness were fabricated 
using a similar process as NiCr heater fabrication, but with e-beam 
evaporation (Plassys MEB550S). A 3–5-nm Cr layer was deposited before 
gold deposition to serve as an adhesion layer. The optical image of the 
fabricated MZI array is shown in Supplementary Fig. 1.

Photonic memory crossbar array. The Si photonic circuit was fab
ricated using the foundry multi-project wafer service provided by  
CORNERSTONE. The detailed specifications of CORNERSTONE stand-
ard waveguide components can be found at https://cornerstone. 
sotonfab.co.uk/. The fabricated Si photonic circuit has a 1-µm-thick SiO2 
upper cladding. SiO2 windows were patterned by EBL and opened by 
hydrogen fluoride for the following deposition of the Ge2Sb2Te5 (GST)/
indium tin oxide (ITO) stack. Next, GST/ITO stack windows were opened 
by the above-mentioned PMMA process. A 10-nm-thick/10-nm-thick 
GST/ITO stack was deposited on the waveguide using a magnetron 
sputtering system (physical vapour deposition, AJA International). The 
GST and ITO targets were respectively sputtered at 30 W RF power with 
3 sccm Ar flow and 40 W RF power with 3 sccm Ar flow at a base pres-
sure of 10−7 torr. The stack was then lifted off in acetone for 180 min at 
50 °C. Next, the thermo-optic phase shifters were fabricated using the 
method described for the MZI array. Finally, the chip was annealed on a 
hotplate for 5 min at 250 °C to fully crystallize the GST. The fabricated 
photonic memory crossbar array is shown in Fig. 3a.

Photonic EAM tensor core. The photonic EAM tensor core was fab-
ricated using the foundry multi-project wafer service provided by 
IMEC: iSiPP50G, with details at https://www.imeciclink.com/en/asic- 
fabrication/si. This platform provides the monolithic integration of 
passive waveguide circuits, integrated EAMs and integrated photo-
detectors used in the photonic EAM tensor core.

Measurement setup
Coherence property measurement. The coherent light was generated 
by a tunable coherent laser (Santec, TSL-550) operating at 1,550 nm. 
The 0.8-nm-bandwidth C34 partially coherent light was generated 
by filtering the ASE from an EDFA (Pritel FA-33) with a passive DEMUX 
module (Gezhi, DWDM-100G-DEMUX) operating at channel C34 of the 
ITU grid. The 2.0, 4.0, 8.0 and 16.0-nm-bandwidth partially coherent 
light sources were generated by filtering the same ASE with an optical 
tunable band-pass filter (Santec, OTF-350) operating at a centre wave-
length of 1,550 nm. The spectra were measured by an optical spectrum 
analyser (Anritsu, MS9710C). For eye diagrams, light was modulated by 
a pulse generator (Agilent, 8133A) through an electro-optic modulator 

(Lucent 2623N) and received by a photodetector (Newport New Focus 
1611) connected to an oscilloscope (Tektronix, TDS7404B).

System setup for parallel convolutional processing. The experi-
mental setup for parallel convolutional processing on two gait signals 
is shown in Fig. 4a. The photonic memory crossbar array has three 
input channels and three output channels, representing a d3×3 matrix 
consisting of three d1×3 kernels. The input light was switchable between 
an EDFA (Pritel FA-33) and a tunable pump laser (Santec, TSL-550) using 
an optical switch (Gezhi GZ-12C-1×2-SM). The phase-change-material 
photonic memory in each cell of the photonic memory crossbar array 
was first set to the desired weight to correctly define kernels. The tun-
able pump laser was used in phase-change-material weight setting. 
The amplified pump light passed through a DEMUX module (Gezhi, 
DWDM-100G-DEMUX) so that different wavelengths were routed to dif-
ferent input channels (λ1 = 1,550.12 nm to Ch 1, λ2 = 1,550.92 nm to Ch 2 
and λ3 = 1,551.72 nm to Ch 3). After setting all phase-change-material 
weights, parallel convolution was performed using the ASE from the 
EDFA. The DEMUX module was used to separate two wavelengths with 
a spacing of 0.8 nm to two different channels (λ1 = 1,550.12 nm and 
λ2 = 1,550.92 nm). Each wavelength was split into three channels by an 
optical splitter (FS PLC splitter). The three channels serve as the input 
light to the three respective input waveguide channels of the photonic 
memory tensor core. Adjacent channels have a 1-m path difference, 
using a further 1-m-long fibre to eliminate the coherence among all 
three input light sources. The gait-signal data were loaded into each 
channel using a variable optical attenuator (VOA; Thorlabs V1550A).  
The VOAs were driven by a digital signal processor (DSP; NI USB-6259). 
The polarization of output light from the VOA was controlled by a po-
larization controller (Thorlabs FPC032). Different wavelengths carry-
ing the gait signal at the same time index from different patients were 
then grouped by a MUX array (Gezhi, DWDM-100G-MUX) to form three 
inputs to the respective input channels of the photonic memory ten-
sor core. Convolutions were performed naturally as light propagated 
through the photonic memory crossbar array. Each output channel of 
the photonic memory tensor core contained both wavelengths λ1 and 
λ2. The two wavelengths were demultiplexed to obtain the outputs 
and detected by a photodetector array (Newport New Focus 2011) and 
finally read out from the DSP.

System setup for high-speed convolutional processing. The experi-
mental setup for high-speed convolutional processing on the MNIST 
datasets is shown in Supplementary Fig. 13. The whole system operating 
at 2 GSa s−1 was controlled by a FPGA evaluation board (Xilinx, Zynq 
UltraScale+ RFSoC ZCU216) with a processing system unit, a program-
mable logic unit, 16 DACs and 16 analogue-to-digital controllers. The 
optical input was the 8.0-nm-bandwidth partially coherent light equally 
split into nine input grating couplers. The MNIST data were read by the 
processing system unit, stored in its DDR4 memory and accessed by the 
programmable logic unit to output at nine analogue-to-digital control-
lers that modulated optical signals through the input EAM array. The 
weights on the photonic EAM crossbar array were set by a low-speed 
DSP. The three convolutional processing outputs were received by the 
integrated photodetector array connected to three transimpedance 
amplifiers and analogue-to-digital controllers, routed back to the pro-
cessing system unit and stored in DDR4 memory.

Mapping non-negative transmission to negative convolution 
results
The input gait signals and image data presented in this work are 
non-negative, that is, x ∈ [0, 1]. The kernels involve negative values, 
that is, w ∈ [−1, 1]. The measurable outputs from the photonic system 
are non-negative as a result of them being physical quantities. We need 
to map these non-negative outputs to convolution results in the range 
[−1, 1]. This is done by the following steps:

https://cornerstone.sotonfab.co.uk/
https://cornerstone.sotonfab.co.uk/
https://www.imeciclink.com/en/asic-fabrication/si
https://www.imeciclink.com/en/asic-fabrication/si
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(a) �We normalize every gait signal or image data to [0, 1] using software 

and load these normalized data to the photonic tensor core using 
modulators.

(b) �We represent the input data x using the output power of the 
modulator by setting P = x(Pmax − Pmin) + Pmin, in which Pmax and Pmin 
are the maximum and minimum outputs from the modulator,  
respectively.

(c) �We represent the weight w using the transmission level of the phase-
change material or the EAM by setting ( )T w= +

T T T T−
2

+
2

max min max min ,  
in which Tmax and Tmin are the maximum and minimum transmission 
levels of the weight-setting device, respectively.

(d) �We set the input vector x to the target input data and set the kernel 
w to the target weights. The measured output is:
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Step (d) should be performed for every input vector x.
(e) �We set all x = 0 and all w = 0. Thus all P = Pmin and all T =

T T+
2

max min .  
The measured output is:

∑ P
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max min

Step (e) only needs to be performed once for the whole system.
(f) �We set all x = 0 and set w to the target weights. Thus all P = Pmin and 

( )T w= +i i
T T T T−

2
+
2

max min max min . The measured output is:
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Step (f) needs to be performed once for each kernel.
(g) �We set x to the target input data and set all w = 0. Thus Pi =  

xi(Pmax − Pmin) + Pmin and all T =
T T+

2
max min . The measured output is:
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Step (g) should be performed for every input vector x.
(h) �We perform post-processing on a computer using the measured 

output from steps (d)–(g) as:
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(i) �We normalize the results to [−1, 1] using software because all  
results share the same factor of P P( − )( )

T T
max min

−
2

max min  and x ∈ [0, 1] 
and w ∈ [−1, 1].
We can see that the hardware computation is doubled using this 

mapping approach, yet this mapping approach can be implemented 
without doubling by hardware implementation involving a balanced 
photodetection scheme (Supplementary Text 2).

Generation, convolution and output of gait signals
The properties of the original gait-signal data collected by force sen-
sors (Ultraflex Computer Dyno Graphy, Infotronic) are described in 
the next section ‘CNN model; Gait-signal dataset’.

For parallel convolution of the middle three time-domain data  

of two gait signals, the input matrix is a d3×2 matrix: X
x x
x x
x x

=
11 12
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31 32
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.  

The jth column of X contains the middle three time-domain data of the 
jth gait signal (Fig. 4). The ith row of X contains the ith time-domain 
data of two gait signals. A DSP drove VOAs to load gait signals into the 

optical domain. The photonic memory tensor core was then effectively 
performing:
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in which y w x= ∑ij n ni nj=1
3  represents the convolution result of the mid-

dle three time-domain data of the jth gait signal using the ith kernel. 
Each row of Y was output from the respective photonic memory tensor 
core output channel.

CNN model
Gait-signal dataset. Gait signals from ten patients with Parkinson’s 
disease were taken from the ‘Gait in Parkinson’s Disease’ database in 
PhysioNet51,52. This database includes the vertical ground reaction force 
records of individuals as they walked at their usual, self-selected pace 
for approximately 2 min on level ground. The corresponding clinical 
information of ten patients is provided in Supplementary Table 1. Fifty 
gait pulses were extracted from each patient, leading to a total of 500 
gait pulses. Each pulse has a 1.2-s duration. The original electrocardio-
gram signals have a 0.01-s time resolution. Gait pulses were extracted 
with a time interval of 0.04 s (that is, one out of every four original 
data), leading to 31 data in the extracted gait pulses. The 0.04-s time 
interval was carefully chosen to minimize the extracted dataset while 
maintaining the key features from the original gait pulses. Eighty per 
cent of pulses were used for training and 20% were used for testing, 
that is, a total of 400 pulses for training and 100 pulses for testing.

MNIST dataset. The test dataset of MNIST handwritten digits and MN-
IST fashion products were respectively taken from https://git-disl.
github.io/GTDLBench/datasets/mnist_datasets/ and https://developer.
ibm.com/exchanges/data/all/fashion-mnist/. In both cases, the 10,000 
test images were split into a training set with 8,000 images and a testing 
set with 2,000 images.

CNN architecture. The CNN architecture for the classification of the 
gaits dataset is shown in Fig. 4d. The input layer takes the gait signal, 
which is in the form of a d31×1 1D array. The 1D array is passed to a con-
volution layer consisting of three d1×3 kernels. Convolution operations 
were implemented with a stride of 1 and ‘valid padding’, resulting in 
a d3×(31-3+1) output. The output was activated by a rectified linear unit 
layer and flattened to a d87×1 vector. The flattened activated output was 
then fed to a fully connected layer with ten neurons. The output from 
the fully connected layer was converted to probabilities by a softmax 
layer. Finally, the classification result was obtained. The gait signals 
were classified into ten categories, representing ten patients with 
Parkinson’s disease. The convolution operations were implemented 
using the photonic memory tensor core. The convolution results were 
processed by the following CNN layers using the MATLAB R2021b Deep 
Learning Toolbox. Weights of the fully connected layer were trained 
by the Adam optimizer. A hundred epochs were used to reach the final 
CNN outcomes. The CNN architecture for the MNIST datasets is similar 
to that for the gaits dataset, as shown in Fig. 5d. We will only mention 
the key differences here. For the MNIST datasets, besides the trivial 
difference in layer dimensions, the images were convolved with ‘same 
padding’ implemented by the photonic EAM tensor core. We used 50 
epochs to reach the final CNN outcomes.

https://git-disl.github.io/GTDLBench/datasets/mnist_datasets/
https://git-disl.github.io/GTDLBench/datasets/mnist_datasets/
https://developer.ibm.com/exchanges/data/all/fashion-mnist/
https://developer.ibm.com/exchanges/data/all/fashion-mnist/


Data availability
The data that support the findings of this study are available from 
the corresponding author on request. The gait dataset analysed in 
this study is available from the open source ‘Gait in Parkinson’s Dis-
ease’ in PhysioNet at https://doi.org/10.13026/C24H3N. The MNIST 
handwritten digits dataset is available at https://git-disl.github.io/
GTDLBench/datasets/mnist_datasets/. The MNIST fashion products 
dataset is available at https://developer.ibm.com/exchanges/data/all/
fashion-mnist/. Source data are provided with this paper.

Code availability
The code used in this work is available from the authors on request.
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