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Abstract—A fabrication-tolerant and low-loss ITI-V-to-SizN4
adiabatic coupling structure is designed and experimentally
demonstrated. The simulation shows an excess loss less than -
0.3-dB at +/-1-um lateral misalignment with the DVS-BCB
bonding layer thickness varying from 10 to 70 nm. A micro-
transfer printed III-V-to-Si3Na coupler was measured to have a
~-0.7 dB loss per coupler over a 1510 nm to 1610 nm wavelength
range.
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1. INTRODUCTION

Silicon photonics is becoming a highly competitive
technology that offers promising solutions in various fields
such as chip-to-chip communication, quantum computing and
LiDAR. Leveraging the advanced and mature CMOS
manufacturing, silicon (Si) and silicon nitride (Si3N4)
photonics provides a reliable and low-cost integration
platform that contains multiple functions such as passive
devices, modulators and photodetectors. However, limited by
their indirect bandgap, on-chip light sources and amplifiers
have to rely on III-V materials, where efficient optical
coupling between Si/Si3Ny4 and III-V waveguides is essential.

Vertical couplers serve as a key component to enable I11-
V-t0-Si/Si3Ns coupling in heterogeneous integration, like
die/wafer-to-wafer bonding [1] and micro-transfer printing
[2]. Depending on the behavior of optical modes in the
coupling structure, there are two kinds of vertical couplers,
resonant couplers and adiabatic couplers. The adiabatic
couplers maintain optical power in the fundamental mode
during power transfer through slowly changing of the
waveguide geometry, which shows better fabrication and
lateral misalignment tolerant [3]. This advantage is crucial for
high-throughput wafer-level heterogeneous integration.

In this paper, we present a I1I-V-to-Si3N; adiabatic vertical
coupler with high-fabrication-tolerance of both lateral
misalignment and DVS-BCB bonding layer thickness. A
measurement structure was proposed to experimentally test its
coupling loss and a micro-transfer printed III-V-to-SizNs
coupler was measured.
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II. VERTICAL COUPLER DESIGN

In order to realize vertical coupling between III-V and
Si3Ng, a two stage III-V-to-Si-to-SizsNs structure is used to
overcome the large refractive index mismatch between them.
Taking advantage of simple manufacturing, a hydrogenated
amorphous silicon (aSi:H) interlayer is adopted to replace
crystalline silicon as the interlayer [4]. Since the aSi:H-to-
Si3N4 coupler is typically fabricated in a silicon photonics
foundry with high-precision lithography, a linear taper can
provide tolerances within the fabrication capability. Here, we
focused on the design of the III-V-to-aSi:H coupler, which
would be implemented through heterogeneous integration,
where the misalignment tolerance is crucial. The detailed
design and fabrication tolerance analysis of the I1I-V-to-aSi:H
coupler are discussed below.
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Fig. 1. Schematic diagram of the proposed III-V-to-aSi:H vertical coupler

Figure 1 shows a schematic diagram of the proposed III-
V-to-aSi:H coupling structure and its cross sections at
different locations along the coupler. It consists of two parts
of waveguide tapers, where the left part (Luper1) partially
couples the optical power from aSi:H to III-V by linearly
increasing the waveguide widths of both waveguides.
Through further tapering down the aSi:H waveguide in the
right part (Liaper2), the remaining optical power in the aSi:H
would be fully transmit to the III-V waveguide. W;-W5s are
defined as the widths of the aSi:H and III-V waveguides at
relevant positions as shown in the schematic. W, and Ws are
setas 0.4 um and 0.18 pm, respectively, corresponding to the



minimum feature size defined in the process design kit. W3
and Wy are fixed as 2 and 5.5 um. Although linear tapers are
used here for the coupling, this concept can be easily
transferred to multisegmented structures [5]. Ansys Lumerical
EME solver is used to optimize the designs and analyze the
fabrication tolerances. The refractive index of aSi:H, SiO, and
SisNs was measured by ellipsometry and the refractive
indexes of InP and InGaAsP (photoluminescence = 1250 nm)
were calculated using the Tanguy model with parameters
given in [6]. Figure 2(a) shows the simulated coupling
efficiencies versus the lengths of Lupe at different lateral
misalignments, where Wy and Liapers are set as 3.5 um and 100
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Fig. 2. (a) Simulated coupling efficiency versus the length of left taper
(Ltaper1) under different lateral misalignments; (b) Simulated coupling loss
versus the lateral misalignment under different width of W; (c) Simulated
coupling loss as a function of BCB thicknesses under different
misalignments.

um, respectively. As can be seen, when Liaperi 15 250 um, a 1-
um misalignment can be tolerated with 99% coupling
efficiency. Fig. 2(b) shows the coupling loss as a function of
misalignment for different widths of Wy. It can be seen that
when the misalignment is less than 1.25 pm, the narrower

aSi:H waveguide can provide better power coupling due to
less coupling to high-order modes. In the case of larger lateral
misalignment, the mode decoupling between the two
waveguides would be more severe for narrower Wi, which
leads to a rapid increase of the coupling loss. A less than -0.2-
dB extra loss is expected at +/-1-um lateral misalignment for
different widths of W;, which also represents high
misalignment tolerance along the transmission direction. The
simulated thickness tolerance of the DVS-BCB bonding layer
is shown in Figure 2(c), where the coupling loss stays less than
-0.3 dB with the thickness varying from 10 to 70 nm when
there is 1-um lateral misalignment or varying from 0 to 100
nm when there is no misalignment.

III. COUPLING LOSS MEASUREMENT

In order to measure the coupling loss, an array of structures
with different numbers of vertical couplers was designed and
fabricated. A microscope picture of the proposed structure and
a zoom-in view are shown in Figure 3(b) and (c), respectively,
where III-V coupons based on materials from SMART
photonics are integrated on the aSi:H/Si3Ny circuits through
micro-transfer printing. The schematic diagram of the
measurement setup is shown in Figure 3(a). The optical power
(0 dBm) from a tunable laser (Santec TSL-510) is coupled into
the chip through a grating coupler on the SizsN4 layer probed
by a cleaved standard single-mode fiber. The spectrum of each
device is collected using an optical power meter (HF 81532A),
while scanning the laser’s wavelength. In each measurement,
the polarization state of the input signal is carefully adjusted
to achieve maximum transmission power.
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Fig. 3. (a) Schematic diagram of the measurement setup (PC: polarization
contoller); (b) Microscope picture of the fabricated coupling loss
measurement structure; (¢) Zoom-in view of micro-transfer printed III-V
coupon on an aSi:H/Si;Ny circuit.

Figure 4(a) shows the transmission spectra of the test
structures. The transmission loss of the reference waveguide
arises from the fiber coupling loss and parabolic wavelength
dependence of the input and output grating couplers. We can
detect some periodic fluctuations from the spectra that contain
III-V coupons, which would result from the beating of excited
higher-order modes during the evanescent coupling when
there is lateral misalignment. It can be seen from the spectra
that the fluctuation amplitude is relatively small, which
corresponds to a weak excitation of high-order modes.

Figure 4(b) shows the coupling losses extracted from the
subtraction between the transmission of one or two coupons
and the reference waveguide. As can be seen, the loss per
coupler is ~ -0.7dB in a wavelength range of 1510 nm to 1610
nm. The extracted coupling loss contains I1I-V waveguide loss



that has half of the coupon length (500 um), which would
overestimate the coupling loss by about 0.1 dB.
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Fig. 4. (a) Measured transmission spectra of the test structures; (b) Spectra
of the extracted coupling loss.

IV. CONCLUSION

We demonstrated a high-fabrication-tolerant and low-loss
II-V-to-Si3Ny4 adiabatic vertical coupling structure. The
design shows high tolerance for both lateral misalignment and

DVS-BCB bonding layer thickness. The coupling loss of a
micro-transfer  printed  III-V-to-Si3sN4  coupler  was
experimentally measured, where a ~ -0.7 dB loss per coupler
is realized in a wavelength range of 1510 nm to 1610 nm. The
proposed vertical coupler is expected to find its application in
high-throughput heterogenous integration.
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