HANDBOOK OF OPTICS
Other McGraw-Hill Books of Interest

Hecht • THE LASER GUIDEBOOK
Manning • STOCHASTIC ELECTROMAGNETIC IMAGE PROPAGATION
Nishihara, Haruna, Suhara • OPTICAL INTEGRATED CIRCUITS
Rancourt • OPTICAL THIN FILMS USERS’ HANDBOOK
Sibley • OPTICAL COMMUNICATIONS
Smith • MODERN OPTICAL ENGINEERING
Smith • MODERN LENS DESIGN
Waynant, Ediger • ELECTRO-OPTICS HANDBOOK
Wyatt • ELECTRO-OPTICAL SYSTEM DESIGN

To order, or to receive additional information on these or any other McGraw-Hill titles, please call 1-800-822-8158 in the United States. In other countries, please contact your local McGraw-Hill Office.
CONTENTS

Contributors xvii
Preface xix
Glossary and Fundamental Constants xxi

Part 1. Geometric Optics 1.1

Chapter 1. General Principles of Geometric Optics Douglas S. Goodman 1.3

1.1. Glossary / 1.3
1.2. Introduction / 1.7
1.3. Fundamentals / 1.9
1.4. Characteristic Functions / 1.15
1.5. Rays in Heterogeneous Media / 1.20
1.6. Conservation of Etendue / 1.24
1.7. Skew Invariant / 1.25
1.8. Refraction and Reflection at Interfaces Between Homogeneous Media / 1.26
1.9. Imaging / 1.29
1.10. Description of Systems of Revolution / 1.35
1.11. Tracing Rays in Centered Systems of Spherical Surfaces / 1.39
1.12. Paraxial Optics of Systems of Revolution / 1.41
1.13. Images About Known Rays / 1.46
1.14. Gaussian Lens Properties / 1.48
1.15. Collineation / 1.60
1.16. System Combination—Gaussian Properties / 1.68
1.17. Paraxial Matrix Methods / 1.70
1.18. Apertures, Pupils, Stops, Fields, and Related Matters / 1.80
1.19. Geometric Aberrations of Point Images—Description / 1.82
1.20. References / 1.100

Part 2. Physical Optics 2.1

Chapter 2. Interference John E. Greivenkamp, Jr. 2.3

2.1. Glossary / 2.3
2.2. Introduction / 2.3
2.3. Waves and Wavefronts / 2.3
2.4. Interference / 2.5
2.5. Interference by Wavefront Division / 2.14
2.6. Interference by Amplitude Division / 2.19
2.7. Multiple Beam Interference / 2.29
2.8. Coherence and Interference / 2.36
2.9. References / 2.43
Chapter 3. Diffraction A. S. Marathay

3.1. Glossary / 3.1
3.2. Introduction / 3.1
3.3. Light Waves / 3.2
3.4. Huygens-Fresnel Construction / 3.4
3.5. Cylindrical Wavefront / 3.13
3.7. Vector Diffraction / 3.27
3.8. References / 3.30

Chapter 4. Coherence Theory William H. Carter

4.1. Glossary / 4.1
4.2. Introduction / 4.1
4.3. Some Elementary Classical Concepts / 4.2
4.4. Definitions of Coherence Functions / 4.4
4.5. Model Sources / 4.9
4.6. Propagation / 4.13
4.7. Spectrum of Light / 4.20
4.8. Polarization Effect / 4.23
4.9. Applications / 4.23
4.10. References / 4.25

Chapter 5. Polarization Jean M. Bennett

5.1. Glossary / 5.1
5.2. Basic Concepts and Conventions / 5.2
5.3. Fresnel Equations / 5.4
5.4. Basic Relations for Polarizers / 5.12
5.5. Polarization by Nonnormal-Incidence Reflection (Pile of Plates) / 5.13
5.6. Polarization by Nonnormal-Incidence Transmission (Pile of Plates) / 5.16
5.7. Quarter-Wave Plates and Other Phase Retardation Plates / 5.22
5.8. Matrix Methods for Computing Polarization / 5.25
5.9. References / 5.28

Chapter 6. Scattering by Particles Craig F. Bohren

6.1. Glossary / 6.1
6.2. Introduction / 6.2
6.3. Scattering: An Overview / 6.3
6.4. Scattering by Particles: Basic Concepts and Terminology / 6.5
6.5. Scattering by an Isotropic, Homogeneous Sphere: the Archetype / 6.12
6.6. Scattering by Regular Particles / 6.15
6.7. Computational Methods for Nonspherical Particles / 6.17
6.8. References / 6.18

Chapter 7. Surface Scattering E. L. Church and P. Z. Takacs

7.1. Glossary / 7.1
7.2. Introduction / 7.1
7.3. Notation / 7.2
7.4. Scattering Theory / 7.3
7.5. Surface Models / 7.5
11.4. Laser Properties Associated with Optical Cavities or Resonators / 11.20
11.5. Special Laser Cavities / 11.27
11.6. Specific Types of Lasers / 11.32
11.7. References / 11.39

Chapter 12. Light-Emitting Diodes Roland H. Haitz, M. George Craford, and Robert H. Weissman

12.1. Glossary / 12.1
12.2. Introduction / 12.2
12.3. Light-Generation Processes / 12.2
12.4. Light Extraction / 12.7
12.5. Device Structures / 12.8
12.6. Materials Systems / 12.15
12.7. Substrate Technology / 12.21
12.8. Epitaxial Technology / 12.23
12.9. Wafer Processing / 12.24
12.10. LED Quality and Reliability / 12.27
12.11. LED Based Products / 12.31
12.12. References / 12.38

Chapter 13. Semiconductor Lasers Pamela L. Derry, Luis Figueroa, and Chi-Shain Hong

13.1. Glossary / 13.1
13.2. Introduction / 13.3
13.3. Applications for Semiconductor Lasers / 13.3
13.4. Basic Operation / 13.4
13.5. Fabrication and Configurations / 13.7
13.6. Quantum Well Lasers / 13.10
13.8. High-Speed Modulation / 13.32
13.10. Surface-Emitting Lasers / 13.42
13.11. Conclusion / 13.46
13.12. References / 13.47

Chapter 14. Ultrashort Laser Sources Xin Miao Zhao and Jean-Claude Diels

14.1. Glossary / 14.1
14.2. Introduction / 14.2
14.3. Passively Mode-Locked Lasers / 14.2
14.4. Synchronous, Hybrid, and Double Mode Locking / 14.7
14.5. Active and Passive Negative Feedback / 14.11
14.8. Other Ultrashort Pulse Sources / 14.18
14.9. Amplification / 14.21
14.10. Diagnostic Techniques / 14.22
14.11. References / 14.25
Part 5. Optical Detectors

Chapter 15. Photodetectors Paul R. Norton

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1. Scope</td>
<td>15.3</td>
</tr>
<tr>
<td>15.2. Thermal Detectors</td>
<td>15.4</td>
</tr>
<tr>
<td>15.3. Quantum Detectors</td>
<td>15.5</td>
</tr>
<tr>
<td>15.4. Definitions</td>
<td>15.8</td>
</tr>
<tr>
<td>15.5. Detector Performance and Sensitivity</td>
<td>15.11</td>
</tr>
<tr>
<td>15.6. Other Performance Parameters</td>
<td>15.15</td>
</tr>
<tr>
<td>15.7. Detector Performance</td>
<td>15.19</td>
</tr>
<tr>
<td>15.8. References</td>
<td>15.100</td>
</tr>
</tbody>
</table>

Chapter 16. Photodetection Abhay M. Joshi and Gregory H. Olsen

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1. Glossary</td>
<td>16.1</td>
</tr>
<tr>
<td>16.2. Introduction</td>
<td>16.2</td>
</tr>
<tr>
<td>16.3. Principles of Operation</td>
<td>16.3</td>
</tr>
<tr>
<td>16.4. Applications</td>
<td>16.12</td>
</tr>
<tr>
<td>16.5. Reliability</td>
<td>16.13</td>
</tr>
<tr>
<td>16.6. Future Photodetectors</td>
<td>16.16</td>
</tr>
<tr>
<td>16.7. Acknowledgment</td>
<td>16.19</td>
</tr>
<tr>
<td>16.8. References</td>
<td>16.19</td>
</tr>
</tbody>
</table>

Chapter 17. High-Speed Photodetectors J. E. Bowers and Y. G. Wey

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1. Glossary</td>
<td>17.1</td>
</tr>
<tr>
<td>17.2. Introduction</td>
<td>17.3</td>
</tr>
<tr>
<td>17.3. Photodetector Structures</td>
<td>17.3</td>
</tr>
<tr>
<td>17.4. Speed Limitations</td>
<td>17.6</td>
</tr>
<tr>
<td>17.5. PIN Photodetectors</td>
<td>17.11</td>
</tr>
<tr>
<td>17.6. Schottky Photodiode</td>
<td>17.17</td>
</tr>
<tr>
<td>17.7. Avalanche Photodetectors</td>
<td>17.19</td>
</tr>
<tr>
<td>17.8. Photoconductors</td>
<td>17.22</td>
</tr>
<tr>
<td>17.9. Summary</td>
<td>17.25</td>
</tr>
<tr>
<td>17.10. References</td>
<td>17.26</td>
</tr>
</tbody>
</table>

Chapter 18. Signal Detection and Analysis John R. Willison

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1. Glossary</td>
<td>18.1</td>
</tr>
<tr>
<td>18.2. Introduction</td>
<td>18.1</td>
</tr>
<tr>
<td>18.3. Prototype Experiment</td>
<td>18.2</td>
</tr>
<tr>
<td>18.4. Noise Sources</td>
<td>18.3</td>
</tr>
<tr>
<td>18.5. Applications Using Photomultipliers</td>
<td>18.7</td>
</tr>
<tr>
<td>18.6. Amplifiers</td>
<td>18.11</td>
</tr>
<tr>
<td>18.7. Signal Analysis</td>
<td>18.13</td>
</tr>
<tr>
<td>18.8. References</td>
<td>18.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1. Glossary</td>
<td>19.1</td>
</tr>
<tr>
<td>19.2. Thermal Detector Elements</td>
<td>19.1</td>
</tr>
<tr>
<td>19.3. Arrays</td>
<td>19.8</td>
</tr>
<tr>
<td>19.4. References</td>
<td>19.13</td>
</tr>
</tbody>
</table>
Part 6. Imaging Detectors 20.1

Chapter 20. Photographic Films Joseph H. Altman 20.3

20.1. Glossary / 20.3
20.2. Structure of Silver Halide Photographic Layers / 20.4
20.3. Grains / 20.5
20.4. Processing / 20.5
20.5. Exposure / 20.6
20.6. Optical Density / 20.6
20.7. D-Log H Curve / 20.9
20.8. Spectral Sensitivity / 20.11
20.9. Reciprocity Failure / 20.12
20.11. Color Photography / 20.14
20.12. Microdensitometers / 20.16
20.13. Performance of Photographic Systems / 20.17
20.15. Acutance / 20.19
20.16. Graininess / 20.21
20.17. Sharpness and Graininess Considered Together / 20.24
20.18. Signal to Noise Ratio and Detective Quantum Efficiency / 20.24
20.20. Information Capacity / 20.26
20.21. List of Photographic Manufacturers / 20.27
20.22. References / 20.27

21.2. Introduction / 21.2
21.3. Optical Interface / 21.3
21.4. Image Intensifiers / 21.7
21.5. Image Intensified Self-Scanned Arrays / 21.20
21.6. Applications / 21.29
21.7. References / 21.31

Chapter 22. Visible Array Detectors Timothy J. Tredwell 22.1

22.1. Glossary / 22.1
22.2. Introduction / 22.2
22.3. Image Sensing Elements / 22.2
22.4. Readout Elements / 22.13
22.5. Sensor Architectures / 22.22
22.6. References / 22.37

Chapter 23. Infrared Detector Arrays Lester J. Kozłowski and Walter F. Kosonocky 23.1

23.1. Glossary / 23.1
23.2. Introduction / 23.4
23.3. Monolithic FPAs / 23.10
23.4. Hybrid FPAs / 23.15
23.5. Performance: Figures of Merit / 23.25
23.6. Current Status and Future Trends / 23.30
23.7. References / 23.25

Part 7. Vision

Chapter 24. Optics of the Eye W. N. Charman

24.1. Glossary / 24.3
24.2. Introduction / 24.5
24.3. Eye Models / 24.7
24.4. Ocular Transmittance and Retinal Illuminance / 24.9
24.5. Factors Affecting Retinal Image Quality / 24.13
24.6. Final Retinal Image Quality / 24.19
24.7. Depth-of-Focus and Accommodation / 24.26
24.8. Movements of the Eyes / 24.34
24.9. Two Eyes and Steropsis / 24.37
24.10. Conclusion / 24.40
24.11. References / 24.40

Chapter 25. Visual Performance Wilson S. Geisler and Martin S. Banks

25.1. Glossary / 25.1
25.2. Introduction / 25.2
25.3. Optics, Anatomy, Physiology of the Visual System / 25.3
25.4. Visual Performance / 25.15
25.5. References / 25.44

Chapter 26. Colorimetry David H. Brainard

26.1. Glossary / 26.1
26.2. Introduction / 26.1
26.3. Fundamentals / 26.3
26.4. Topics / 26.25
26.5. Appendix A. Matrix Algebra / 26.44
26.6. Acknowledgments / 26.48
26.7. References / 26.48

Chapter 27. Displays for Vision Research William Cowan

27.1. Glossary / 27.1
27.2. Introduction / 27.3
27.3. Operational Characteristics of Color Monitors / 27.3
27.4. Colorimetric Calibration of Video Monitors / 27.21
27.5. An Introduction to Liquid Crystal Displays / 27.36
27.6. Acknowledgments / 27.43
27.7. References / 27.43

28.1. Glossary / 28.1
28.2. Introduction / 28.1
Chapter 28. Optical Information Processing

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Size of the Visual Stimulus</td>
<td>28.1</td>
</tr>
<tr>
<td>Free or Newtonian Viewing</td>
<td>28.2</td>
</tr>
<tr>
<td>Maxwellian Viewing</td>
<td>28.4</td>
</tr>
<tr>
<td>Building an Optical System</td>
<td>28.8</td>
</tr>
<tr>
<td>Light Exposure and Ocular Safety</td>
<td>28.19</td>
</tr>
<tr>
<td>Light Sources</td>
<td>28.20</td>
</tr>
<tr>
<td>Coherent Radiation</td>
<td>28.20</td>
</tr>
<tr>
<td>Detectors</td>
<td>28.22</td>
</tr>
<tr>
<td>Putting It Together</td>
<td>28.23</td>
</tr>
<tr>
<td>Conclusions</td>
<td>28.27</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>28.27</td>
</tr>
<tr>
<td>General References</td>
<td>28.27</td>
</tr>
<tr>
<td>References</td>
<td>28.27</td>
</tr>
</tbody>
</table>

Chapter 29. Psychophysical Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>29.1</td>
</tr>
<tr>
<td>Definitions</td>
<td>29.2</td>
</tr>
<tr>
<td>Visual Stimuli</td>
<td>29.4</td>
</tr>
<tr>
<td>Adjustments</td>
<td>29.4</td>
</tr>
<tr>
<td>Judgments</td>
<td>29.6</td>
</tr>
<tr>
<td>Stimulus Sequencing</td>
<td>29.10</td>
</tr>
<tr>
<td>Conclusion</td>
<td>29.10</td>
</tr>
<tr>
<td>Tips from the Pros</td>
<td>29.11</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>29.11</td>
</tr>
<tr>
<td>References</td>
<td>29.12</td>
</tr>
</tbody>
</table>

Part 8. Optical Information and Image Processing

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Optical Signal and Image Processing</td>
<td>30.1</td>
</tr>
<tr>
<td>Glossary</td>
<td>30.3</td>
</tr>
<tr>
<td>Introduction</td>
<td>30.3</td>
</tr>
<tr>
<td>Fundamental Analog Operations</td>
<td>30.4</td>
</tr>
<tr>
<td>Analog Optical Fourier Transforms</td>
<td>30.5</td>
</tr>
<tr>
<td>Spatial Filtering</td>
<td>30.8</td>
</tr>
<tr>
<td>Coherent Optical Processing of Synthetic Aperture Radar Data</td>
<td>30.8</td>
</tr>
<tr>
<td>Coherent Optical Processing of Temporal Signals</td>
<td>30.10</td>
</tr>
<tr>
<td>Optical Processing of Two-Dimensional Images</td>
<td>30.14</td>
</tr>
<tr>
<td>Incoherent Processing of Discrete Signals</td>
<td>30.19</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td>30.22</td>
</tr>
<tr>
<td>References</td>
<td>30.23</td>
</tr>
</tbody>
</table>

Chapter 31. Principles of Optical Disk Data Storage

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>31.1</td>
</tr>
<tr>
<td>Preliminaries and Basic Definitions</td>
<td>31.2</td>
</tr>
<tr>
<td>The Optical Path</td>
<td>31.7</td>
</tr>
<tr>
<td>Automatic Focusing</td>
<td>31.13</td>
</tr>
<tr>
<td>Automatic Tracking</td>
<td>31.15</td>
</tr>
<tr>
<td>Thermomagnetic Recording Processes</td>
<td>31.18</td>
</tr>
<tr>
<td>Magneto-Optical Readout</td>
<td>31.22</td>
</tr>
<tr>
<td>Materials of Magneto-Optical Recording</td>
<td>31.26</td>
</tr>
</tbody>
</table>
PART 9. OPTICAL DESIGN TECHNIQUES

CHAPTER 32. TECHNIQUES OF FIRST-ORDER LAYOUT WARREN J. SMITH

32.1. Glossary / 32.3
32.2. First-Order Layout / 32.4
32.5. Ray-Tracing / 32.4
32.4. Two-Component Systems / 32.5
32.5. Afocal Systems / 32.7
32.6. Magnifiers and Microscopes / 32.8
32.7. Afocal Attachments / 32.8
32.8. Field Lenses / 32.8
32.9. Condensers / 32.10
32.10. Zoom or Varifocal Systems / 32.11
32.11. Additional Rays / 32.12
32.12. Minimizing Component Power / 32.12
32.13. Is It a Reasonable Layout? / 32.13
32.14. Achromatism / 32.14
32.15. Athermalization / 32.15

CHAPTER 33. ABERRATION CURVES IN LENS DESIGN DONALD C. O’SHEA AND MICHAEL E. HARRIGAN

33.1. Glossary / 33.1
33.2. Introduction / 33.1
33.5. Transverse Ray Plots / 33.2
33.4. Field Plots / 33.4
33.5. Additional Considerations / 33.5
33.6. Summary / 33.6
33.7. References / 33.6

CHAPTER 34. OPTICAL DESIGN SOFTWARE DOUGLAS C. SINCLAIR

34.1. Glossary / 34.1
34.2. Introduction / 34.2
34.3. Lens Entry / 34.3
34.4. Evaluation / 34.9
34.5. Optimization / 34.18
34.6. Other Topics / 34.22
34.7. Buying Optical Design Software / 34.23
34.8. Summary / 34.26
34.9. References / 34.26

CHAPTER 35. OPTICAL SPECIFICATIONS ROBERT R. SHANNON

35.1. Glossary / 35.1
35.2. Introduction / 35.1
35.3. Preparation of Optical Specifications / 35.4
Chapter 36. Tolerancing Techniques Robert R. Shannon 36.1

36.1. Glossary / 36.1
36.2. Introduction / 36.1
36.3. Wavefront Tolerances / 36.3
36.4. Other Tolerances / 36.8
36.5. Starting Points / 36.8
36.6. Material Properties / 36.9
36.7. Tolerancing Procedures / 36.9
36.8. Problems in Tolerancing / 36.11

Chapter 37. Mounting Optical Components Paul R. Yoder, Jr. 37.1

37.1. Glossary / 37.1
37.2. Introduction and Summary / 37.2
37.3. Mounting Individual Lenses / 37.2
37.4. Multicomponent Lens Assemblies / 37.14
37.5. Mounting Small Mirrors and Prisms / 37.20
37.6. References / 37.26

Chapter 38. Control of Stray Light Robert P. Breault 38.1

38.1. Glossary / 38.1
38.2. Introduction / 38.1
38.3. Concepts / 38.2
38.4. Stray Light Software / 38.25
38.5. Methods / 38.28
38.6. Conclusion / 38.31
38.7. Sources of Information on Stray Light and Scattered Light / 38.32
38.8. References / 38.34

Chapter 39. Thermal Compensation Techniques P. J. Rogers and M. Roberts 39.1

39.1. Glossary / 39.1
39.2. Introduction / 39.2
39.3. Homogeneous Thermal Effects / 39.2
39.4. Tolerable Homogeneous Temperature Change (No Compensation) / 39.5
39.5. Effect of Thermal Gradients / 39.6
39.6. Intrinsic Athermalization / 39.7
39.7. Mechanical Thermalization / 39.7
39.9. References / 39.16
Part 10. Optical Fabrication

Chapter 40. Optical Fabrication
Robert E. Parks

40.1. Introduction / 40.3
40.2. Basic Steps in Optical Fabrication / 40.3
40.3. Plano Optical Surfaces / 40.6
40.4. Crystalline Optics / 40.6
40.5. Aspherics / 40.6
40.6. Diamond Turning / 40.7
40.7. Purchasing Optics / 40.7
40.8. Conclusions / 40.8
40.9. References / 40.8

Chapter 41. Fabrication of Optics by Diamond Turning
Richard L. Rhorer and Chris J. Evans

41.1. Glossary / 41.1
41.2. Introduction / 41.1
41.3. The Diamond-Turning Process / 41.2
41.4. The Advantages of Diamond Turning / 41.2
41.5. Diamond-Turnable Materials / 41.3
41.6. Comparison of Diamond Turning and Traditional Optical Fabrication / 41.5
41.7. Machine Tools for Diamond Turning / 41.5
41.8. Basic Steps in Diamond Turning / 41.7
41.9. Surface Finish in Diamond-Turned Optics / 41.8
41.10. Measuring Diamond-Turned Surfaces / 41.10
41.11. Conclusions / 41.12
41.12. References / 41.12

Part 11. Optical Properties of Films and Coatings

Chapter 42. Optical Properties of Films and Coatings
J. A. Dobrowolski

42.1. Glossary / 42.3
42.2. Introduction / 42.4
42.3. Theory and Design of Optical Thin-Film Coatings / 42.9
42.4. Thin-Film Manufacturing Considerations / 42.14
42.5. Measurements on Optical Coatings / 42.16
42.6. Antireflection Coatings / 42.19
42.7. Two-Material Periodic Multilayers—Theory / 42.34
42.8. Multilayer Reflectors—Experimental Results / 42.41
42.9. Cut-off, Heat-Control, and Solar-Cell Cover Filters / 42.54
42.10. Beam Splitters and Neutral Filters / 42.61
42.11. Interference Polarizers and Polarizing Beam Splitters / 42.68
42.12. Bandpass Filters / 42.73
42.13. Multilayer for Two or Three Spectral Regions / 42.94
42.14. Phase Coatings / 42.96
42.15. Interference Filters with Low Reflection / 42.98
42.16. Reflection Filters and Coatings / 42.101
42.17. Special-Purpose Coatings / 42.107
42.18. Acknowledgments / 42.109
42.19. References / 42.109
Part 12. Terrestrial Optics

Chapter 43. Optical Properties of Water Curtis D. Mobley

43.1. Introduction 43.3
43.2. Terminology, Notation, and Definitions 43.3
43.3. Radiometric Quantities Useful in Hydrologic Optics 43.6
43.4. Inherent Optical Properties 43.4
43.5. Apparent Optical Properties 43.12
43.6. Optically Significant Constituents of Natural Waters 43.14
43.7. Particle Size Distributions 43.15
43.8. Electromagnetic Properties of Water 43.17
43.9. Index of Refraction 43.18
43.10. Measurement of Absorption 43.20
43.11. Absorption by Pure Sea Water 43.22
43.12. Absorption by Dissolved Organic Matter 43.23
43.13. Absorption by Phytoplankton 43.24
43.14. Absorption by Organic Detritus 43.26
43.15. Bio-Optical Models of Absorption 43.27
43.16. Measurement of Scattering 43.30
43.17. Scattering by Pure Water and by Pure Sea Water 43.31
43.18. Scattering by Particles 43.33
43.19. Wavelength Dependence of Scattering; Bio-Optical Models 43.35
43.20. Beam Attenuation 43.42
43.21. Diffuse Attenuation and Jerlov Water Types 43.44
43.22. Irradiance Reflectance and Remote Sensing 43.48
43.23. Inelastic Scattering and Polarization 43.51
43.24. Acknowledgments 43.52
43.25. References 43.52

Chapter 44. Atmospheric Optics Dennis K. Killinger, James H. Churnside, and Laurence S. Rothman

44.1. Glossary 44.1
44.2. Introduction 44.2
44.3. Physical and Chemical Composition of the Standard Atmosphere 44.4
44.4. Fundamental Theory of Interaction of Light with the Atmosphere 44.10
44.5. Prediction of Atmospheric Optical Transmission: Computer Programs and Databases 44.21
44.6. Atmospheric Optical Turbulence 44.25
44.7. Examples of Atmospheric Optical Remote Sensing 44.36
44.8. Meteorological Optics 44.39
44.9. Acknowledgments 44.43
44.10. References 44.44

Index follows Chapter 44 1.1
CONTRIBUTORS

Martin S. Banks School of Optometry, University of California, Berkeley, Berkeley, California (CHAP. 25).
Jean M. Bennett Research Department, Michelson Laboratory, Naval Air Warfare Center, China Lake, California (CHAP. 5).
Craig F. Bohren Meteorology Department, Pennsylvania State University, University Park, Pennsylvania (CHAP. 6).
J. E. Bowers Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California (CHAP. 17).
David H. Brainard Department of Psychology, University of California, Santa Barbara, Santa Barbara, California (CHAP. 12).
Stephen A. Burns The Schepens Eye Research Institute, Boston, Massachusetts (CHAP. 26).
W. N. Charman Institute of Science and Technology, Department of Ophthalmic Optics, University of Manchester, Manchester, United Kingdom (CHAP. 24).
E. L. Church Brookhaven National Laboratory, Upton, New York (CHAP. 7).
William Cowan Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada (CHAP. 27).
M. George Graford Hewlett-Packard Company, San Jose, California (CHAP. 12).
Pamela L. Derry Boeing Defense and Space Group, Aerospace and Electronics Division, Seattle, Washington (CHAP. 13).
Jean-Claude Diels Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico (CHAP. 14).
J. A. Dobrowolski Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada (CHAP. 42).
Chris J. Evans National Institute of Standards and Technology, Gaithersburg, Maryland (CHAP. 41).
Bart Farell Institute for Sensory Research, Syracuse University, Syracuse, New York (CHAP. 29).
Luis Figueroa Boeing Defense and Space Group, Aerospace and Electronics Division, Seattle, Washington (CHAP. 13).
Wilson S. Geisler Department of Psychology, University of Texas, Austin, Texas (CHAP. 25).
Douglas S. Goodman Polaroid, Cambridge, Massachusetts (CHAP. 1).
Joseph W. Goodman Department of Electrical Engineering, Stanford University, Stanford, California (CHAP. 30).
John E. Greivenkamp, Jr. Optical Sciences Center, University of Arizona, Tucson, Arizona (CHAP. 2).
Roland H. Haitz Hewlett-Packard Company, San Jose, California (CHAP. 12).
Michael E. Harrigan Eastman Kodak Company, Electronic Imaging Research Laboratory, Rochester, New York (CHAP. 33).
Brian Henderson Department of Physics and Applied Physics, University of Strathclyde, Glasgow, United Kingdom (CHAP. 8).

Chi-Shain Hong Boeing Defense and Space Group, Aerospace and Electronics Division, Seattle, Washington (CHAP. 13).

Abhay M. Joshi Discovery Semiconductors, Inc., Cranbury, New Jersey (CHAP. 16).

Dennis K. Killinger Department of Physics, University of South Florida, Tampa, Florida (CHAP. 44).

Walter F. Kosonocky Electrical and Computer Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey (CHAP. 23).

Lester J. Kozlowski Rockwell International Science Center, Thousand Oaks, California (CHAP. 23).

Paul W. Kruse Consultant, Edina, Minnesota (CHAP. 19).

Anthony LaRocca ERIM, Ann Arbor, Michigan (CHAP. 10).

Masud Mansuripur Optical Sciences Center, University of Arizona, Tucson, Arizona (CHAP. 31).

A. S. Marathay Optical Sciences Center, University of Arizona, Tucson, Arizona (CHAP. 3).

Alan Miller Department of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, United Kingdom, and Center for Research and Education in Optics and Lasers (CREOL), University of Central Florida, Orlando, Florida (CHAP. 9).

Curtis D. Mobley Senior Research Engineer, Applied Electromagnetics and Optics Laboratory, SRI International, Menlo Park, California (CHAP. 43).

Paul R. Norton Santa Barbara Research Center, Goleta, California (CHAP. 15).

Robert E. Parks Optical Sciences Center, University of Arizona, Tucson, Arizona (CHAP. 40).

Denis G. Pelli Institute for Sensory Research, Syracuse University, Syracuse, New York (CHAP. 29).

Richard L. Rhorer Group Leader, Fabrication Development, Los Alamos National Laboratory, Los Alamos, New Mexico (CHAP. 41).

M. Roberts Pilkington Optronics, St. Asaph, Clwyd, Wales, United Kingdom (CHAP. 39).

P. J. Rogers Pilkington Optronics, St. Asaph, Clwyd, Wales, United Kingdom (CHAP. 39).

Laurence S. Rothman Air Force Geophysics Directorate/Phillips Laboratory, Optical Environment Division, Hanscom Air Force Base, Massachusetts (CHAP. 44).

Robert R. Shannon Optical Sciences Center, University of Arizona, Tucson, Arizona (CHAP. 35 and 36).

William T. Silfvast Center for Research and Education in Optics and Lasers (CREOL), University of Central Florida, Orlando, Florida (CHAP. 11).

P. Z. Takacs Brookhaven National Laboratory, Upton, New York (CHAP. 7).

Robert H. Webb The Schepens Eye Research Institute, Boston, Massachusetts (CHAP. 28).

Robert H. Weissman Hewlett-Packard Company, San Jose, California (CHAP. 12).

Y. G. Wey Department of Electrical and Computer Engineering, University of California, Santa Barbara, California (CHAP. 17).

William L. Wolfe Professor, Optical Sciences Center, University of Arizona, Tucson, Arizona (CHAP. 19).

Paul R. Yoder, Jr. Consultant in Optical Engineering, Norwalk, Connecticut (CHAP. 37).

Xin Miao Zhao Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico (CHAP. 14).
The *Handbook of Optics*, Second Edition, is designed to serve as a general purpose desktop reference for the field of Optics yet stay within the confines of two books of finite length. Our purpose is to cover as much of optics as possible in a manner enabling the reader to deal with both basic and applied problems. To this end, we present articles about basic concepts, techniques, devices, instruments, measurements, and optical properties. In selecting subjects to include, we also had to select which subjects to leave out. The criteria we applied when excluding a subject were: (1) was it a specific application of optics rather than a core science or technology and (2) was it a subject in which the role of optics was peripheral to the central issue addressed. Thus, such topics as medical optics, laser surgery, and laser materials processing were not included. The resulting *Handbook of Optics*, Second Edition, serves the long-term information needs of those working in optics rather than presenting highly specific papers of current interest.

The authors were asked to prepare archival, tutorial articles which contain not only useful data but also descriptive material and references. Such articles were designed to enable the reader to understand a topic sufficiently well to get started using that knowledge. They also supply guidance as to where to find more in-depth material. Most include cross references to related articles within the Handbook. While applications of optics are mentioned, there is not space in the Handbook to include articles devoted to all of the myriad uses of optics in today’s world. If we had, the Handbook would have been many volumes long and would have been too soon outdated.

The *Handbook of Optics*, Second Edition, contains 83 chapters organized into 17 broad categories or parts. The categorization enables the reader to find articles on a specific subject, say Vision, more easily and to find related articles within the Handbook. Within the categories the articles are grouped to make it simpler to find related material.

Volume I presents tutorial articles in the categories of Geometric Optics, Physical Optics, Quantum Optics, Optical Sources, Optical Detectors, Imaging Detectors, Vision, Optical Information and Image Processing, Optical Design Techniques, Optical Fabrication, Optical Properties of Films and Coatings, and Terrestrial Optics. This material is, for the most part, in a form which could serve to teach the underlying concepts of optics and its implementation. In fact, by careful selection of what to present and how to present it, the contents of Volume I could be used as a text for a comprehensive course in Optics.

The subjects covered in Volume II are Optical Elements, Optical Instruments, Optical Measurements, Optical and Physical Properties of Materials, and Nonlinear and Photorefractive Optics. As can be seen from these titles, Volume II concerns the specific devices, instruments, and techniques which are needed to employ optics in a wide variety of problems. It also provides data and discussion to assist one in the choice of optical materials.

The *Handbook of Optics*, Second Edition, would not have been possible without the support of the staff of the Optical Society of America and in particular Mr. Alan N. Tourlottle and Ms. Kelly Furr.

For his pivotal roles in the development of the Optical Society of America, in the development of the profession of Optics, and for his encouragement to us in the task of preparing this Handbook, the editors dedicate this edition to Dr. Jarus Quinn.

Michael Bass, Editor-in-Chief
Eric W. Van Stryland, Associate Editor
David R. Williams, Associate Editor
William L. Wolfe, Associate Editor
Introduction

This glossary of the terms used in the Handbook represents to a large extent the language of optics. The symbols are representations of numbers, variables, and concepts. Although the basic list was compiled by the author of this section, all the editors have contributed and agreed to this set of symbols and definitions. Every attempt has been made to use the same symbols for the same concepts throughout the entire Handbook, although there are exceptions. Some symbols seem to be used for many concepts. The symbol \(\alpha \) is a prime example, as it is used for absorptivity, absorption coefficient, coefficient of linear thermal expansion, and more. Although we have tried to limit this kind of redundancy, we have also bowed deeply to custom.

Units

The abbreviations for the most common units are given first. They are consistent with most of the established lists of symbols, such as given by the International Standards Organization ISO and the International Union of Pure and Applied Physics, IUPAP.

Prefixes

Similarly, a list of the numerical prefixes that are most frequently used is given, along with both the common names (where they exist) and the multiples of ten that they represent.

Fundamental Constants

The values of the fundamental constants are listed following the sections on SI units.

Symbols

The most commonly used symbols are then given. Most chapters of the Handbook also have a glossary of the terms and symbols specific to them for the convenience of the reader. In the following list, the symbol is given, its meaning is next, and the most customary unit of measure for the quantity is presented in brackets. A bracket with a dash in it indicates that the quantity is unitless. Note that there is a difference between units and dimensions. An angle has units of degrees or radians and a solid angle square degrees or steradians, but both are pure ratios and are dimensionless. The unit symbols as recommended in the SI system are used, but decimal multiples of some of the dimensions are sometimes given. The symbols chosen, with some cited exceptions, are also those of the first two references.
RATIONALE FOR SOME DISPUTED SYMBOLS

The choice of symbols is a personal decision, but commonality improves communication. This section explains why the editors have chosen the preferred symbols for the Handbook. We hope that this will encourage more agreement.

Fundamental Constants

It is encouraging that there is almost universal agreement for the symbols for the fundamental constants. We have taken one small exception by adding a subscript B to the k for Boltzmann’s constant.

Mathematics

We have chosen i as the imaginary almost arbitrarily. IUPAP lists both i and j, while ISO does not report on these.

Spectral Variables

These include expressions for the wavelength, λ, frequency, ν, wave number, σ, ω for circular or radian frequency, k for circular or radian wave number and dimensionless frequency x. Although some use f for frequency, it can be easily confused with electronic or spatial frequency. Some use \tilde{v} for wave number, but, because of typography problems and agreement with ISO and IUPAP, we have chosen s; it should not be confused with the Stefan-Boltzmann constant. For spatial frequencies we have chosen j and h, although f_x and f_y are sometimes used. ISO and IUPAP do not report on these.

Radiometry

Radiometric terms are contentious. The most recent set of recommendations by ISO and IUPAP are L for radiance [W cm$^{-2}$ sr$^{-1}$], M for radiant emittance or exitance [W cm$^{-2}$], E for irradiance or incidance [W cm$^{-2}$], and I for intensity [W sr$^{-2}$]. The previous terms, W, H, N, and J, respectively, are still in many texts, notably Smith and Lloyd, but we have used the revised set, although there are still shortcomings. We have tried to deal with the vexatious term *intensity* by using *specific intensity* when the units are W cm$^{-2}$ sr$^{-1}$, *field intensity* when they are W cm$^{-2}$, and *radiometric intensity* when they are W sr$^{-1}$.

There are two sets of terms for these radiometric quantities, which arise in part from the terms for different types of reflection, transmission, absorption, and emission. It has been proposed that the *ion* ending indicate a process, that the *ance* ending indicate a value associated with a particular sample, and that the *ity* ending indicate a generic value for a “pure” substance. Then one also has reflectance, transmittance, absorptance, and emittance as well as reflectivity, transmissivity, absorptivity, and emissivity. There are now two different uses of the word emissivity. Thus the words *exitance*, *incidence*, and *sterance* were coined to be used in place of emittance, irradiance, and radiance. It is interesting that ISO uses radiance, exitance, and irradiance whereas IUPAP uses radiance, excitation [sic], and irradiance. We have chosen to use them both, i.e., emittance, irradiance, and radiance will be followed in square brackets by exitance, incidence, and sterance (or vice versa). Individual authors will use the different endings for transmission, reflection, absorption, and emission as they see fit.

We are still troubled by the use of the symbol E for irradiance, as it is so close in meaning to electric field, but we have maintained that accepted use. The spectral concentrations of these quantities, indicated by a wavelength, wave number, or frequency subscript (e.g., L_λ) represent partial differentiations; a subscript q represents a photon.
quantity; and a subscript v indicates a quantity normalized to the response of the eye. Thereby, L_v is luminance, E_v illuminance, and M_v and I_v luminous emittance and luminous intensity. The symbols we have chosen are consistent with ISO and IUPAP.

The refractive index may be considered a radiometric quantity. It is generally complex and is indicated by $\bar{n} = n - ik$. The real part is the relative refractive index and k is the extinction coefficient. These are consistent with ISO and IUPAP, but they do not address the complex index or extinction coefficient.

Optical Design

For the most part ISO and IUPAP do not address the symbols that are important in this area.

There were at least 20 different ways to indicate focal ratio; we have chosen FN as symmetrical with NA; we chose f and efl to indicate the effective focal length. Object and image distance, although given many different symbols, were finally called s_o and s_i since s is an almost universal symbol for distance. Field angles are θ and ϕ; angles that measure the slope of a ray to the optical axis are u; u can also be $\sin u$. Wave aberrations are indicated by W_{ijk}, while third order ray aberrations are indicated by σ_r and more mnemonic symbols.

Electromagnetic Fields

There is no argument about E and H for the electric and magnetic field strengths, Q for quantity of charge, ρ for volume charge density, σ for surface charge density, etc. There is no guidance from References 1 and 2 on polarization indication. We chose \perp and \parallel rather than p and s, partly because s is sometimes also used to indicate scattered light.

There are several sets of symbols used for reflection, transmission, and (sometimes) absorption, each with good logic. The versions of these quantities dealing with field amplitudes are usually specified with lower case symbols: r, t, and a. The versions dealing with power are alternately given by the uppercase symbols or the corresponding Greek symbols: R and T versus ρ and τ. We have chosen to use the Greek, mainly because these quantities are also closely associated with Kirchhoff’s law that is usually stated symbolically as $\alpha + \rho + \tau = 1$.

Base SI Quantities

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>time</td>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>mass</td>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>electric current</td>
<td>A</td>
<td>ampere</td>
</tr>
<tr>
<td>Temperature</td>
<td>K</td>
<td>kelvin</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>mol</td>
<td>mole</td>
</tr>
<tr>
<td>Luminous intensity</td>
<td>cd</td>
<td>candela</td>
</tr>
</tbody>
</table>

Derived SI Quantities

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>energy</td>
<td>J</td>
<td>joule</td>
</tr>
<tr>
<td>electric charge</td>
<td>C</td>
<td>coulomb</td>
</tr>
<tr>
<td>electric potential</td>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>electric capacitance</td>
<td>F</td>
<td>farad</td>
</tr>
<tr>
<td>electric resistance</td>
<td>Ω</td>
<td>ohm</td>
</tr>
<tr>
<td>electric conductance</td>
<td>S</td>
<td>siemens</td>
</tr>
</tbody>
</table>
magnetic flux \(\text{Wb} \) weber
inductance \(\text{H} \) henry
pressure \(\text{Pa} \) pascal
magnetic flux density \(\text{T} \) tesla
frequency \(\text{Hz} \) hertz
power \(\text{W} \) watt
force \(\text{N} \) newton
angle \(\text{rad} \) radian
angle \(\text{sr} \) steradian

Prefixes

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Common Name of Ten</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>exa</td>
<td>18</td>
</tr>
<tr>
<td>P</td>
<td>peta</td>
<td>15</td>
</tr>
<tr>
<td>T</td>
<td>tera</td>
<td>trillion</td>
</tr>
<tr>
<td>G</td>
<td>giga</td>
<td>billion</td>
</tr>
<tr>
<td>M</td>
<td>mega</td>
<td>million</td>
</tr>
<tr>
<td>k</td>
<td>kilo</td>
<td>thousand</td>
</tr>
<tr>
<td>h</td>
<td>hecto</td>
<td>hundred</td>
</tr>
<tr>
<td>da</td>
<td>deca</td>
<td>ten</td>
</tr>
<tr>
<td>d</td>
<td>deci</td>
<td>tenth</td>
</tr>
<tr>
<td>c</td>
<td>centi</td>
<td>hundredth</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
<td>thousandth</td>
</tr>
<tr>
<td>µ</td>
<td>micro</td>
<td>millionth</td>
</tr>
<tr>
<td>n</td>
<td>nano</td>
<td>billionth</td>
</tr>
<tr>
<td>p</td>
<td>pico</td>
<td>trillionth</td>
</tr>
<tr>
<td>f</td>
<td>femto</td>
<td>trillionth</td>
</tr>
<tr>
<td>a</td>
<td>atto</td>
<td>trillionth</td>
</tr>
</tbody>
</table>

Constants

- \(c \) speed of light in vacuo \([299792458 \text{ m s}^{-1}]\)
- \(c_1 \) first radiation constant \(= 2\pi c^2 h = 3.7417749 \times 10^{-16} \text{ Wm}^2\)
- \(c_2 \) second radiation constant \(= h c / k = 0.01438769 \text{ mK} \)
- \(e \) elementary charge \([1.60217733 \times 10^{-19} \text{ C}]\)
- \(g_0 \) free fall constant \([9.80665 \text{ m s}^{-2}]\)
- \(h \) Planck’s constant \([6.6260755 \times 10^{-34} \text{ Ws}]\)
- \(k_B \) Boltzmann constant \([1.380658 \times 10^{-23} \text{ JK}^{-1}]\)
- \(m_e \) mass of the electron \([9.1093897 \times 10^{-31} \text{ kg}]\)
- \(N_A \) Avogadro constant \([6.0221367 \times 10^{23} \text{ mol}^{-1}]\)
- \(R_A \) Rydberg constant \([10973731.534 \text{ m}^{-1}]\)
- \(\varepsilon_0 \) vacuum permittivity \([\mu_0^{-1} \text{ C}^2 \text{ m}^{-1}]\)
- \(\sigma \) Stefan-Boltzmann constant \([5.67051 \times 10^{-8} \text{ Wm}^{-1} \text{ K}^{-4}]\)
- \(\mu_0 \) vacuum permeability \([4\pi \times 10^{-7} \text{ N A}^{-2}]\)
- \(\mu_B \) Bohr magneton \([9.2740154 \times 10^{-24} \text{ J T}^{-1}]\)

General

- \(\mathbf{B} \) magnetic induction \([\text{Wb m}^{-2}, \text{kg}^{-1} \text{ C}^{-1}]\)
- \(C \) capacitance \([\text{f, C}^{2} \text{ s}^{-1} \text{ m}^{-1}]\)
- \(C \) curvature \([\text{m}^{-1}]\)
GLOSSARY AND FUNDAMENTAL CONSTANTS xxv

c speed of light in vacuo [ms⁻¹]
c₁ first radiation constant [Wm²]
c₂ second radiation constant [mK]
D electric displacement [Cm⁻²]
E incandescence [irradiance] [Wm⁻²]
e electronic charge [coulomb]
E₀ illuminance [lux, lmm⁻²]
E electrical field strength [Vm⁻¹]
E transition energy [J]
E₀ band-gap energy [eV]
f₁ Fermi occupation function, conduction band
f₂ Fermi occupation function, valence band
FN focal ratio (f/number) [—]
g gain per unit length [m⁻¹]
g₂ gain threshold per unit length [m⁻¹]
H magnetic field strength [Am⁻¹, Cs⁻¹m⁻¹]
h height [m]
I irradiance (see also E) [Wm⁻²]
I radiant intensity [Wsr⁻¹]
l nuclear spin quantum number [—]
i current [A]
Im() Imaginary part of
J current density [Am⁻²]
j total angular momentum [kg m² sec⁻¹]
J₁() Bessel function of the first kind [—]
k radian wave number = 2π/λ [rad cm⁻¹]
k wave vector [rad cm⁻¹]
k extinction coefficient [—]
L sterance [radiance] [Wm⁻²sr⁻¹]
L₀ luminance [cd m⁻²]
L inductance [h, m² kg C⁻²]
L laser cavity length
L, M, N direction cosines [—]
M angular magnification [—]
M radiant exitance [radiant emittance] [Wm⁻²]
m linear magnification [—]
m effective mass [kg]
MTF modulation transfer function [—]
N photon flux [s⁻¹]
N carrier (number) density [m⁻³]
n real part of the relative refractive index [—]
ᵦ complex index of refraction [—]
NA numerical aperture [—]
OPD optical path difference [m]
P macroscopic polarization [Cm⁻²]
Re() real part of [—]
R resistance [Ω]
r position vector [m]
r (amplitude) reflectivity
S Seebeck coefficient [VK⁻¹]
s spin quantum number [—]
s path length [m]
Glossary and Fundamental Constants

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_o</td>
<td>object distance [m]</td>
</tr>
<tr>
<td>s_i</td>
<td>image distance [m]</td>
</tr>
<tr>
<td>T</td>
<td>temperature [K, C]</td>
</tr>
<tr>
<td>t</td>
<td>time [s]</td>
</tr>
<tr>
<td>t</td>
<td>thickness [m]</td>
</tr>
<tr>
<td>α</td>
<td>slope of ray with the optical axis [rad]</td>
</tr>
<tr>
<td>V</td>
<td>Abbé reciprocal dispersion [—]</td>
</tr>
<tr>
<td>V</td>
<td>voltage [V, m2 kgs$^{-2}$ C$^{-1}$]</td>
</tr>
<tr>
<td>x, y, z</td>
<td>rectangular coordinates [m]</td>
</tr>
<tr>
<td>Z</td>
<td>atomic number [—]</td>
</tr>
</tbody>
</table>

Greek Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>absorption coefficient [cm$^{-1}$]</td>
</tr>
<tr>
<td>α</td>
<td>(power) absorptance (absorptivity)</td>
</tr>
<tr>
<td>ε</td>
<td>dielectric coefficient (constant) [—]</td>
</tr>
<tr>
<td>ε</td>
<td>emittance (emissivity) [—]</td>
</tr>
<tr>
<td>ε</td>
<td>eccentricity [—]</td>
</tr>
<tr>
<td>ε_i</td>
<td>Re (ε)</td>
</tr>
<tr>
<td>ε_2</td>
<td>Im (ε)</td>
</tr>
<tr>
<td>τ</td>
<td>(power) transmittance (transmissivity) [—]</td>
</tr>
<tr>
<td>ν</td>
<td>radiation frequency [Hz]</td>
</tr>
<tr>
<td>ω</td>
<td>circular frequency $= 2\pi\nu$ [rads$^{-1}$]</td>
</tr>
<tr>
<td>ω_p</td>
<td>plasma frequency [H$_2$]</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength [μm, nm]</td>
</tr>
<tr>
<td>σ</td>
<td>wave number $= 1/\lambda$ [cm$^{-1}$]</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan Boltzmann constant [Wm$^{-2}$K$^{-1}$]</td>
</tr>
<tr>
<td>ρ</td>
<td>reflectance (reflectivity) [—]</td>
</tr>
<tr>
<td>θ, ϕ</td>
<td>angular coordinates [rad,$^\circ$]</td>
</tr>
<tr>
<td>ξ, η</td>
<td>rectangular spatial frequencies [m$^{-1}$, r$^{-1}$]</td>
</tr>
<tr>
<td>ϕ</td>
<td>phase [rad,$^\circ$]</td>
</tr>
<tr>
<td>ϕ</td>
<td>lens power [m$^{-1}$]</td>
</tr>
<tr>
<td>Φ</td>
<td>flux [W]</td>
</tr>
<tr>
<td>χ</td>
<td>electric susceptibility tensor [—]</td>
</tr>
<tr>
<td>Ω</td>
<td>solid angle [sr]</td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Re</td>
<td>responsivity</td>
</tr>
<tr>
<td>$\exp(x)$</td>
<td>e^x</td>
</tr>
<tr>
<td>$\log_a(x)$</td>
<td>log to the base a of x</td>
</tr>
<tr>
<td>$\ln(x)$</td>
<td>natural log of x</td>
</tr>
<tr>
<td>$\log(x)$</td>
<td>standard log of x: $\log_{10}(x)$</td>
</tr>
<tr>
<td>Σ</td>
<td>summation</td>
</tr>
<tr>
<td>Π</td>
<td>product</td>
</tr>
<tr>
<td>Δ</td>
<td>finite difference</td>
</tr>
<tr>
<td>δx</td>
<td>variation in x</td>
</tr>
<tr>
<td>dX</td>
<td>total differential</td>
</tr>
<tr>
<td>δx</td>
<td>partial derivative of x</td>
</tr>
<tr>
<td>$\delta(x)$</td>
<td>Dirac delta function of x</td>
</tr>
<tr>
<td>δ_{ij}</td>
<td>Kronecker delta</td>
</tr>
</tbody>
</table>
REFERENCES

William L. Wolfe
Optical Sciences Center
University of Arizona
Tucson, Arizona
ABOUT THE EDITORS

Micheal Bass is Professor of Physics and Electrical and Computer Engineering at the University of Central Florida and is on the faculty of the Center for Research and Education in Optics and Lasers (CREOL). He received his B.S. in Physics from Carnegie-Mellon and his M.S. and Ph.D. in Physics from the University of Michigan.

Eric Van Stryland is a professor of Physics and Electrical Engineering at the University of Central Florida for Research and Education in Optics and Lasers. He received his Ph.D. from the University of Arizona.

David R. Williams is a Professor of Psychology and Visual Science and the Director of the Center of Visual Science at the University of Rochester. He received his B.S. in Psychology from Denison University, and his M.A. and Ph.D. in Psychology from the University of California, San Diego.

William L. Wolfe is a Professor at the Optical Sciences Center at the University of Arizona. He received his B.S. in Physics from Bucknell University, and his M.S. in Physics and M.S.E. in Electrical Engineering from the University of Michigan.
CONTENTS IN BRIEF:
VOLUME I

Part 1. Geometric Optics 1.1
Chapter 1. General Principles of Geometric Optics Douglas S. Goodman 1.3

Part 2. Physical Optics 2.1
Chapter 2. Interference John E. Greivenkamp, Jr. 2.3
Chapter 3. Diffraction A. S. Marathay 3.1
Chapter 4. Coherence Theory William H. Carter 4.1
Chapter 5. Polarization Jean M. Bennett 5.1
Chapter 6. Scattering by Particles Craig F. Bohren 6.1
Chapter 7. Surface Scattering E. L. Church and P. Z. Takacs 7.1

Part 3. Quantum Optics 8.1
Chapter 8. Optical Spectroscopy and Spectroscopic Lineshapes Brian Henderson 8.3
Chapter 9. Fundamental Optical Properties of Solids Alan Miller 9.1

xxix
Part 4. Optical Sources

Chapter 10. Artificial Sources Anthony LaRocca

Chapter 11. Lasers William T. Silfvast

Chapter 12. Light-Emitting Diodes Roland H. Haitz, M. George Craford, and Robert H. Weissman

Chapter 13. Semiconductor Lasers Pamela L. Derry, Luis Figueroa, and Chi-Shain Hong

Chapter 14. Ultrashort Laser Sources Xin Miao Zhao and Jean-Claude Diels

Part 5. Optical Detectors

Chapter 15. Photodetectors Paul R. Norton

Chapter 16. Photodetection Abhay M. Joshi and Gregory H. Olsen

Chapter 17. High-Speed Photodetectors J. E. Bowers and Y. G. Wey

Chapter 18. Signal Detection and Analysis John R. Willison

Part 6. Imaging Detectors

Chapter 20. Photographic Films Joseph H. Altman

Chapter 22. Visible Array Detectors
Timothy J. Tredwell

Chapter 23. Infrared Detector Arrays
Lester J. Kozlowski and Walter F. Kosonocky

Part 7. Vision

Chapter 24. Optics of the Eye
W. N. Charman

Chapter 25. Visual Performance
Wilson S. Geisler and Martin S. Banks

Chapter 26. Colorimetry
David H. Brainard

Chapter 27. Displays for Vision Research
William Cowan

Chapter 28. Optical Generation of the Visual Stimulus
Stephen A. Burns and Robert H. Webb

Chapter 29. Psychophysical Methods
Denis G. Pelli and Bart Farell

Part 8. Optical Information and Image Processing

Chapter 30. Analog Optical Signal and Image Processing
Joseph W. Goodman

Chapter 31. Principles of Optical Disk Data Storage
Masud Mansuripur

Part 9. Optical Design Techniques

Chapter 32. Techniques of First-Order Layout
Warren J. Smith

Chapter 33. Aberration Curves in Lens Design
Donald C. O’Shea and Michael E. Harrigan
Chapter 34. Optical Design Software Douglas C. Sinclair 34.1

Chapter 35. Optical Specifications Robert R. Shannon 35.1

Chapter 36. Tolerancing Techniques Robert R. Shannon 36.1

Chapter 37. Mounting Optical Components Paul R. Yoder, Jr. 37.1

Chapter 38. Control of Stray Light Robert P. Breault 38.1

Chapter 39. Thermal Compensation Techniques P. J. Rogers and M. Roberts 39.1

Part 10. Optical Fabrication 40.1

Chapter 40. Optical Fabrication Robert E. Parks 40.3

Chapter 41. Fabrication of Optics by Diamond Turning Richard L. Rhorer and Chris J. Evans 41.1

Part 11. Optical Properties of Films and Coatings 42.1

Chapter 42. Optical Properties of Films and Coatings J. A. Dobrowolski 42.3

Part 12. Terrestrial Optics 43.1

Chapter 43. Optical Properties of Water Curtis D. Mobley 43.3

Chapter 44. Atmospheric Optics Dennis K. Killinger, James H. Churnside, and Laurence S. Rothman 44.1
CONTENTS IN BRIEF:
VOLUME II

Part 1. Optical Elements

Chapter 1. Lenses R. Barry Johnson 1.3

Chapter 2. Afocal Systems William B. Wetherell 2.1

Chapter 3. Polarizers Jean M. Bennett 3.1

Chapter 4. Nondispersive Prisms William L. Wolfe 4.1

Chapter 5. Dispersive Prisms and Gratings George J. Zissis 5.1

Chapter 6. Integrated Optics Thomas L. Koch, Frederick J. Leonberger and Paul G. Suchoski 6.1

Chapter 7. Miniature and Micro-Optics Tom D. Milster 7.1

Chapter 8. Binary Optics Michael W. Farn and Wilfrid B. Veldkamp 8.1

Chapter 9. Gradient Index Optics Duncan T. Moore 9.1

Chapter 10. Optical Fibers and Fiber-Optic Communications Tom G. Brown 10.1

Chapter 11. X-Ray Optics James E. Harvey 11.1
Chapter 12. Acousto-Optic Devices and Applications I. C. Chang 12.1

Chapter 13. Electro-Optic Modulators Theresa A. Maldonado 13.1

Chapter 14. Liquid Crystals Shin-Tson Wu 14.1

Part 2. Optical Instruments 15.1

Chapter 15. Cameras Norman Goldberg 15.3

Chapter 16. Camera Lenses Ellis Betensky, M. Kreitzer, and J. Moskovich 16.1

Chapter 17. Microscopes Shinya Inoué and Rudolf Oldenbourg 17.1

Chapter 18. Reflective and Catadioptric Objectives Lloyd Jones 18.1

Chapter 19. Scanners Leo Beiser and R. Barry Johnson 19.1

Chapter 20. Optical Spectrometers Brian Henderson 20.1

Chapter 21. Interferometers P. Hariharan 21.1

Chapter 22. Polarimetry Russell A. Chipman 22.1

Chapter 23. Holography and Holographic Instruments Lloyd Huff 23.1
Part 3. Optical Measurements

Chapter 24. Radiometry and Photometry Edward F. Zalewski

Chapter 25. The Measurement of Transmission, Absorption, Emission, and Reflection James M. Palmer

Chapter 26. Scatterometers John C. Stover

Chapter 27. Ellipsometry Rasheed M. A. Azzam

Chapter 28. Spectroscopic Measurements Brian Henderson

Chapter 29. Optical Metrology Daniel Malacara and Zacarias Malacara

Chapter 30. Optical Testing Daniel Malacara

Chapter 31. Use of Computer-Generated Holograms in Optical Testing Katherine Creath and James C. Wyant

Chapter 32. Transfer Function Techniques Glenn D. Boreman

Part 4. Optical and Physical Properties of Materials

Chapter 33. Properties of Crystals and Glasses William J. Tropf, Michael Thomas, and Terry J. Harris

Chapter 34. Polymetric Optics John D. Lytle

Chapter 35. Properties of Metals Roger A. Paquin
CONTENTS IN BRIEF: VOLUME II

<table>
<thead>
<tr>
<th>Chapter 36. Optical Properties of Semiconductors</th>
<th>Paul M. Amirtharaj and David G. Seiler</th>
<th>36.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 37. Black Surfaces for Optical Systems</td>
<td>Stephen M. Pompea and Robert P. Breault</td>
<td>37.1</td>
</tr>
<tr>
<td>Part 5. Nonlinear and Photorefractive Optics</td>
<td></td>
<td>38.1</td>
</tr>
<tr>
<td>Chapter 38. Nonlinear Optics</td>
<td>Chung L. Tang</td>
<td>38.3</td>
</tr>
<tr>
<td>Chapter 39. Photorefractive Materials and Devices</td>
<td>Mark Cronin-Golomb and Marvin Klein</td>
<td>39.1</td>
</tr>
</tbody>
</table>