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 2 2 . 1  GLOSSARY

 A  analyzer vector
 a  analyzer vector element
 a  semimajor axis of ellipse

 BRDF  bidirectional reflectance distribution function
 b  semiminor axis of ellipse
 D  diattenuation

 DOCP  degree of circular polarization
 DOLP  degree of linear polarization

 DOP  degree of polarization

 Dep  depolarization
 E  extinction ratio
 e  ellipticity

 I  inhomogeneity of a Mueller matrix

 ID  ideal depolarizer

 J  Jones matrix

 j x x  ,  j x y  ,  j y x  ,  j y y  Jones matrix elements

 LD  linear diattenuation

 LP  linear polarizer

 M  Mueller matrix

 M ¢  Mueller vector

 MBRDF  Mueller bidirectional reflectance distribution function

 M D  diattenuator Mueller matrix

 M R  retarder Mueller matrix

 m 0 0  ,  m 0 1  ,  .  .  .  ,  m 3 3  Mueller matrix elements

 D n  birefringence
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 n 1  ,  n 2  refractive indices of a birefringent medium

 P  flux measurement vector

 P  polarizance

 P  flux measurement

 PD  partial depolarizer

 PDL  polarization-dependent loss

 QWLR  quarter-wave linear retarder

 Q  index limit

 q  index for a sequence of polarization elements

 R M  rotational change of basis matrix for Stokes vectors

 S  Stokes vector

 S ̂  normalized polarized Stokes vector

 S 9  exiting Stokes vector

 S m  measured Stokes vector

 S m a x ,  S m i n  incident Stokes vectors of maximum and minimum intensity
 transmittance

 s 0  ,  s 1  ,  s 2  ,  s 3  Stokes vector elements

 T  transpose ,  superscript

 T  intensity transmittance

 T a v g  intensity transmission averaged over all incident polarization
 states

 T m a x  maximum intensity transmittance

 T m i n  minimum intensity transmittance

 Tr  trace of a matrix

 t  thickness

 U  Jones / Mueller transformation matrix

 VD  variable partial depolarizer

 W  polarimetric measurement matrix

 W 2 1  polarimetric data reduction matrix

 W 2 1
 P  pseudoinverse of  W

 a  ,  b  angles of incidence

 g  ,  d  angles of scatter

 d  retardance

 h  azimuth of ellipse

 e  eccentricity
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 θ  orientation angle
 D θ  angular increment

 r  amplitudes of a complex number
 f  phases of a complex number

 χ  angle between the eigenpolarizations on the Poincare sphere
 ̂  tensor product

 †  Hermitian adjoint

 2 2 . 2  OBJECTIVES

 This chapter surveys the principles of polarization measurements .  Throughout this chapter
 all measured and derived quantities are formulated in terms of the Stokes vector and
 Mueller matrix ,  as these comprise the most appropriate representation of polarization for
 radiometric measurements .  The Mueller matrix has a structure which is dif ficult to
 understand ,  so the interpretation has been discussed within this chapter .  One of the
 primary dif ficulties in performing accurate polarization measurements is the systematic
 errors due to nonideal polarization elements .  Therefore ,  a formulation of the polarimetric
 measurement and data reduction process is included which readily handles arbitrary
 polarization elements used in the polarimeter whose transmitted or analyzed Stokes
 vectors are determined through calibration .  Finally ,  a survey of the literature on
 applications studies utilizing polarimeters has been included .

 This chapter is closely related to the following  Handbook of Optics  chapters :
 ‘‘Polarization’’ (Vol .  I ,  Chap .  5) by J .  M .  Bennett ,  ‘‘Polarizers’’ by J .  M .  Bennett (Vol .  II ,
 Chap .  3) ,  and ‘‘Ellipsometry’’ by R .  M .  A .  Azzam (Vol .  II ,  Chap .  27) .

 2 2 . 3  POLARIMETERS

 Polarimeters are optical instruments used for determining the polarization properties of
 light beams and samples .  Polarimetry ,  the science of measuring polarization ,  is most simply
 characterized as radiometry with polarization elements .  To perform accurate polarimetry ,
 all the issues necessary for careful and accurate radiometry must be considered ,  together
 with many additional polarization issues .  In this chapter ,  our emphasis is strictly on those
 additional polarization issues which must be mastered to accurately determine polarization
 properties from polarimetric measurements .  Typical applications of polarimeters include
 the following :  remote sensing of the earth and astronomical bodies ,  calibration of
 polarization elements ,  measuring the thickness and refractive indices of thin films
 (ellipsometry) ,  spectroscopic studies of materials ,  and alignment of polarization-critical
 optical systems .  We can broadly subdivide polarimeters into the several categories as
 discussed in succeeding sections .

 2 2 . 4  LIGHT - MEASURING AND SAMPLE - MEASURING POLARIMETERS

 Light-measuring polarimeters determine the polarization state of a beam of light or
 determine some of its polarization characteristics .  These determinations may include the
 following :  the direction of oscillation of the electric field vector for a linearly polarized
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 beam ,  the helicity of a circularly polarized beam ,  or the elliptical parameters of an
 elliptically polarized beam ,  as well as the degree of polarization and other characteristics .
 A light-measuring polarimeter utilizes a set of polarization elements placed in a beam of
 light in front of a radiometer ;  or ,  to paraphrase ,  the light from the sample is analyzed by a
 series of polarization state analyzers ,  and a set of measurements is acquired .  The
 polarization characteristics of the sample are determined from these measurements by a
 data reduction procedure .  Measurement ,  calibration ,  and data reduction algorithms are
 treated under ‘‘Light-measuring Polarimeters . ’’

 2 2 . 5  SAMPLE - MEASURING POLARIMETERS

 Sample-measuring polarimeters determine the relationship between the polarization states
 of incident and exiting beams for a sample .  The term  exiting beam  is general and includes
 beams which are transmitted ,  reflected ,  dif fracted ,  or scattered .  The term  sample  is also an
 inclusive term used in a broad sense to describe a general light-matter interaction or
 sequence of such interactions and applies to practically anything .  Measurements are
 acquired using a series of polarization elements located between a source and sample and
 the exiting beams are analyzed with a separate set of polarization elements between the
 sample and radiometer .  Samples of great interest include surfaces ,  thin films on surfaces ,
 polarization elements ,  optical elements ,  optical systems ,  natural scenes ,  biological samples ,
 and industrial samples .

 Accurate polarimetric measurements can be made only if the polarization generator
 and / or polarization analyzer are fully calibrated .  To perform accurate polarimetry ,  the
 polarization elements do not need to be ideal .  If the Mueller matrices of the polarization
 components are known ,  the systematic errors due to nonideal polarization elements can be
 removed during the data reduction (see ‘‘Polarimetric Measurement Equation and
 Polarimetric Data Reduction Equation’’) .

 2 2 . 6  COMPLETE AND INCOMPLETE POLARIMETERS

 A light-measuring polarimeter is ‘‘complete’’ if it measures a Stokes vector or if a Stokes
 vector can be determined from its measurements .  An ‘‘incomplete’’ light-measuring
 polarimeter cannot be used to determine a Stokes vector .  For example ,  a polarimeter
 which employs a rotating polarizer in front of a detector does not determine the circular
 polarization content of a beam ,  and is incomplete .  Similarly ,  a sample-measuring
 polarimeter is complete if it is capable of measuring the full Mueller matrix ,  and
 incomplete otherwise .  Complete polarimeters are often referred to as Stokes polarimeters
 or Mueller polarimeters .

 2 2 . 7  POLARIZATION GENERATORS AND ANALYZERS

 A  polarization generator  consists of a source ,  optical elements ,  and polarization elements
 to produce a beam of known polarization state .  A polarization generator is specified by the
 Stokes vector  S  of the exiting beam .  A  polarization analyzer  is a configuration of
 polarization elements ,  optical elements ,  and a detector which performs a flux measure-
 ment of a particular polarization component in an incident beam .  A polarization analyzer
 is characterized by a Stokes-like  analyzer  y  ector  A  which specifies the incident
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 polarization state which is analyzed ,  the state which produces the maximal response at the
 detector .  Sample-measuring polarimeters require polarization generators and polarization
 analyzers ,  while light-measuring polarimeters only require polarization analyzers .  Fre-
 quently the terms ‘‘polarization generator’’ and ‘‘polarization analyzer’’ refer just to the
 polarization elements in the generator and analyzer .  In this usage ,  it is important to
 distinguish between elliptical (and circular) generators and elliptical analyzers for a given
 state because they generally have dif ferent polarization characteristics and Mueller
 matrices (see ‘‘Elliptical and Circular Polarizers and Analyzers’’) .

 2 2 . 8  CLASSES OF LIGHT - MEASURING POLARIMETERS

 Polarimeters operate by acquiring measurements with a set of polarization analyzers (and
 a set of polarization generators for sample-measuring instruments) .  The following sections
 classify polarimeters by the four broad methods by which these multiple measurements are
 acquired .

 2 2 . 9  TIME - SEQUENTIAL MEASUREMENTS

 In a time-sequential polarimeter ,  the measurements are taken sequentially in time .
 Between measurements ,  the polarization analyzer and / or polarization generator is
 changed .  Time-sequential polarimeters frequently employ rotating polarization elements
 or filter wheels containing a set of analyzers .  A time-sequential polarimeter generally
 employs a single source and detector .

 2 2 . 1 0  POLARIZATION MODULATION

 Polarimeters employing polarization modulation comprise a subset of time-sequential
 polarimeters .  Here ,  the polarization analyzer contains a polarization modulator ,  a rapidly
 changing polarization element .  The output of the analyzer is a rapidly fluctuating
 irradiance on which polarization information is encoded .  Polarization parameters can then
 be determined by ac and vector voltmeters ,  by lock-in amplifiers ,  or by frequency-domain
 digital signal processing techniques .  For example ,  a rapidly spinning polarizer produces a
 modulated output which allows the flux and the degree of linear polarization to be read
 with a dc voltmeter and an ac voltmeter .  The most common high-speed polarization
 modulators in general use are the electro-optical modulator ,  the magneto-optical modula-
 tor ,  and the photoelastic modulator .

 2 2 . 1 1  DIVISION OF APERTURE

 Polarimeters based on division of aperture employ multiple polarization analyzers
 operating side-by-side .  The aperture of the polarimeter is subdivided ,  with each beam
 going into a separate polarization analyzer and detector .  The detectors are usually
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 synchronized to acquire measurements simultaneously .  This is similar in principle to the
 polarizing glasses used in 3-D movie systems ,  where a 45 8  polarizer is used for one eye and
 a 135 8  for the other ,  permitting two polarization measurements simultaneously in two eyes .

 2 2 . 1 2  DIVISION OF AMPLITUDE

 Division-of-amplitude polarimeters utilize beam splitters to divide beams and direct them
 toward multiple analyzers and detectors .  A division-of-amplitude polarimeter can acquire
 its measurements simultaneously .  Many division-of-amplitude polarimeters use polarizing
 beam splitters to simultaneously divide and analyze the polarization state of the beam .  The
 four-detector photopolarimeter uses a sequence of detectors at nonormal incidence to
 measure Stokes vectors (Azzam ,  1985 ;  Azzam ,  Elminyawi ,  and El-Saba ,  1988) .

 2 2 . 1 3  DEFINITIONS

 Analyzer —an element whose intensity transmission is proportional to the content of a
 specific polarization state in the incident beam .  Analyzers are placed before the
 detector in polarimeters .  The transmitted polarization state emerging from an analyzer
 is not necessarily the same as the state which is being analyzed .

 Birefringence —a material property ,  the retardance associated with propagation through
 an anisotropic medium .  For each propagation direction within a birefringent medium ,
 there are two modes of propagation with dif ferent refractive indices  n 1  and  n 2 .  The
 birefringence  D n  is  D n  5  u n 1  2  n 2 u .

 Depolarization —a process which couples polarized light into unpolarized light .
 Depolarization is intrinsically associated with scattering and with diattenuation and
 retardance which vary in space ,  time ,  and / or wavelength .

 Diattenuation —the property of an optical element or system whereby the intensity
 transmittance of the exiting beam depends on the polarization state of the incident
 beam .  The intensity transmittance is a maximum  P m a x  for one incident state ,  and a
 minimum  P m i n  for the orthogonal state .  The diattenuation is defined as ( P m a x  2
 P m i n ) / ( P m a x  1  P m i n ) .

 Diattenuator —any homogeneous polarization element which displays significant
 diattenuation and minimal retardance .  Polarizers have a diattenuation close to one ,  but
 nearly all optical interfaces are weak diattenuators .  Examples of diattenuators include
 the following :  polarizers and dichroic materials ,  as well as metal and dielectric
 interfaces with reflection and transmission dif ferences described by Fresnel equations ;
 thin films (homogeneous and isotropic) ;  and dif fraction gratings .

 Dichroism —the material property of displaying diattenuation during propagation .  For
 each direction of propagation ,  dichroic media have two modes of propagation with
 dif ferent absorption coef ficients .  Examples of dichroic materials include sheet polarizers
 and dichroic crystals such as tourmaline .

 Eigenpolarization —a polarization state transmitted unaltered by a polarization element
 except for a change of amplitude and phase .  Every polarization element has two
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 eigenpolarizations .  Any incident light not in an eigenpolarization state is transmitted in
 a polarization state dif ferent from the incident state .  Eigenpolarizations are the
 eigenvectors of the corresponding Mueller or Jones matrix .
 Ellipsometry —a polarimetric technique which uses the change in the state of polariza-
 tion of light upon reflection for the characterization of surfaces ,  interfaces ,  and thin
 films (after Azzam ,  1993) .
 Homogeneous polarization element —an element whose eigenpolarizations are orthogo-
 nal .  Then ,  the eigenpolarizations are the states of maximum and minimum transmit-
 tance and also of maximum and minimum optical path length .  A homogeneous element
 is classified as linear ,  circular ,  or elliptical depending on the form of the
 eigenpolarizations .
 Inhomogeneous polarization element —an element whose eigenpolarizations are not
 orthogonal .  Such an element will display dif ferent polarization characteristics for
 forward and backward propagating beams .  The eigenpolarizations are generally not the
 states of maximum and minimum transmittance .  Often inhomogeneous elements cannot
 be simply classified as linear ,  circular ,  or elliptical .
 Ideal polarizer —a polarizer with an intensity transmittance of one for its principal state
 and an intensity transmittance of zero for the orthogonal state .
 Linear polarizer —a device which ,  when placed in an incident unpolarized beam ,
 produces a beam of light whose electric field vector is oscillating primarily in one plane ,
 with only a small component in the perpendicular plane (after Bennett ,  1993) .
 Nonpolarizing element —an element which does not change the polarization state for
 arbitrary states .  The polarization state of the output light is equal to the polarization
 state of the incident light for all possible input polarization states .
 Partially polarized light —light containing an unpolarized component ;  cannot be
 extinguished by an ideal polarizer .
 Polarimeter —an optical instrument for the determination of the polarization state of a
 light beam ,  or the polarization-altering properties of a sample .
 Polarimetry —the science of measuring the polarization state of a light beam and the
 diattenuating ,  retarding ,  and depolarizing properties of materials .
 Polarization —any process which alters the polarization state of a beam of light ,
 including diattenuation ,  retardance ,  depolarization ,  and scattering .
 Polarization coupling —any conversion of light from one polarization state into another
 state .
 Polarized light —light in a fixed ,  elliptically (including linearly or circularly) polarized
 state .  It can be extinguished by an ideal polarizer .  For polychromatic light ,  the
 polarization ellipses associated with each spectral component have identical ellipticity ,
 orientation ,  and helicity .
 Polarizer —a strongly diattenuating optical element designed to transmit light in a
 specified polarization state independent of the incident polarization state .  The
 transmission of one of the eigenpolarizations is very nearly zero .
 Polarization element —any optical element which alters the polarization state of light .
 This includes polarizers ,  retarders ,  mirrors ,  thin films ,  and nearly all optical elements .
 Pure diattenuator —a diattenuator with zero retardance and no depolarization .
 Pure retarder —a retarder with zero diattenuation and no depolarization .
 Retardance —a polarization-dependent phase change associated with a polarization
 element or system .  The phase (optical path length) of the output beam depends upon
 the polarization state of the input beam .  The transmitted phase is a maximum for one
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 eigenpolarization ,  and a minimum for the other eigenpolarization .  Other states show
 polarization coupling and an intermediate phase .
 Retardation plate —a retarder constructed from a plane parallel plate or plates of
 linearly birefringent material .
 Retarder —a polarization element designed to produce a specified phase dif ference
 between the exiting beams for two orthogonal incident polarization states (the
 eigenpolarizations of the element) .  For example ,  a quarter-wave linear retarder has as
 its eigenpolarizations two orthogonal linearly polarized states which are transmitted in
 their incident polarization states but with a 90 8  (quarter-wavelength) relative phase
 dif ference introduced .
 Spectropolarimetry —the spectroscopic study of the polarization properties of materials .
 Spectropolarimetry is a generalization of conventional optical spectroscopy .  Where
 conventional spectroscopy endeavors to measure the reflectance or transmission of a
 sample as a function of wavelength ,  spectropolarimetry also determines the diattenuat-
 ing ,  retarding ,  and depolarizing properties of the sample .  Complete characterization of
 these properties is accomplished by measuring the Mueller matrix of the sample as a
 function of wavelength .
 Wa y  eplate —a retarder .

 2 2 . 1 4  STOKES VECTORS AND MUELLER MATRICES

 Several calculi have been developed for analyzing polarization ,  including those based on
 the Jones matrix ,  coherency matrix ,  Mueller matrix ,  and other matrices (Shurclif f ,  1962 ;
 Gerrard and Burch ,  1975 ;  Theocaris and Gdoutos ,  1979 ;  Azzam and Bashara ,  1987 ;
 Coulson ,  1988 ;  Egan ,  1992) .  Of these methods ,  the Mueller calculus is most generally
 suited for describing irradiance-measuring instruments ,  including most polarimeters ,
 radiometers ,  and spectrometers ,  and is used exclusively in this paper .

 In the Mueller calculus ,  the Stokes vector  S  is used to describe the polarization state of
 a light beam ,  and the Mueller matrix  M  to describe the polarization-altering characteristics
 of a sample .  This sample may be a surface ,  a polarization element ,  an optical system ,  or
 some other light / matter interaction which produces a reflected ,  refracted ,  dif fracted ,  or
 scattered light beam .  All vectors and matrices are represented by bold characters .
 Normalized vectors have ‘‘hats’’ (i . e .,   A ̂  ) .

 2 2 . 1 5  PHENOMENOLOGICAL DEFINITION OF THE STOKES VECTOR

 The Stokes vector is defined relative to the following six flux measurements  P  performed
 with ideal polarizers in front of a radiometer (Shurclif f ,  1962) :

 P H  horizontal linear polarizer (0 8 )

 P V  vertical linear polarizer (90 8 )

 P 4 5  45 8  linear polarizer

 P 1 3 5  135 8  linear polarizer

 P R  right circular polarizer

 P L  left circular polarizer
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 Normally ,  these measurements are irradiance measurements ( W  / m 2 ) although other flux
 measurements might be used .  The Stokes vector is defined as

 S  5 3
 s 0

 s 1

 s 2

 s 3

 4  5 3
 P H  1  P V

 P H  2  P V

 P 4 5  2  P 1 3 5

 P R  2  P L

 4  (1)

 where  s 0  ,  s 1  ,  s 2 ,  and  s 3  are the Stokes vector elements .  The Stokes vector does not need to
 be measured by these six ideal measurements ;  what is required is that other methods
 reproduce the Stokes vector defined in this manner .  Ideal polarizers are not required .
 Further ,  the Stokes vector is a function of wavelength ,  position on the object ,  and the
 light’s direction of emission or scatter .  Thus ,  a Stokes vector measurement is an average
 over area ,  solid angle ,  and wavelength ,  as is any radiometric measurement .  Each Stokes
 vector element has units of watts per meter squared .  The Stokes vector is defined relative
 to a local  x  2  y  coordinate system defined in the plane perpendicular to the propagation
 vector .  The coordinate system is right-handed ;  the cross product  x ̂  3  y ̂    of the basis vectors
 points in the direction of propagation of the beam .

 2 2 . 1 6  POLARIZATION PROPERTIES OF LIGHT BEAMS

 From the Stokes vector ,  the following polarization parameters are determined (Azzam and
 Bashara ,  1977 and 1987 ;  Kliger ,  Lewis ,  and Randall ,  1990 ;  Collett ,  1992) :
 Flux  P  5  s 0  (2)

 Degree  of  polarization  DOP  5
 4 s  2

 1  1  s  2
 2  1  s  2

 3

 s 0
 (3)

 Degree  of  linear  polarization  DOLP  5
 4 s  2

 1  1  s  2
 2

 s 0
 (4)

 Degree  of  circular  polarization  DOCP  5
 s 3

 s 0
 (5)

 The Stokes vector for a partially polarized beam ( DOP  ,  1) can be considered as a
 superposition of a completely polarized Stokes vector  S P   and an unpolarized Stokes vector
 S U   which are uniquely related to  S  as follows (Collett ,  1992) :

 S  5  S P  1  S U  5 3
 s 0

 s 1

 s 2

 s 3

 4  5  s 0 DOP 3
 1

 s 1 / ( s 0 DOP )
 s 2 / ( s 0 DOP )
 s 3 / ( s 0 DOP )

 4  1  (1  2  DOP ) s 0 3
 1
 0
 0
 0
 4  (6)

 The polarized portion of the beam represents a net polarization ellipse traced by the
 electric field vector as a function of time .  The ellipse has a magnitude of the semimajor
 axis  a ,  semiminor axis  b ,  orientation of the major axis  h   (azimuth of the ellipse) measured
 counterclockwise from the  x  axis ,  and eccentricity (or ellipticity) .

 Ellipticity  e  5
 b
 a

 5
 s 3

 s 0  1  4 s 2
 1  1  s  2

 2
 (7)

 Orientation  of  major  axis ,  azimuth  h  5  1 – 2  arctan  F s 2

 s 1
 G  (8)

 Eccentricity  e  5  4 1  2  e 2  (9)

 The ellipticity is the ratio of the minor to the major axis of the corresponding electric field
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 polarization ellipse ,  and varies from 0 for linearly polarized light to 1 for circularly
 polarized light .  The polarization ellipse is alternatively described by its eccentricity ,  which
 is zero for circularly polarized light ,  increases as the ellipse becomes thinner (more
 cigar-shaped) ,  and becomes one for linearly polarized light .

 2 2 . 1 7  MUELLER MATRICES

 The Mueller matrix  M  for a polarization-altering device is defined as the matrix which
 transforms an incident Stokes vector  S  into the exiting (reflected ,  transmitted ,  or scattered)
 Stokes vector  S 9 ,

 S 9  5 3
 s 9 0

 s 9 1

 s 9 2

 s 9 3
 4  5  MS  5 3

 m 0 0  m 0 1  m 0 2  m 0 3

 m 1 0  m 1 1  m 1 2  m 1 3

 m 2 0  m 2 1  m 2 2  m 2 3

 m 3 0  m 3 1  m 3 2  m 3 3

 4 3
 s 0

 s 1

 s 2

 s 3

 4  (10)

 The Mueller matrix is a four-by-four matrix with real valued elements .  The Mueller matrix
 M ( k ,  l ) for a device is always a function of the direction of propagation  k  and wavelength
 l .  The Mueller matrix is an appropriate formalism for characterizing polarization
 measurements because it contains within its elements all of the polarization properties :
 diattenuation ,  retardance ,  depolarization ,  and their form ,  either linear ,  circular ,  or
 elliptical .  When the Mueller matrix is known ,  then the exiting polarization state is known
 for an arbitrary incident polarization state .  Table 1 is a compilation of Mueller matrices for
 common polarization elements ,  together with the corresponding transmitted Stokes vector .
 Other tables of Mueller matrices may be found in the following references :  Shurclif f
 (1962) ,  Gerrard and Burch (1975) ,  Azzam and Bashara (1977) ,  Theocaris and Gdoutos
 (1979) ,  and Collett (1992) .  See detailed discussion of the polarization properties as related
 to the Mueller matrix elements later in this chapter .

 The Mueller matrix  M  associated with a beam path through a sequence (cascade) of
 polarization elements  q  5  1 ,  2 ,  .  .  .  ,  Q  is the right-to-left product of the individual matrices
 M q ,

 M  5  M Q M Q 2 1  ?  ?  ?  M q  ?  ?  ?  M 2 M 1  5  O 1

 q 5 Q , 2 1
 M q  (11)

 When a polarization element with Mueller matrix  M  is rotated about the beam of light by
 an angle  θ   such that the angle of incidence is unchanged (for example ,  for a
 normal-incidence beam ,  rotating the element about the normal) ,  the resulting Mueller
 matrix  M ( θ  ) is

 M ( θ  )  5  R M ( θ  ) MR M ( 2 θ  )  5 3
 1
 0
 0
 0

 0
 cos  (2 θ  )
 sin  (2 θ  )

 0

 0
 2 sin  (2 θ  )
 cos  (2 θ  )

 0

 0
 0
 0
 1
 4 3

 m 0 0  m 0 1  m 0 2  m 0 3

 m 1 0  m 1 1  m 1 2  m 1 3

 m 2 0  m 2 1  m 2 2  m 2 3

 m 3 0  m 3 1  m 3 2  m 3 3

 4
 3 3

 1
 0
 0
 0

 0
 cos  (2 θ  )

 2 sin  (2 θ  )
 0

 0
 sin  (2 θ  )
 cos  (2 θ  )

 0

 0
 0
 0
 1
 4  (12)

 where  R M   is the rotational change of basis matrix for Stokes vectors and Mueller matrices .
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 TABLE 1  Example Mueller Matrices and Transmitted Stokes Vectors

 Nonpolarizing element

 3
 1  0  0  0
 0  1  0  0
 0  0  1  0
 0  0  0  1

 4 3
 s 0

 s 1

 s 2

 s 3

 4  5 3
 s 0

 s 1

 s 2

 s 3

 4
 Absorber

 3
 a  0  0  0
 0  a  0  0
 0  0  a  0
 0  0  0  a

 4 3
 s 0

 s 1

 s 2

 s 3

 4  5 3
 as 0

 as 1

 as 2

 as 3

 4
 Linear polarizer ,  transmission axis 0 8

 1
 2  3

 1  1  0  0
 1  1  0  0
 0  0  0  0
 0  0  0  0

 4 3
 s 0

 s 1

 s 2

 s 3

 4  5
 1
 2  3

 s 0  1  s 1

 s 0  1  s 1

 0
 0

 4
 Linear diattenuator ,  axis 0 8 ,  intensity transmittances  q ,  r

 1
 2  3

 q  1  r
 q  2  r

 0
 0

 q  2  r
 q  1  r

 0
 0

 0
 0

 2 4 qr
 0

 0
 0
 0

 2 4 qr
 4 3

 s 0

 s 1

 s 2

 s 3

 4  5
 1
 2  3

 q ( s 0  1  s 1 )  1  r ( s 0  2  s 1 )
 q ( s 0  1  s 1 )  2  r ( s 0  2  s 1 )

 2 s 2 4 qr
 2 s 3 4 qr

 4
 Linear diattenuator ,  axis 45 8 ,  intensity transmittances  q ,  r

 1
 2  3

 q  1  r
 0

 q  2  r
 0

 0
 2 4 qr

 0
 0

 q  2  r
 0

 q  1  r
 0

 0
 0
 0

 2 4 qr
 4 3

 s 0

 s 1

 s 2

 s 3

 4  5
 1
 2  3

 q ( s 0  1  s 2 )  1  r ( s 0  2  s 2 )
 2 s 1 4 qr

 q ( s 0  1  s 2 )  2  r ( s 0  2  s 2 )
 2 s 3 4 qr

 4
 Linear diattenuator ,  axis  θ  ,  intensity transmittances  q ,  r

 1
 2  3

 q  1  r
 ( q  2  r )  cos  2 θ
 ( q  2  r )  sin  2 θ

 0

 ( q  2  r )  cos  2 θ
 ( q  1  r )  cos 2  2 θ  1  2 4 qr  sin 2  2 θ
 ( q  1  r  2  2 4 qr )  sin  2 θ  cos  2 θ

 0

 ( q  2  r )  sin  2 θ
 ( q  1  r  2  2 4 qr )  sin  2 θ  cos  2 θ

 ( q  1  r )  sin 2  2 θ  1  2 4 qr  cos 2  2 θ
 0

 0
 0
 0

 2 4 qr
 4

 Circular diattenuator ,  intensity transmittances  q ,  r

 1
 2  3

 q  1  r
 0
 0

 q  2  r

 0
 2 4 qr

 0
 0

 0
 0

 2 4 qr
 0

 q  2  r
 0
 0

 q  1  r
 4 3

 s 0

 s 1

 s 2

 s 3

 4  5
 1
 2  3

 q ( s 0  1  s 3 )  1  r ( s 0  2  s 3 )
 2 s 1 4 qr
 2 s 2 4 qr

 q ( s 0  1  s 3 )  2  r ( s 0  2  s 3 )
 4

 Linear retarder ,  fast axis 0 8 ,  retardance  d

 3
 1  0
 0  1
 0  0
 0  0

 0
 0

 cos  d

 2 sin  d

 0
 0

 sin  d

 cos  d
 4 3

 s 0

 s 1

 s 2

 s 3

 4  5 3
 s 0

 s 1

 s 2  cos  d  1  s 3  sin  d

 2 s 2  sin  d  1  s 3  cos  d
 4
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 TABLE 1  ( Continued )

 Linear retarder ,  fast axis 45 8 ,  retardance  d

 3
 1
 0
 0
 0

 0
 cos  d

 0
 sin  d

 0
 0
 1
 0

 0
 2 sin  d

 0
 cos  d

 4 3
 s 0

 s 1

 s 2

 s 3

 4  5 3
 s 0

 s 1  cos  d  2  s 3  sin  d

 s 2

 s 1  sin  d  1  s 3  cos  d
 4

 Linear retarder ,  fast axis  θ  ,  retardance  d

 3
 1
 0
 0
 0

 0
 cos 2  2 θ  1  sin 2  2 θ  cos  d

 sin  2 θ  cos  2 θ  (1  2  cos  d  )
 sin  2 θ  sin  d

 0
 sin  2 θ  cos  2 θ  (1  2  cos  d  )
 sin 2  2 θ  1  cos 2  2 θ  cos  d

 2 cos  2 θ  sin  d

 0
 2 sin  2 θ  sin  d

 cos  2 θ  sin  d

 cos  d
 4

 Circular retarder ,  retardance  d

 3
 1
 0
 0
 0

 0
 cos  d

 2 sin  d

 0

 0
 sin  d

 cos  d

 0

 0
 0
 0
 1
 4 3

 s 0

 s 1

 s 2

 s 3

 4  5 3
 s 0

 s 1  cos  d  1  s 2  sin  d

 2 s 1  sin  d  1  s 2  cos  d

 s 3
 4

 Linear diattenuator and retarder ,  fast axis 0 8 ,  intensity transmittance ( q ,  r ) ,  retardance  d

 1
 2  3

 q  1  r
 q  2  r

 0
 0

 q  2  r
 q  1  r

 0
 0

 0
 0

 2 4 qr  cos  d

 2 2 4 qr  sin  d

 0
 0

 2 4 qr  sin  d

 2 4 qr  cos  d
 4 3

 s 0

 s 1

 s 2

 s 3

 4  5
 1
 2  3

 q ( s 0  1  s 1 )  1  r ( s 0  2  s 1 )
 q ( s 0  1  s 1 )  2  r ( s 0  2  s 1 )

 2 4 qr  ( s 2  cos  d  1  s 3  sin  d  )
 2 4 qr  ( 2 s 2  sin  d  1  s 3  cos  d  )

 4
 Ideal depolarizer

 3
 1  0  0  0
 0  0  0  0
 0  0  0  0
 0  0  0  0

 4 3
 s 0

 s 1

 s 2

 s 3

 4  5 3
 s 0

 0
 0
 0
 4

 Partial depolarizer

 3
 1  0  0  0
 0  d  0  0
 0  0  d  0
 0  0  0  d

 4 3
 s 0

 s 1

 s 2

 s 3

 4  5 3
 s 0

 ds 1

 ds 2

 ds 3

 4
 Here  θ  .  0 if the  x  axis of the device is rotated toward 45 8 .  If the polarization element
 remains fixed but the coordinate system rotates by  f  ,  the resulting Mueller matrix is
 M ( f  )  5  R M ( 2 f  ) MR m ( f  ) .

 2 2 . 1 8  COORDINATE SYSTEM FOR THE MUELLER MATRIX

 Consider a Mueller polarimeter consisting of a polarization generator which illuminates a
 sample ,  and a polarization analyzer which collects the light exiting the sample in a
 particular direction .  We wish to characterize the polarization modification properties of the
 sample for a particular incident and exiting beam through the Mueller matrix .  The
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 incident polarization states are specified by Stokes vectors defined relative to an  h x ̂  ,  y ̂  j
 coordinate system orthogonal to the propagation direction of the incident light .  Similarly ,
 the exiting lights’ Stokes vector is defined relative to an  h x ̂  9 ,  y ̂  9 j   coordinate system
 orthogonal to its propagation direction .  For transmission measurements where the beam
 exits undeviated ,  the orientations of  h x ̂  ,  y ̂  j   and  h x ̂  9 ,  y ̂  9 j   will naturally be chosen to be
 aligned ,  ( x ̂  5  x ̂  9 ,  y ̂  5  y ̂  9 ) .  The global orientation of  h x ̂  ,  y ̂  j   is arbitrary ,  and the measured
 Mueller matrix varies systematically if  h x ̂  ,  y ̂  j   and  h x ̂  9 ,  y ̂  9 j   are rotated together .

 When the exiting beam emerges in a dif ferent direction from the incident beam ,
 orientations must be specified for both sets of coordinates .  For measurements of reflection
 from a surface ,  a logical choice sets  h x ̂  ,  y ̂  j   and  h x ̂  9 ,  y ̂  9 j   to the  h s ̂  ,  p ̂  j   orientations for the two
 beams .  Other Mueller matrix measurement configurations may have other obvious
 arrangements for the coordinates .  All choices ,  however ,  are arbitrary ,  and lead to dif ferent
 Mueller matrices .  Let a Mueller matrix  M  be defined relative to a particular  h x ̂  ,  y ̂  j   and
 h x ̂  9 ,  y ̂  9 j .  Let another Mueller matrix  M ( θ  1  ,  θ  2 ) for the same measurement conditions
 have its  x ̂    axis rotated by  θ  1  and  x 9  axis rotated by  θ  2 ,  where  θ  .  0 indicates a
 counterclockwise rotation looking into the beam ( x ̂    into  y ̂  ) .  These Mueller matrices are
 related by the equation

 M ( θ  1  ,  θ  2 )  5 3
 1
 0
 0
 0

 0
 cos  2 θ  2

 sin  2 θ  2

 0

 0
 2 sin  2 θ  2

 cos  2 θ  2

 0

 0
 0
 0
 1
 4 3

 m 0 0  m 0 1  m 0 2  m 0 3

 m 1 0  m 1 1  m 1 2  m 1 3

 m 2 0  m 2 1  m 2 2  m 2 3

 m 3 0  m 3 1  m 3 2  m 3 3

 4
 3 3

 1
 0
 0
 0

 0
 cos  2 θ  1

 2 sin  2 θ  1

 0

 0
 sin  2 θ  1

 cos  2 θ  1

 0

 0
 0
 0
 1
 4  (13)

 When  θ  1  5  θ  2 ,  the coordinates rotate together ,  the eigenvalues are preserved ,  the circular
 polarization properties are preserved ,  and the linear properties are shifted in orientation .
 When  θ  1  ?  θ  2 ,  the matrix properties are qualitatively dif ferent ;  the eigenvalues of the
 matrix change .  If the eigenpolarizatons of  M  were orthogonal ,  they may not remain
 orthogonal .  After we perform data reduction on the matrix ,  the basic polarization
 properties couple in a complex fashion .  For example ,  linear diattenuation in  M  yields a
 circular retardance component in  M ( θ  1  ,  θ  2 ) ,  and a linear retardance component yields a
 circular diattenuation component .  The conclusion is that the selection of the coordinate
 systems for the incident and exiting beams is not important for determining exiting
 polarization states ,  but is crucial for identifying polarization characteristics of the sample .

 2 2 . 1 9  ELLIPTICAL AND CIRCULAR POLARIZERS AND ANALYZERS

 There are few good and convenient circularly or elliptically polarizing mechanisms ,
 whereas linear polarizers are simple ,  inexpensive ,  and of high quality .  Therefore ,  most
 circular and elliptical polarizers incorporate linear polarizers to perform the polarizing ,  and
 retarders to convert polarization states .  For such compound devices ,  the distinction
 between a polarizer and an analyzer becomes significant .  This is perhaps best illustrated
 by three examples :  (1) a left circular polarizer (which is also a horizontal linear analyzer)
 constructed from a horizontal linear polarizer  LP (0 8 ) followed by a quarter-wave linear
 retarder with the fast axis oriented at 135 8 ,   QWLR (135 8 ) Eq .  14 ,  (2) a left circular analyzer
 (which is also a horizontal linear polarizer) constructed from a  QWLR (45 8 ) followed by an
 LP (0 8 ) Eq .  15 ,  and ,  (3) a left circular analyzer and polarizer constructed from a
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 QWLR (135 8 ) ,  then an  LP (0 8 ) ,  followed by a  QWLR (45 8 ) Eq .  16 .  The Mueller matrix
 equations and exiting polarization states for arbitrary incident states are as follows :

 QWLR (135 8 ) LP (0 8 ) S  5
 1
 2  3

 1  1  0  0
 0  0  0  0
 0  0  0  0

 2 1  2 1  0  0
 4 3

 s 0

 s 1

 s 2

 s 3

 4  5
 1
 2  3

 s 0  1  s 1

 0
 0

 2 s 0  2  s 1

 4  (14)

 LP (0 8 ) QWLR (45 8 ) S  5
 1
 2  3

 1  0  0  2 1
 1  0  0  2 1
 0  0  0  0
 0  0  0  0

 4 3
 s 0

 s 1

 s 2

 s 3

 4  5
 1
 2  3

 s 0  2  s 3

 s 0  2  s 3

 0
 0
 4  (15)

 QWLR (135 8 ) LP (0 8 ) QWLR (45 8 ) S  5
 1
 2  3

 1  0  0  2 1
 0  0  0  0
 0  0  0  0

 2 1  0  0  1
 4 3

 s 0

 s 1

 s 2

 s 3

 4  5
 1
 2  3

 s 0  2  s 3

 0
 0

 2 s 0  1  s 3

 4  (16)

 The device in Eq .  (14) transmits only left circularly polarized light ,  because the zeroth and
 third elements have equal magnitude and opposite sign ,  making it a left circular polarizer .
 However ,  the transmitted flux ( s 0  1  s 1 ) / 2 is the flux of horizontal linearly polarized light in
 the incident beam ,  making it a horizontal linear analyzer .  Similarly ,  the transmitted flux
 from the example in Eq .  (15) ,  ( s 0  2  s 3 ) / 2 ,  is the flux of left circularly polarized light in the
 incident beam ,  making this combination a left circular analyzer .  The final polarizer makes
 the device in Eq .  (15) a horizontal linear polarizer ,  although this is not the standard
 Mueller matrix for horizontal linear polarizers found in tables .  Thus an analyzer for a state
 does not necessarily transmit the state ;  its transmitted flux is proportional to the amount
 of the analyzed state in the incident beam .  Examples in Eqs .  (14) and (15) are referred to
 as inhomogeneous polarization elements because the eigenpolarizations are not orthogo-
 nal ,  and the characteristics of the device are dif ferent for propagation in opposite
 directions .  The device in Eq .  (16) is both a left circular polarizer and a left circular
 analyzer ;  it has the same characteristics for propagation in opposite directions ,  and is
 referred to as a homogeneous left circular polarizer .

 2 2 . 2 0  LIGHT - MEASURING POLARIMETERS

 This section presents a general formulation of the measurement and data reduction
 procedure for a polarimeter intended to measure the state of polarization of a light beam .
 Similar developments are found in Theil (1976) ,  Azzam (1990) ,  and Stenflo (1991) .  A
 survey of light-measuring polarimeter configurations is found in the Handbook ,  Chap .  27 ,
 ‘‘Ellipsometry’’ (Azzam ,  1994) .

 Stokes vectors and related polarization parameters for a beam are determined by
 measuring the flux transmitted through a set of polarization analyzers .  Each analyzer
 determines the flux of one polarization component in the incident beam .  Since a
 polarization analyzer does not contain ideal polarization elements ,  the analyzer must be
 calibrated ,  and the calibration data used in the data reduction .  This section describes data
 reduction algorithms for determining Stokes vectors which assume arbitrary analyzers ;  the
 algorithms allow for general calibration data to be used .  Each analyzer is used to measure
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 one polarization component of the incident light .  The measured values are related to the
 incident Stokes vector and the analyzers by the polarimetric measurement equation .  A set
 of linear equations ,  the data reduction equations ,  is then solved to determine the Stokes
 parameters for the beam .

 Henceforth ,  the ‘‘polarization analyzer’’ is considered as the polarization elements used
 for analyzing the polarization state together with any and all optical elements (lenses ,
 mirrors ,  etc . ) ,  and the detector contained in the polarimeter .  The polarization ef fects from
 all elements are included in the measurement and data reduction procedures for the
 polarimeter .  A polarization analyzer is characterized by an  analyzer  y  ector  containing four
 elements and is defined in a manner analogous to a Stokes vector .  Let  P H   be flux
 measurement taken by the detector (the current or voltage generated) when one unit of
 horizontally polarized light is incident .  Similarly  P V  ,  P 4 5  ,  P 1 3 5  ,  P R  ,  and  P L   are the detector’s
 flux measurements for the corresponding incident polarized beams with unit flux .  Then the
 analyzer vector  A  is

 A  5 3
 a 0

 a 1

 a 2

 a 3

 4  5 3
 P H  1  P V

 P H  2  P V

 P 4 5  2  P 1 3 5

 P R  2  P L

 4  (17)

 Note that  P H  1  P V  5  P 4 5  1  P 1 3 5  5  P R  1  P L .  The response  P  of the polarization analyzer to an
 arbitrary polarization state  S  is the dot product

 P  5  A  ?  S  5  a 0 s 0  1  a 1 s 1  1  a 2 s 2  1  a 3 s 3  (18)

 A Stokes vector measurement consists of series of measurements taken with a set of
 polarization analyzers .  Let the total number of analyzers be  Q ,  with each analyzer  A q
 specified by index  q  5  0 ,  1 ,  .  .  .  ,  Q  2  1 .  We assume the incident Stokes vector is the same
 for all polarization analyzers and strive to ensure this in our experimental setup .  The  q th
 measurement generates an output  P q  5  A q  ?  S .  A polarimetric measurement matrix  W  is
 defined as a four-by- Q  matrix with the  q th row containing the analyzer vector  A q  ,

 W  5 3
 a 0 , 0

 a 1 , 0

 ? ? ?
 a Q 2 1 , 0

 a 0 , 1

 a 1 , 1

 a Q 2 1 , 1

 a 0 , 2

 a 1 , 2

 a Q 2 1 , 2

 a 0 , 3

 a 1 , 3

 a Q 2 1 , 3

 4  (19)

 The  Q  measured flux values are arranged in a measurement vector  P  5
 [ P 0  ,  P 1  ,  .  .  .  ,  P Q 2 1 ]

 T  ?  P  is related to  S  by the polarimetric measurement equation

 P  5 3
 P 0

 P 1

 ? ? ?
 P Q 2 1

 4  5  WS  5 3
 a 0 , 0

 a 1 , 0

 ? ? ?
 a Q 2 1 , 0

 a 0 , 1

 a 1 , 1

 a Q 2 1 , 1

 a 0 , 2

 a 1 , 2

 a Q 2 1 , 2

 a 0 , 3

 a 1 , 3

 a Q 2 1 , 3

 4 3
 s 0

 s 1

 s 2

 s 3

 4  (20)

 If  W  is accurately known ,  then this equation can be inverted to solve for the incident
 Stokes vector .  During calibration of the polarimeter ,  the principal objective is the
 determination of the matrix  W  or equivalent information regarding the states which the
 polarimeter analyzes at each of its analyzer settings .  However ,  systematic errors ,
 dif ferences between the calibrated and actual  W ,  will always be present .

 To calculate the incident Stokes vector from the data ,  the inverse of  W  is determined
 and applied to the measured data .  The measured value for the incident Stokes vector is
 designated  S m   to distinguish it from the actual  S .  In principle ,   S m   is related to the data by
 the polarimetric data reduction matrix  W 2 1 ,

 S m  5  W 2 1 P  (21)
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 Three considerations in the solution of this equation are the existence ,  rank ,  and
 uniqueness of the matrix inverse  W 2 1 .

 The simplest case occurs when four measurements are performed .  If  Q  5  4 linearly
 independent measurements are made ,   W  is of rank four ,  and the polarimetric measure-
 ment matrix  W  is nonsingular .  Then  W 2 1  exists and is unique .  Data reduction is performed
 by Eq .  20 and the polarimeter measures all four elements of the incident Stokes vector .

 The second case occurs when  Q  .  4 .  With more than four measurements ,   W  is not
 square ,   W 2 1  is not unique ,  and  S m   is overdetermined by the measurements .  In the absence
 of noise in the measurements ,  the dif ferent  W 2 1  would all yield the same value for  S m .
 Because noise is always present ,  the optimum  W 2 1  is desired .  The least squares estimate
 for  S m   utilizes the psuedoinverse  W 2 1

 P    of  W ,   W 2 1
 P  5  ( W T  W ) 2 1 W T .  The best estimate of  S  in

 the presence of random noise is

 S m  5  ( W T  W ) 2 1 W T  P  (22)

 The third case occurs when  W  is of rank three or less .  The optimal matrix inverse is the
 pseudoinverse .  However ,  only three or less of the Stokes vector elements can be
 determined from the data .  The polarimeter is referred to as ‘‘incomplete . ’’ Figure 11 in
 Chap .  27 ,  ‘‘Ellipsometry , ’’ in this Handbook ,  summarizes polarization element configura-
 tions for Stokes vector measurements listing the vector elements not determined by the
 incomplete configurations .

 2 2 . 2 1  SAMPLE - MEASURING POLARIMETERS FOR MEASURING MUELLER
 MATRIX ELEMENTS

 The polarization characteristics of a sample are characterized by its Mueller matrix .  This
 section describes the particulars of measuring Mueller matrix elements .  The section
 following contains a general formulation of Mueller matrix determination .  Since the
 Mueller matrix is a function of wavelength ,  angle of incidence ,  and location on the
 sample ,  these are assumed fixed .  Figure 1 is a block diagram of a sample-measuring
 polarimeter .  The polarization state generator (PSG) prepares the polarization states which
 are incident on a sample .  A beam of light exiting the sample is analyzed by the
 polarization state analyzer (PSA) and detected by a detector .

 The objective is to determine several elements of a sample Mueller matrix  M  through a
 sequence  q  5  0 ,  1 ,  .  .  .  ,  Q  2  1 of polarimetric measurements .  The polarization generator
 prepares a set of polarization states with a sequence of Stokes vectors  S q .  The Stokes
 vectors exiting the sample are  MS q .  These exiting states are analyzed by the  q th
 polarization state analyzer  A q ,  yielding the measured flux  P q  5  A T

 q MS q .  Each measured
 flux is assumed to be a linear function of the sample’s Mueller matrix elements .  From a set
 of polarimetric measurements ,  we develop a set of linear equations which can be solved for
 certain of the Mueller matrix elements .

 FIGURE 1  A sample-measuring polarimeter consists of a
 source ,  polarization state generator (PSG) ,  the sample ,  a
 polarization state analyzer (PSA) ,  and the detector .  ( After
 Chenault ,  1 9 9 2 . )
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 For example ,  consider a measurement performed with horizontal linear polarizers for
 both the generator and analyzer .  The measured flux depends on the Mueller matrix
 elements  m 0 0  ,  m 0 1  ,  m 1 0  ,  and  m 1 1  as follows :

 P  5  A T  MS  5  1 – 2 [1  1  0  0] 3
 m 0 0  m 0 1  m 0 2  m 0 3

 m 1 0  m 1 1  m 1 2  m 1 3

 m 2 0  m 2 1  m 2 2  m 2 3

 m 3 0  m 3 1  m 3 2  m 3 3

 4  1
 2  3

 1
 1
 0
 0
 4  5

 m 0 0  1  m 0 1  1  m 1 0  1  m 1 1

 4
 (23)

 As another example ,  consider measuring the Mueller matrix elements  m 0 0  ,  m 0 1  ,  m 1 0 ,
 and  m 1 1  using four measurements with ideal horizontal (H) and vertical (V) linear
 polarizers for the polarization state generators and analyzers .  The four measurements
 P 0  ,  P 1  ,  P 2 ,  and  P 3  are taken with (generator / analyzer) settings of (H / H) ,  (V / H) ,  (H / V) ,
 and (V / V) .  The combination of Mueller matrix elements measured for each of the four
 permutations of these polarizers are as follows :

 (24)
 P 0  5  ( m 0 0  1  m 0 1  1  m 1 0  1  m 1 1 ) / 4 ,  P 1  5  ( m 0 0  1  m 0 1  2  m 1 0  2  m 1 1 ) / 4

 P 2  5  ( m 0 0  2  m 0 1  1  m 1 0  2  m 1 1 ) / 4 ,  P 3  5  ( m 0 0  2  m 0 1  2  m 1 0  1  m 1 1 ) / 4

 These four equations are solved for the Mueller matrix elements as a function of the
 measured intensities ,  yielding

 3
 m 0 0

 m 0 1

 m 1 0

 m 1 1

 4  5 3
 P 0  1  P 1  1  P 2  1  P 3

 P 0  1  P 1  2  P 2  2  P 3

 P 0  2  P 1  1  P 2  2  P 3

 P 0  2  P 1  2  P 2  1  P 3

 4  (25)

 Other Mueller matrix elements are determined using other combinations of generator
 and analyzer states .  For example ,  the four matrix elements at the corners of a rectangle in
 the Mueller matrix  h m 0 0  ,  m 0 i  ,  m j 0  ,  m j i j   can be determined from four measurements using a
 Ú i -generator and  Ú j -analyzer .  For example ,  a right and left circularly polarizing generator
 and 45 8  and 135 8  polarizing analyzer will determine  h m 0 0  ,  m 0 2  ,  m 3 0  ,  m 3 2 j .

 In practice ,  the data reduction equations are far more complex than the above examples
 because many more measurements are involved ,  and especially because the polarization
 elements are not ideal .  The next section contains a method to sytematize the calculation of
 data reduction equations based on calibration data for the generator and analyzer .

 2 2 . 2 2  POLARIMETRIC MEASUREMENT EQUATION AND POLARIMETRIC
 DATA REDUCTION EQUATION

 This section develops equations which relate the measurements in a Mueller matrix
 polarimeter to the generator and analyzer states .  The algorithm can use either ideal or
 calibrated values for the Stokes vectors of the polarization generator and analyzer .  The
 data reduction equations then have the form of a straightforward matrix-vector
 multiplication on a data vector .  This method is an extension of the matrix data reduction
 methods presented under ‘‘Light-Measuring Polarimeters’’ on Stokes vector measurement .
 This method corrects for systematic errors in the generator and analyzer ,  provided these
 are characterized in the calibration .  A well-calibrated generator and analyzer are essential
 for accurate Mueller matrix measurements .

 A Mueller matrix polarimeter takes  Q  measurements identified by the index  q  5  0 ,
 1 ,  .  .  .  ,  Q  2  1 .  For the  q th measurement ,  the generator produces a beam with Stokes
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 vector  S q .  The beam exiting the sample is analyzed by the polarization analyzer with an
 analyzer vector  A q .  The measured flux  P q   is related to the sample Mueller matrix by

 P q  5  A T
 q MS q  5  [ a q , 0  a q , 1  a q , 2  a q , 3 ] 3

 m 0 0  m 0 1  m 0 2  m 0 3

 m 1 0  m 1 1  m 1 2  m 1 3

 m 2 0  m 2 1  m 2 2  m 2 3

 m 3 0  m 3 1  m 3 2  m 3 3

 4 3
 s q , 0

 s q , 1

 s q , 2

 s q , 3

 4
 5 O 3

 j 5 0
 O 3

 k 5 0
 a q , j m j , k s q , k  (26)

 This equation is now rewritten as a vector-vector dot product (Azzam ,  1978 ;  Goldstein ,
 1992) .  First ,  the Mueller matrix is flattened into a 16  3  1  Mueller  y  ector  M ¢  5
 [ m 0 0  m 0 1  m 0 2  m 0 3  m 1 0  ?  ?  ?  m 3 3 ]

 T .  A 16  3  1 polarimetric measurement vector  W q
 for the  q th measurement is defined as follows

 W q  5  [ w q , 0 0  w q , 0 1  w q , 0 2  w q , 0 3  w q , 1 0  ?  ?  ?  w q , 3 3 ]
 T

 5  [ a q , 0 s q , 0  a q , 0 s q , 1  a q , 0 s q , 2  a q , 0 s q , 3  a q , 1 s q , 0  ?  ?  ?  a q , 3 s q , 3 ]
 T  (27)

 where  w q , j k  5  a q , j s q , k .  The  q th measured flux from Eq .  (25) is rewritten as the dot product

 (28)

 a q , 0 s q , 0  m 0 , 0

 a q , 0 s q , 1  m 0 , 1

 a q , 0 s q , 2  m 0 , 2

 P q  5  W q  ?  M ¢  5
 a q , 0 s q , 3  m 0 , 3

 a q , 1 s q , 0  m 1 , 0

 a q , 1 s q , 1  m 1 , 1

 ? ? ?  ? ? ?
 a q , 3 s q , 3  m 3 , 3

C DC D
 The full sequence of measurements is described by the polarimetric measurement matrix
 W ,  defined as the  Q  3  16 matrix where the  q th row is  W q .  The polarimetric measurement
 equation relates the measurement vector  P  to the sample Mueller vector by a matrix-
 vector multiplication ,

 P  5  WM ¢  5 3
 P 0

 P 1

 ? ? ?
 P Q 2 1

 4  5 3
 w 0 , 0 0

 w 1 , 0 0

 ? ? ?
 w Q 2 1 , 0 0

 w 0 , 0 1

 w 1 , 0 1

 w Q 2 1 , 0 1

 ?  ?  ?

 ?  ?  ?

 ?  ?  ?

 w 0 , 3 3

 w 1 , 3 3

 w Q 2 1 , 3 3

 4 3
 m 0 0

 m 0 1

 ? ? ?
 m 3 3

 4  (29)

 If  W  contains sixteen linearly independent columns ,  all sixteen elements of the Mueller
 matrix can be determined .  Then ,  if  Q  5  16 ,  the matrix inverse is unique and the Mueller
 matrix elements are determined from the polarimetric data reduction equation  M ¢  5  W 2 1 P .
 More often ,   Q  .  16 ,  and  M ¢   is overdetermined .  The optimal (least-squares) polarimetric
 data reduction equation for  M ¢   uses the pseudoinverse  W 2 1

 P    of  W ,  Eq .  (21) where  W 2 1
 P    is a

 polarimetric data reduction matrix for the polarimeter .  The polarimetric data reduction
 equation is then

 M ¢  5  ( W T  W ) 2 1 W T  P  5  W 2 1
 P  P  (30)

 where  W 2 1
 P    operates on a set of measurements to estimate the Mueller matrix of the

 sample .
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 The advantages of this polarimetric measurement equation and polarimetric data
 reduction equation procedure are as follows .  First ,  this procedure does not assume that the
 set of states of polarization state generator and analyzer have any particular form .  For
 example ,  the polarization elements in the generator and analyzer do not need to be rotated
 in uniform angular increments ,  but can comprise an arbitrary sequence .  Second ,  the
 polarization elements are not assumed to be ideal polarization elements or have any
 particular imperfections .  If the Stokes vectors associated with the polarization generator
 and analyzer are determined through a calibration procedure ,  the ef fects of nonideal
 polarization elements are corrected in the data reduction .  Third ,  the procedure readily
 treats overdetermined measurement sequences (more than sixteen measurements for the
 full Mueller matrix) ,  providing a least-squares solution .  Finally ,  a matrix-vector form of
 data reduction is readily implemented and understood .

 The next two sections describe configurations of sample-measuring polarimeter with
 example data reduction matrices .

 2 2 . 2 3  DUAL ROTATING RETARDER POLARIMETER

 The dual rotating retarder Mueller matrix polarimeter is one of the most common Mueller
 polarimeters .  Figure 2 shows the configuration :  light from the source passes first through a
 fixed linear polarizer ,  then through a rotating linear retarder ,  the sample ,  a rotating linear
 retarder ,  and finally through a fixed linear polarizer .  In the most common configuration ,
 first described by Azzam (1978) ,  the polarizers are parallel ,  and the retarders are rotated in
 angular increments of five-to-one .  This five-to-one ratio encodes all 16 Mueller matrix
 elements onto the amplitudes and phases of 12 frequencies in the detected signal .  The
 detected signal is Fourier analyzed ,  and the Mueller matrix elements are calculated from
 the Fourier coef ficients .

 This polarimeter design has an important advantage :  the polarizers do not move .  The
 polarizer in the generator accepts only one polarization state from the source optics ,
 making the measurement immune to instrumental polarization from the source optics .  If
 the polarizer did rotate ,  and if the beam incident on it were elliptically polarized ,  a
 systematic modulation of intensity would be introduced which would require compensa-
 tion .  Similarly ,  the polarizer in the analyzer does not rotate ;  only one polarization state is
 transmitted through the analyzing optics and onto the detector .  Any diattenuation in the
 analyzing optics and any polarization sensitivity in the detector will not af fect the
 measurements .

 The data reduction matrix is presented here for a polarimeter with ideal linear
 retarders with arbitrary retardances  d  1  in the generator and  d  2  in the analyzer .  Optimal
 values for the retardances are near  l  / 4 or  l  / 3 ,  depending which characteristics of the

 FIGURE 2  The dual rotating retarder polarimeter consists of a
 source ,  a fixed linear polarizer ,  a retarder which rotates in steps ,  the
 sample ,  a second retarder which rotates in steps ,  a fixed linear
 polarizer ,  and the detector .  This polarimeter measures the full
 Mueller matrix .  It accepts only one polarization state from the
 source ,  and transmits only one polarization state to the detector .
 ( After Chenault ,  1 9 9 2 . )
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 Mueller matrix are chosen for a figure of merit .  If  d  1  5  d  2  5  π  rad ,  the last row and column
 of the sample Mueller matrix are not measured .   Q  measurements are taken ,  described by
 index  q  5  0 ,  1 ,  .  .  .  ,  Q  2  1 .  The angular orientations of the two retarders for measurement
 q  are  θ q , 1  5  q 180 8 / Q  and  θ q , 2  5  5 q 180 8 / Q .  The angular increment between settings of the
 generator retarder is  D θ  5  180 8 / Q .  The data reduction matrix is a 16  3  Q  matrix which
 multiplies a  Q  3  1 data vector  P ,  yielding the sample Mueller vector  M ¢  .  Table 2 lists the
 equations for the elements in each row  q  of the data reduction matrix assuming ideal
 polarization elements (Chenault ,  Pezzaniti ,  and Chipman ,  1992) .

 Several data reduction methods have been published to account for additional
 imperfections in the polarization elements ,  leading to considerably more elaborate
 expressions than those presented here .  Hauge (1978) developed an algorithm to
 compensate for the linear diattenuation and linear retardance of the retarders .  Goldstein
 and Chipman (1990) treat five errors ,  the retardances of the two retarders ,  and orientation
 errors of the two retarders and one of the polarizers ,  in a small angle approximation good
 for small errors .  Chenault ,  Pezzaniti ,  and Chipman (1992) extended this method to larger
 errors .

 2 2 . 2 4  INCOMPLETE SAMPLE - MEASURING POLARIMETERS

 Incomplete sample-measuring polarimeters do not measure the full Mueller matrix of a
 sample and thus provide incomplete information regarding the polarization properties of a
 sample .  Often the full Mueller matrix is not needed .  For example ,  many birefringent
 samples have considerable linear birefringence and minuscule amounts of the other forms
 of polarization .  The magnitude of the birefringence can be measured ,  assuming all the
 other polarization ef fects are small ,  using much simpler configurations than a Mueller
 matrix polarimeter ,  such as the circular polariscope (Theocaris and Gdoutos ,  1979) .
 Similarly ,  homogeneous and isotropic interfaces ,  such as dielectrics ,  metals ,  and thin films ,
 should only display linear diattenuation and linear retardance aligned with the  s  2  p
 planes .  These interfaces do not need characterization of their circular diattenuation and
 circular retardance .  Many categories of ellipsometer will characterize such samples without
 providing the full Mueller matrix (Azzam and Bashara ,  1977 ,  1987 ;  Azzam ,  1993) .

 2 2 . 2 5  DUAL ROTATING POLARIZER POLARIMETER

 This section describes the dual rotating polarizer polarimeter ,  a common polarimetric
 configuration capable of measuring nine Mueller matrix elements (Collins and Kim ,  1990) .
 Figure 3 shows the arrangement of polarization elements in the polarimeter .  Light from
 the source passes through a linear polarizer whose orientation  θ  1  is adjustable .  This

 FIGURE 3  The dual rotating polarizer polarimeter consists
 of a source ,  a linear polarizer which rotated in steps ,  the
 sample ,  a second linear polarizer with a stepped angular
 orientation ,  and the detector .  ( After Chenault ,  1 9 9 2 . )
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 TABLE 2  Elements of the Polarimetric Data Reduction Matrix for
 the Dual Rotating Retarder Polarimeter

 w q , 0  5  1

 w q , 1  5  cos 2  S d  1

 2  D  1  sin 2  S d  1

 2  D  cos  (4 q  D θ  )

 w q , 2  5  sin 2  S d  1

 2  D  sin  (4 q  D θ  )

 w q , 3  5  sin  ( d  1 )  sin  (2 q  D θ  )

 w q , 4  5  cos 2  S d  2

 2  D  1  sin 2  S d  2

 2  D  cos  (20 q  D θ  )

 w q , 5  5  cos 2  S d  1

 2  D  cos 2  S d  2

 2  D  1  sin 2  S d  1

 2  D  cos 2  S d  2

 2  D  cos  (4 q  D θ  )

 1  cos 2  S d  1

 2  D  sin 2  S d  2

 2  D  cos  (20 q  D θ  )

 1
 1
 2

 sin 2  S d  1

 2  D  sin 2  S d  2

 2  D (cos  (16 q  D θ  )  1  cos  (24 q  D θ  ))

 w q , 6  5  sin 2  S d  1

 2  D  cos 2  S d  2

 2  D  sin  (4 q  D θ  )

 1
 1
 2

 sin 2  S d  1

 2  D  sin 2  S d  2

 2  D ( 2 sin  (16 q  D θ  )  1  sin  (24 q  D θ  ))

 w q , 7  5  sin  ( d  1 )  cos 2  S d  2

 2  D  sin  (2 q  D θ  )

 1
 1
 2

 sin  ( d  1 )  sin 2  S d  2

 2  D ( 2 sin  (18 q  D θ  )  1  sin  (22 q  D θ  ))

 w q , 8  5  sin 2  S d  2

 2  D  sin  (20 q  D θ  )

 w q , 9  5  cos 2  S d  1

 2  D  sin 2  S d  2

 2  D  sin  (20 q  D θ  )

 1
 1
 2

 sin 2  S d  1

 2  D  sin 2  S d  2

 2  D (sin  (16 q  D θ  )  1  sin  (24 q  D θ  ))

 w q , 1 0  5
 1
 2

 sin 2  S d  1

 2  D  sin 2  S d  2

 2  D (cos  (16 q  D θ  )  2  cos  (24 q  D θ  ))

 w q , 1 1  5
 1
 2

 sin  S d  1

 2  D  sin 2  S d  2

 2  D (cos  (18 q  D θ  )  2  cos  (22 q  D θ  ))

 w q , 1 2  5  2 sin  ( d  2 )  sin  (10 q  D θ  )

 w q , 1 3  5  2 cos 2  S d  1

 2  D  sin  ( d  2 )  sin  (10 q  D θ  )

 2
 1
 2

 sin 2  S d  1

 2  D  sin  ( d  2 )(sin  (6 q  D θ  )  1  sin  (14 q  D θ  ))

 w q , 1 4  5  2
 1
 2

 sin 2  S d  1

 2  D  sin  ( d  2 )(cos  (6 q  D θ  2  cos  (14 q  D θ  ))

 w q , 1 5  5  2
 1
 2

 sin  ( d  1 )  sin  ( d  2 )(cos  (8 q  D θ  )  2  cos  (12 q  D θ  ))
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 linearly polarized light interacts with the sample and is analyzed by a second linear
 polarizer whose orientation  θ  2  is also adjustable .  This polarimeter is incomplete because
 measurement of the last column of the Mueller matrix requires elliptical states from the
 polarization generator .  Similarly ,  elliptical analyzers are required in the polarization
 analyzer to measure the bottom row of the Mueller matrix .

 The polarimetric data reduction matrix which follows is for a particular 16-
 measurement sequence .  The most common defects of polarizers have been taken into
 consideration :  less than ideal diattenuation ,  and transmission of less than unity .  The
 polarizers are characterized by  T m a x ,  the maximum intensity transmittance for a single
 polarizer ,  and  T m i n ,  the minimum intensity transmittance ,  which are associated with
 orthogonal linear states .  Let  a  5  (16( T m a x  1  T m i n ) 2 ) 2 1 ,   b  5  (8( T  2

 max  2  T  2
 min )) 2 1  and  c  5

 (4( T m a x  2  T m i n ) 2 ) 2 1 .  Sixteen measurements are acquired with the generator polarizer angle
 θ q , 1   and the analyzer polarizer angle  θ q , 2  oriented as follows :   θ q , 1  5
 (0 8 ,  0 8 ,  0 8 ,  0 8 ,  45 8 ,  45 8 ,  45 8 ,  45 8 ,  90 8 ,  90 8 ,  90 8 ,  90 8 ,  135 8 ,  135 8 ,  135 8 ,  135 8 ) ,  θ q , 2  5  (0 8 ,  45 8 ,  90 8 ,
 135 8 ,  0 8 ,  45 8 ,  90 8 ,  135 8 ,  0 8 ,  45 8 ,  90 8 ,  135 8 ,  0 8 ,  45 8 ,  90 8 ,  135 8 ) .  Since only nine Mueller matrix
 elements are measured ,  a nine-element Mueller vector is used :

 M ¢  5  [ m 0 0  m 0 1  m 0 2  m 1 0  m 1 1  m 1 2  m 2 0  m 2 1  m 2 2 ]
 T  (31)

 The data reduction matrix  W 2 1
 P    which operates on the 16-element measurement vector  P

 yielding  M ¢   is

 a  a  a  a  a  a  a  a  a  a  a  a  a  a  a  a

 b  b  b  b  0  0  0  0  2 b  2 b  2 b  2 b  0  0  0  0
 0  0  0  0  b  b  b  b  0  0  0  0  2 b  2 b  2 b  2 b

 b  0  2 b  0  b  0  2 b  0  b  0  2 b  0  b  0  2 b  0
 W 2 1

 P  5  c  0  2 c  0  0  0  0  0  2 c  0  c  0  0  0  0  0
 0  0  0  0  c  0  2 c  0  0  0  0  0  2 c  0  c  0
 0  b  0  2 b  0  b  0  2 b  0  b  0  2 b  0  b  0  2 b

 0  c  0  2 c  0  0  0  0  0  2 c  0  c  0  0  0  0
 0  0  0  0  0  c  0  2 c  0  0  0  0  0  2 c  0  c

C D
 (32)

 The source is assumed to be unpolarized in this equation .  Similarly ,  the detector is
 assumed to be polarization-insensitive .  When this is not the case ,  the data reduction matrix
 is readily generalized to incorporate these and other systematic ef fects following the
 method shown under ‘‘Polarimetric Measurement Equation and Polarimetric Data
 Reduction Equation . ’’

 2 2 . 2 6  NONIDEAL POLARIZATION ELEMENTS

 For use in polarimetry ,  polarization elements require a level of characterization beyond
 what is normally provided by vendors .  For retarders ,  usually only the linear retardance is
 specified .  For polarizers ,  usually only the two principal transmittances or the extinction
 ratio is given .  For polarization elements used in critical applications such as polarimetry ,
 this level of characterization is inadequate .  In this section ,  defects of polarization elements
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 are described ,  and the Mueller calculus is recommended as the most appropriate measure
 of performance .

 2 2 . 2 7  POLARIZATION PROPERTIES OF POLARIZATION ELEMENTS

 For ideal polarization elements ,  the polarization properties are readily defined .  For real
 polarization elements ,  the precise description of the polarization properties is more
 complex .  The handbook chapter ‘‘Polarizers’’ (Chap .  3) contains an extensive description
 of the various forms of polarizers and retarders and their characteristics (Bennett 1993) .
 Polarization elements such as polarizers ,  retarders ,  and depolarizers have three general
 polarization properties :  diattenuation ,  retardance ,  and depolarization ,  and a typical
 element displays some amount of all three .  Diattenuation arises when the intensity
 transmittance of an element is a function of the incident polarization state (Chipman ,
 1989a) .  The diattenuation  D  of a device is defined in terms of the maximum  T m a x  and
 minimum  T m i n  intensity transmittances ,

 D  5
 T m a x  2  T m i n

 T m a x  1  T m i n
 (33)

 for an ideal polarizer ,   D  5  1 .  When  D  5  0 ,  all incident polarization states are transmitted
 with equal loss ,  although the polarization states in general change upon transmission .  The
 quality of a polarizer is often expressed in terms of the related quantity ,  the extinction
 ratio  E ,

 E  5
 T m a x

 T m i n
 5

 1  1  D
 1  2  D

 (34)

 Retardance is the phase change a device introduces between its eigenpolarizations
 (eigenstates) .  For a birefringent retarder with refractive indices  n 1  and  n 2 ,  and thickness  t ,
 the retardance  d   expressed in radians is

 d  5
 2 π  ( n 1  2  n 2 ) t

 l
 (35)

 Depolarization describes the coupling by a device of incident polarized light into
 depolarized light in the exiting beam .  For example ,  depolarization occurs when light
 transmits through milk or scatters from clouds .  Multimode optical fibers generally
 depolarize the light .  Depolarization is intrinsically associated with scattering and a loss of
 coherence in the polarization state .  A small amount of depolarization is probably
 associated with the scattered light from all optical components .  A depolarization
 coef ficient  e  can be defined as the fraction of unpolarized power in the exiting beam when
 polarized light is incident .   e  is generally a function of the incident polarization state .

 2 2 . 2 8  COMMON DEFECTS OF POLARIZATION ELEMENT

 Here we list some common defects found in real polarization elements .

 1 .  Polarizers have nonideal diattenuation since  T m a x  ,  1 and  T m i n  .  0 (Bennett ,  1993 ;
 King and Talim ,  1971) .
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 2 .  Retarders have the incorrect retardance .  Thus ,  there will be some deviation from a
 quarter-wave or a half-wave of retardance ,  for example ,  because of fabrication errors or a
 change in wavelength .

 3 .  Retarders usually have some diattenuation because of dif ferences in absorption
 coef ficients (dichroism) and due to dif ferent transmission and reflection coef ficients at the
 interfaces .  For example ,  birefringent retarders have diattenuation due to the dif ference of
 the Fresnel coef ficients at normal incidence for the two eigenpolarizations since  n 1  ?  n 2 .
 This can be reduced by antireflection coatings .

 4 .  Polarizers usually have some retardance ;  there is a dif ference in optical path length
 between the transmitted (principal) eigenpolarization and the small amount of the
 extinguished (secondary) eigenpolarization .  For example ,  sheet polarizers and wire-grid
 polarizers show substantial retardance when the secondary state is not completely
 extinguished .

 5 .  The polarization properties vary with angle of incidence ;  for example ,  Glan-
 Thompson polarizers polarize over only a 4 8  field of view (Bennett ,  1994) .  Birefringent
 retarders commonly show a quadratic variation of retardance with angle of incidence
 which increases along one axis and decreases along the orthogonal axis (Title ,  1979 ;  Hale
 and Day ,  1988) .  For polarizing beam-splitter cubes ,  the axis of linear polarization rotates
 for incident light out of its normal plane (the plane defined by the face normals and the
 beam-splitting interface normal) .

 7 .  The polarization properties vary with wavelength ;  for example ,  for simple retarders
 made from a single birefringent plate ,  the retardance varies approximately linearly with
 wavelength .

 8 .  For polarizers ,  the  accepted state  and the  transmitted state  can be dif ferent .  Consider a
 polarizing device formed from a linear polarizer oriented at 0 8  followed by a linear
 polarizer oriented at 2 8 .  Incident light linearly polarized at 0 8  has the highest transmittance
 for all possible polarization states and is the accepted state .  The corresponding exiting
 beam is linearly polarized at 2 8 ,  which is the only state exiting the device .  In this example ,
 the transmitted state is also an eigenpolarization .  This ‘‘rotation’’ between the accepted
 and transmitted states of a polarizer frequently occurs ,  for example ,  when the crystal axes
 are misaligned in a birefringent polarizing prism assembly such as a Glan-Thompson
 polarizer .

 9 .  A nominally ‘‘linear’’ element may be slightly elliptical (have elliptical eigenpolariza-
 tions) .  For example ,  a quartz linear retarder with the crystal axis misaligned becomes an
 elliptical retarder .  Similarly a circular element may be slightly elliptical .  For example ,  an
 (inhomogeneous) circular polarizer formed from a linear polarizer followed by a
 quarter-wave linear retarder at 45 8  [see Eq .  (14)] becomes an elliptical polarizer as the
 retarder’s fast axis is rotated .

 10 .  The eigenpolarizations of the polarization element may not be orthogonal ;  i . e .,  a
 polarizer may transmit linearly polarized light at 0 8  without change of polarization while
 extinguishing linearly polarized light oriented at 88 8 .  Such a polarization element is
 referred to as  inhomogeneous  (Shurclif f ,  1962 ;  Lu and Chipman ,  1992) .  Sequences of
 polarization elements ,  such as optical isolator assemblies ,  often are inhomogeneous .  The
 circular polarizer in Eq .  14 is inhomogeneous .

 11 .  A polarization element may depolarize ,  coupling polarized light into unpolarized
 light .  A polarizer or retarder with a small amount of depolarization ,  when illuminated by a
 completely polarized beam ,  will have a small amount of unpolarized light in the
 transmitted beam .  Such a transmitted beam can no longer be extinguished by an ideal
 polarizer .  Depolarization results from fabrication errors such as surface roughness ,  bulk
 scattering ,  random strains and dislocations ,  and thin-film microstructure .

 12 .  Multiply reflected beams and other ‘‘secondary’’ beams may be present with
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 undesired polarization properties .  For example ,  the multiply reflected beams from a
 birefringent plate have various values for their retardance .  Antireflection coatings will
 reduce this ef fect in one waveband ,  but may increase these problems with multiple
 reflections in other wavebands .

 The preceding list of polarization element defects is by no means comprehensive .  It
 should serve as a warning to those with demanding applications for polarization elements .
 In particular ,  the performance of polarizing beam-splitting cubes have been found to be
 quite dif ferent from the ideal (Pezzaniti and Chipman ,  1991) .

 2 2 . 2 9  THE MUELLER MATRIX FOR POLARIZATION COMPONENT
 CHARACTERIZATION

 The Mueller matrix provides the full characterization of a polarization element (Shurclif f ,
 1962 ;  Azzam and Bashara ,  1977) .  From the Mueller matrix ,  all of the performance defects
 listed previously and more are specified .  Thus ,  when one is using polarization elements in
 critical applications such as polarimetry ,  it is highly desirable that the Mueller matrix of the
 elements be known .  This is analogous to having the interferogram of a lens to ensure that
 it is of suitable quality for incorporation into a critical imaging system .

 The optics community has been very slow to adopt Mueller matrices for the testing of
 optical components and optical systems ,  delaying a broad understanding of how real
 polarization elements actually perform .  An impediment to the widespread acceptance of
 Mueller matrices for polarization element qualification has been that the polarization
 properties associated with a Mueller matrix (the diattenuation ,  retardance ,  and depolariza-
 tion) are not easily ‘‘extracted’’ from the Mueller matrix .  Thus ,  while the operational
 definition of the Mueller matrix ,  Eq .  (10) ,  is straightforward ,  determining the diattenua-
 tion ,  retardance ,  and depolarization from an experimentally determined Mueller matrix is
 a complex process (Gil and Bernabeau ,  1987) .  This is described later in this chapter .

 The following matrix element pairs indicate the presence of the various forms of
 diattenuation and retardance :

 3
 0
 a

 b

 c

 a

 0
 d

 e

 b

 2 d

 0
 f

 c

 2 e

 2 f

 0
 4  (36)

 Each pair of elements is related to the following properties :

 a  linear diattenuation oriented at 0 8  or 90 8

 b  linear diattenuation oriented at 45 8  or 135 8

 c  circular diattenuation
 d  linear retardance oriented at 0 8  or 90 8

 e  linear retardance oriented at 45 8  or 135 8

 f  circular retardance

 For small amounts of these properties ,  the Mueller matrix elements indicated are linear in
 the diattenuation or retardance .  Other degrees of freedom in the Mueller matrix ,
 antisymmetry in  a ,   b ,  or  c  or symmetry in  d ,  e ,  or  f  ,  indicate the presence of depolarization
 and inhomogeneity .
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 2 2 . 3 0  APPLICATIONS OF POLARIMETRY

 Polarimetry has found application in nearly all areas of science and technology with several
 tens of thousands of papers detailing various applications .  The following summarizes a few
 of the principal applications and introduces some of the books ,  reference works ,  and
 review papers which provide gateways to the various applications .

 Ellipsometry

 Ellipsometry is the application of polarimetry for determining the optical properties of
 surfaces and interfaces .  Example applications are refractive indices and thin-film thickness
 determination ,  and investigations of processes at surfaces such as contamination and
 corrosion .  In this Handbook ,  Chap .  27 ,  ‘‘Ellipsometry , ’’ by Azzam treats the fundamen-
 tals .  A more extensive treatment is found in the textbook by Azzam and Bashara (1979
 and 1986) which presents the mathematical fundamentals of polarization ,  determination of
 the properties of thin films ,  polarimetric instrumentation ,  and a myriad of applications .
 Azzam (1991) is a recent collection of historical papers .  Calculation of the polarization
 properties of thin films is given a detailed presentation by Dobrowolski (1994) in Chap .  43
 of Vol .  I of this Handbook ,  and also in the text by Macleod (1986) .

 Spectropolarimetry for Chemical Applications

 Spectropolarimeters are spectrometers which incorporate polarimeters for the purpose of
 measuring polarization properties as a function of wavelength .  Whereas spectrometers
 measure transmission or reflectance as a function of wavelength ,  a spectropolarimeter
 also may measure dichroism (diattenuation) ,  linear birefringence (linear retardance) ,
 optical activity (circular retardance) ,  or depolarization ,  all as spectra .  In physical
 chemistry ,  spectra of the linear dichroism and the linear retardance of a molecule permit
 the determination of the orientation of the electric dipole moment in three dimensions .
 Similarly ,  circular dichroism and optical activity provide information on the orbital
 magnetic moment .  Schellman and Jensen (1987) and Johnson (1987) provide comprehen-
 sive surveys of the spectropolarimetry of oriented molecules and interpretation of the data
 in terms of molecular structure .  The volumes by Michl and Thulstrup (1986) ,  Samori and
 Thulstrup (eds . ) (1988) ,  and by Kliger ,  Lewis ,  and Randall (1990) cover the basics of
 polarimetry with an emphasis on spectroscopy with polarized light and interpretation of
 the resulting data .  Texts and reviews on optical activity include the following :  Jirgensons
 (1973) ,  Mason (ed . ) (1978) ,  Mason (1982) ,  Thulstrup (1982) ,  Barron (1986) ,  and Laktakia
 (1990) .  Chenault (1992) contains a survey of spectropolarimetric instrumentation .

 Remote Sensing

 Polarimetry has become an important technique in remote sensing ,  since it augments the
 limited information available from spectrometric techniques .  Polarization in the scattered
 light from the earth has many subtle characteristics .  The sunlight which illuminates the
 earth is essentially unpolarized ,  but the scattered light has a surprisingly large degree of
 polarization ,  which is mostly linear polarization (Egan ,  1985 ;  Konnen ,  1985 ;  Coulson ,  1988 ;
 Coulson ,  1989 ;  Egan ,  1992) .  Visible light scattered from forest canopy ,  cropland ,  meadows ,
 and similar features frequently has a degree of polarization of 20 percent or greater in the
 visible (Curran ,  1982 ;  Duggin ,  1989) .  Light reflecting from mudflats and water often has a
 degree of polarization of 50 percent or higher ,  particularly for light incident near
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 Brewster’s angle .  Light scattered from clouds is nearly unpolarized (Konnen ,  1985 ;
 Coulson ,  1988) .  The magnitude of the degree of linear polarization depends on many
 variables ,  including the angle of incidence ,  the angle of scatter ,  the wavelength ,  and the
 weather .  The polarization from a site varies from day to day even if the angles of incidence
 and scatter remain the same ;  these variations are caused just by changes in the earth’s
 vegetation ,  cloud cover ,  humidity ,  rain ,  and standing water .  Polarization is complex to
 interpret but it conveys a great deal of useful information .

 Astronomical Polarimetry

 The polarization of light from astronomical bodies conveys considerable information
 regarding their physical state—information that generally cannot be acquired by any other
 means .  Gehrels (1974) compiles information regarding the polarization of plants ,  stars ,  and
 other astronomical objects .  Polarimetry is the principle technique for determining solar
 magnetic fields .  Solar vector magnetographs are imaging polarimeters combined with
 narrowband tunable spectral filters which measure Zeeman splitting in magnetically active
 ions in the solar atmosphere ,  from which the magnetic fields can be determined .  November
 (1991) is a recent survey of instrumentation and ongoing measurement programs for solar
 magnetic field study .

 Polarization Light Scattering

 Polarization light scattering is the application of polarimetry to scattered light (Van de
 Hulst ,  1957 ;  Stover ,  1990) .  The scattering characteristics of a sample are generally
 described by its bidirectional reflectance distribution function ,   BRDF  ( a  ,  b  ,  g  ,  d  ,  l ) ,  which
 is the ratio of the scattered flux in a particular direction ( g  ,  d  ) to the flux of an incident
 beam from direction ( a  ,  b  ) .  The  BRDF  function contains no polarization information ,
 but is the  m 0 0  element of the Mueller matrix relating the incident and scattered beams .  The
 BRDF  can be generalized to a Mueller bidirectional reflectance distribution function ,  or
 MBRDF ( a  ,  b  ,  g  ,  d  ,  l ) ,  which is the Mueller matrix relating arbitrary incident and
 scattered beams .  Scattered light is often a sensitive indicator to surface conditions ;  a small
 amount of surface roughness may reduce the specular power by less than a percent while
 increasing the scattered power by orders of magnitude .  The retardance ,  diattenuation ,  and
 depolarization of the scattered light similarly provide sensitive indicators of light-
 scattering conditions ,  such as uniformity of refractive index ,  orientation of surface defects ,
 texture ,  strain and birefringence at an interface ,  subsurface damage ,  coating microstruc-
 ture ,  and the degree of multiple scattering .

 Optical and Polarization Metrology

 Polarimetry is useful in optical metrology for measuring the instrumental polarization of
 optical systems and for characterizing optical and polarization components .  Optical
 systems ,  both common and exotic ,  modify the polarization state of light due to the
 reflections ,  refractions ,  and other interactions with optical materials .  Each ray path
 through the optical system can be characterized by its polarization matrix (Chipman ,
 1989a ;  Chipman ,  1989b) .  Polarization ray tracing is the technique of calculating the
 polarization matrices for ray paths from the optical and coating prescriptions (Waluschka ,
 1989 ;  Bruegge ,  1989 ;  Wolf f and Kurlander ,  1990) .  Dif fraction image formation of
 polarization-aberrated beams is then handled by vector extensions to dif fraction theory
 (Kuboda and Inoue ̀  ,  1959 ;  Urbanczyk ,  1984 ;  Urbanczyk ,  1986 ;  McGuire and Chipman ,
 1990 ;  McGuire and Chipman ,  1991 ;  Mansuripur ,  1991) .  Polarimeters ,  particularly imaging
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 polarimeters ,  are used to measure the Mueller matrices of ray paths through optical
 systems determining the polarization aberrations .  These polarization aberrations fre-
 quently have the same functional forms as the geometrical aberrations ,  since they arise
 from similar geometrical considerations (Chipman ,  1987 ;  McGuire and Chipman ,  1987 ,
 1989 ,  1990a ,  1990b ,  1991 ;  Hansen ,  1988 ;  Chipman and Chipman ,  1989) .  Several con-
 ferences have surveyed these areas (Chipman ,  1988 ;  Chipman ,  1989c ;  Goldstein and
 Chipman ,  1992) .

 Radar Polarimetry

 Polarimetric measurements are a standard and highly evolved technique in radar with
 broad application (Poelman and Guy ,  1985 ;  Holm ,  1987 ;  van Zyl and Zebker ,  1990) .
 Although radar is outside the scope of this handbook ,  several references to the radar
 literature are included since the optical community can greatly benefit from advances in
 radar polarimetry .  The text by Mott (1992) develops the polarization properties of
 antennas and the techniques of radar polarimetry .  Fundamental analyses of the Mueller
 matrix have been performed by Huynen (1965) and Kennaugh (1951) ,  both of which have
 found broad application in the interpretation of radar polarization signatures .  Morris and
 Chipman (eds . ) (1990) and Boerner and Mott (eds . ) (1992) are proceedings from meetings
 specifically intended to provide an exchange between the optical polarimetry and radar
 polarimetry communities .

 2 2 . 3 1  INTERPRETATION OF MUELLER MATRICES

 The Mueller matrix is defined as a matrix which transforms incident Stokes vectors into
 exiting Stokes vectors with each element seen as a coupling between corresponding Stokes
 vector elements .  Despite this simple and elegant definition ,  the polarization properties
 associated with the Mueller matrix—the diattenuation ,  retardance ,  and depolarization—
 are not readily apparent from the matrix for two reasons .  First ,  the Stokes vector has an
 unusual coordinate system in which the dif ferent elements do not represent orthogonal
 polarization components .  Instead ,  positive and negative values on each component
 separately represent orthogonal polarization components .  Second ,  the phenomenon of
 depolarization greatly complicates the matrix properties .  It is not possible to analyze real
 arbitrary Mueller matrices measured by polarimeters without considering three tricky
 topics :  physical realizability ,  depolarization ,  and inhomogeneity .

 2 2 . 3 2  DIATTENUATION AND POLARIZATION SENSITIVITY

 The intensity transmittance  T  for a given matrix  M  and incident polarization state  S  is
 defined as the ratio of exiting flux  s 9 0  to incident flux  s 0  ,

 T  ( MS )  5
 s 9 0

 s 0
 5

 m 0 0 s 0  1  m 0 1 s 1  1  m 0 2 s 2  1  m 0 3 s 3

 s 0
 (37)

 The intensity transmittance averaged over all incident polarization states is  T a v g  5  m 0 0 .  The
 maximum  T m a x  and minimum  T m i n  intensity transmittances are

 T m a x  5  m 0 0  1  4 m 2
 01  1  m 2

 02  1  m 2
 03 ,  T m i n  5  m 0 0  2  4 m 2

 01  1  m 2
 02  1  m 2

 03  (38)
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 and are associated with the unnormalized incident states

 S m a x  5 3
 4 m 2

 01  1  m 2
 03  1  m 2

 03

 m 0 1

 m 0 2

 m 0 3

 4  S m i n  5 3
 4 m 2

 01  1  m 2
 03  1  m 2

 03

 2 m 0 1

 2 m 0 2

 2 m 0 3

 4  (39)

 The incident Stokes vectors of maximum  S m a x  and minimum  S m i n  intensity transmittance
 are always orthogonal .  The term  diattenuation  refers to the two attenuations associated
 with these two orthogonal states .  The diattenuation  D ( M ) of a Mueller matrix is a measure
 of the variation of intensity transmittance with incident polarization state ,

 D ( M )  5
 T m a x  2  T m i n

 T m a x  1  T m i n
 5

 4 m 2
 01  1  m 2

 02  1  m 2
 03

 m 0 0
 (40)

 When  D  5  1 ,  the device is an ideal analyzer ;  it completely blocks one polarization
 component of the incident light ,  and only one Stokes vector exits the device .  If this device
 is also nondepolarizing ,  then  M  represents a polarizer .  When  D  5  0 ,  all incident states
 have the same intensity transmittance :  the device may be nonpolarizing ,  depolarizing ,  or a
 pure retarder .  Diattenuation is also referred to as  polarization sensiti y  ity . Linear
 polarization sensiti y  ity  or  linear diattenuation  LD ( M ) characterizes the variation of
 intensity transmittance with incident linear polarization states :

 LD ( M )  5
 4 m 2

 01  1  m 2
 02

 m 0 0
 (41)

 Linear polarization sensitivity is frequently specified as a performance parameter in remote
 sensing systems designed to measure incident power independently of any linearly
 polarized component present in scattered earth-light (Maymon and Chipman ,  1991) .  Note
 that  LD ( M )  5  1 specifies that  M  is a linear analyzer ;   M  is not necessarily a linear polarizer ,
 but may represent a linear polarizer followed by some other polarization element .
 Diattenuation in (fiber optical) components and systems is often characterized by the
 polarization dependent loss ,  given in decibels :

 PDL ( M )  5  10  Log 1 0
 T m a x

 T m i n
 (42)

 2 2 . 3 3  POLARIZANCE

 The polarizance  P ( M ) is the degree of polarization of the transmitted light when
 unpolarized light is incident (Bird and Shurclif f ,  1959 ;  Shurclif f ,  1962) .

 P ( M )  5
 4 m 2

 10  1  m 2
 20  1  m 2

 30

 m 0 0
 (43)

 The Stokes vector of the exiting light  S P   is specified by the first column of  M ,

 S P ( M )  5  [ m 0 0  m 1 0  m 2 0  m 3 0 ]
 T  (44)

 and is not generally equal to  S m a x  when inhomogeneity or depolarization is present .
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 2 2 . 3 4  PHYSICALLY REALIZABLE MUELLER MATRICES

 Mueller matrices form a subset of the four-by-four real matrices .  A four-by-four real
 matrix is not a physically realizable Mueller matrix if it can operate on an incident Stokes
 vector to produce a vector with degree of polarization greater than one ( s  2

 0  ,  s  2
 1  1  s  2

 2  1  s  2
 3 ) ,

 which represents a physically unrealizable polarization state .  Similarly ,  a Mueller matrix
 cannot output a state with negative flux .  Conditions for physical realizability have been
 studied extensively in the literature ,  and many necessary conditions have been published
 (Hovenier ,  van de Hulst ,  and van der Mee ,  1986 ;  Barakat ,  1987 ;  Cloude ,  1989 ;  Girgel ,
 1991 ;  Xing ,  1992 ;  Kumar and Simon ,  1992 ;  van der Mee and Hovenier ,  1992 ;  Kostinski ,
 Givens ,  and Kwiatkowski) .  A set of suf ficient conditions for physical realizability is not
 known to this author .  The following four necessary conditions for physical realizability are
 among the more general of those published :

 1 .  Tr  ( MM T  )  #  4 m 2
 00

 2 .  m 0 0  $  u m i j u
 3 .  m 2

 00  $  b  2

 4 .  ( m 0 0  2  b ) 2  $ O 3

 j 5 1
 S m 0 , j  2  O 3

 k 5 1
 m j , k a k D

 where  b  5  4 m 2
 01  1  m 2

 02  1  m 2
 03 , a j  5  m 0 , j  / b ,  and  Tr  indicates the trace of a matrix .

 Another condition for physical realizability is that the matrix can be expressed as a sum
 of nondepolarizing Mueller matrices .  The Mueller matrix for a passive device  T m a x  #  1 ,  a
 device without gain ,  must satisfy the relation  T m a x  5  m 0 0  1  4 m 2

 01  1  m 2
 02  1  m 2

 03  #  1 .
 In the 16-dimensional space of Mueller matrices ,  the matrices for ideal polarizers ,  ideal

 retarders ,  and other nondepolarizing elements lie on the boundary between the physically
 realizable Mueller matrices and the unrealizable matrices .  Thus ,  a small amount of noise
 in the measurement of a Mueller matrix for a polarizer or retarder may yield a marginally
 unrealizable matrix .

 2 2 . 3 5  DEPOLARIZATION

 Depolarization is the coupling of polarized into unpolarized light .  If an incident state is
 polarized and the exiting state has a degree of polarization less than one ,  then the sample
 has depolarization .  Consider three Mueller matrices of the following forms :

 ID  5 3
 1  0  0  0
 0  0  0  0
 0  0  0  0
 0  0  0  0

 4  PD  5 3
 1
 0
 0
 0

 0
 a

 0
 0

 0
 0
 a

 0

 0
 0
 0
 a
 4  VD  5 3

 1
 0
 0
 0

 0
 a

 0
 0

 0
 0
 b

 0

 0
 0
 0
 c
 4  (45)

 Matrix  ID  is the ideal depolarizer ;  only unpolarized light exits the depolarizer .  Matrix  PD
 is the partial depolarizer ;  all fully polarized incident states exit with their incident
 polarization ellipse ,  but with a degree of polarization  DOP ( PD )  5  a .  Matrix  PD
 represents a variable partial depolarizer ;  the degree of polarization of the exiting light is a
 function of the incident state .  Physically ,  depolarization is closely related to scattering and
 usually has its origin in retardance or diattenuation which is rapidly varying in time ,  space ,
 or wavelength .

 The amount of depolarization is a function of the incident state ,  and is defined for
 polarized incident states as 1  2  DOP h MS j .  To describe the depolarization characteristics
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 of a Mueller matrix ,  two figures of merit are useful .  The first is the Euclidian distance of
 the normalized Mueller matrix  M / m 0 0  from the ideal depolarizer :

 I  M
 m 0 0

 2  ID I  5
 – S O

 i ,j
 m 2

 i ,j D  2  m 2
 00

 m 0 0
 (46)

 This quantity varies from zero for the ideal depolarizer to  4 3 for nondepolarizing Mueller
 matrices ,  including all pure diattenuators ,  pure retarders ,  and any sequences composed
 from them .  Another useful measure is the depolarization of the matrix  Dep ( M ) :

 Dep ( M )  5  1  2
 – S O

 i ,j
 m 2

 i ,j D  2  m 2
 00

 4 3  m 0 0
 (47)

 This index measures how close a Mueller matrix is to the set of nondepolarizing Mueller
 matrices ,  and is related to the average depolarization of the exiting light .  If  Dep ( M )  5  0
 and the matrix is physically realizable ,  then for incident polarized states ,  the exiting light is
 polarized .   Dep ( M ) is closely related to the depolarization index of Gil and Bernabeu ,
 (1985 ,  1986) .

 If a polarized state becomes partially polarized and then is polarized again while
 interacting with a sequence of elements ,  depolarization is still present in the matrix ,
 despite the fact the output beam is polarized .  Consider a depolarizer followed by a
 horizontal linear polarizer :

 1
 2  3

 1  1  0  0
 1  1  0  0
 0  0  0  0
 0  0  0  0

 4 3
 1  0  0  0
 0  0  0  0
 0  0  0  0
 0  0  0  0

 4  5 3
 1  0  0  0
 1  0  0  0
 0  0  0  0
 0  0  0  0

 4  (48)

 The exiting beam is horizontally polarized .  All incident states ,  however ,  have equal
 intensity transmission due to the depolarizer .  For this example ,   Dep  5  1  2  1 / 4 3 .

 2 2 . 3 6  NONDEPOLARIZING MUELLER MATRICES AND JONES MATRICES

 A sample which does not display depolarization is nondepolarizing .  A nondepolarizing
 Mueller matrix satisfies the condition

 Tr ( MM T  )  5  4 m 0 0  (49)

 An incident beam with degree of polarization of one will exit with a degree of polarization
 of one .  Many other necessary conditions for nondepolarization may be found in the
 literature (Abhyankar and Fymat ,  1969 ;  Barakat ,  1981 ;  Fry and Kattawar ,  1981 ;  Simon ,
 1982 ;  Gil and Bernabeu ,  1985 ;  Cloude ,  1986) .

 Jones matrices form an alternative and very useful representation of sample polariza-
 tion ,  particularly because Jones matrices have simpler properties and are more easily
 manipulated and interpreted .  It is desirable to be able to transform between these two
 matrix representations .  The complication in mapping Mueller matrices onto Jones
 matrices and vice versa is that Mueller matrices cannot represent absolute phase and
 Jones matrices cannot represent depolarization .  Thus ,  only nondepolarizing Mueller
 matrices have corresponding Jones matrices .  All Jones matrices have a corresponding



 22 .32  OPTICAL INSTRUMENTS

 Mueller matrix ,  but because the absolute phase is not represented ,  the mapping is many
 Jones matrices to one Mueller matrix .  A Jones matrix  J  is transformed into a Mueller
 matrix by the relation

 M  5  U ( J  ̂  J *) U 2 1  (50)

 in which  ̂    represents the tensor product and  U  is the Jones / Mueller transformation
 matrix (Simon ,  1982 ;  Kim ,  Mandel ,  and Wolf ,  1987)

 U  5
 1

 4 2  3
 1
 1
 0
 0

 0
 0
 1
 i

 0
 0
 1

 2 i

 1
 2 1

 0
 0
 4  5  ( U 2 1 ) †  (51)

 where the Hermitian adjoint is represented by  † .  All Jones matrices of the form  J 9  5  e j f  J
 transform to the same Mueller matrix .  Nondepolarizing Mueller matrices are transformed
 into Jones matrices using the following relations :

 J  5 F j x x

 j y x

 j x y

 j y y
 G  5 F r x x e i f

 x x

 r y x e i f
 y x

 r x y e i f
 x y

 r y y e i f
 y y
 G  (52)

 where the amplitudes are

 (53)

 r x x  5
 1

 4 2
 4 m 0 0  1  m 0 1  1  m 1 0  1  m 1 1  r x y  5

 1
 4 2

 4 m 0 0  2  m 0 1  1  m 1 0  2  m 1 1

 r y x  5
 1

 4 2
 4 m 0 0  1  m 0 1  2  m 1 0  2  m 1 1  r x y  5

 1
 4 2

 4 m 0 0  2  m 0 1  2  m 1 0  1  m 1 1

 and the relative phases are

 f x y  2  f x x  5  arctan  S 2 m 0 3  2  m 1 3

 m 0 2  1  m 1 2
 D  f y x  2  f  x x  5  arctan  S m 3 0  1  m 3 1

 m 2 0  1  m 2 1
 D

 f y y  2  f x x  5  arctan  S m 3 2  2  m 2 3

 m 2 2  1  m 3 3
 D  (54)

 The phase  f x x   is not determined ;  it represents the absolute phase relative to which the
 other phases are determined .  If  j x x  5  0 ,  then both the numerator and denominator of the
 arctan are zero and the phase equations fail .  The equations can then be recast in closely
 related forms to use the phase of another Jones matrix element as the reference for the
 ‘‘absolute phase . ’’

 2 2 . 3 7  HOMOGENEOUS AND INHOMOGENEOUS POLARIZATION ELEMENTS

 This refers specifically to nondepolarizing Mueller matrices .
 A nondepolarizing Mueller matrix is defined as  homogeneous  if the two eigenpolariza-

 tions are orthogonal ,  and  inhomogeneous  otherwise .  A nondepolarizing Mueller matrix
 can be factored into a cascade of a diattenuator Mueller matrix  M D   followed by a retarder
 Mueller matrix  M R   or into a cascade of the same retarder followed by a diattenuator  M 9 D  ,

 M  5  M R M D  5  M 9 D M R  (55)
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 FIGURE 4  The principal Stokes vectors associated with
 an inhomogeneous polarization element mapped on the
 Poincare ̀   sphere .  The incident Stokes vectors of maxi-
 mum  S m a x  and minimum  S m i n  intensity transmittance are
 diametrically opposite on the Poincare sphere ̀   (indicating
 orthogonal polarization states) while the eigenpolariza-
 tions  S q   and  S r   are separated by the angle  χ .

 where the diattenuation of  M D   and  M 9 D   are equal .  We define the diattenuation of  M  as
 the diattenuation of  M D  ,  and the retardance of  M  as the retardance of  M R .  For a
 homogeneous device ,   M D  5  M 9 D   and the eiegenvectors of  M R   and  M D   are equal .  Thus the
 retardance and diattenuation of a homogeneous Mueller matrix are ‘‘aligned , ’’ giving it
 substantially simpler properties than the inhomogeneous Mueller matrices .  A necessary
 condition for a homogeneous Mueller matrix is  m 0 1  5  m 1 0  , m 0 2  5  m 2 0  , m 0 3  5  m 3 0 .  Then ,
 P h M j  5  D h M j .

 The inhomogeneity of a Mueller matrix is characterized by an inhomogeneity index
 I ( M ) which characterizes the orthogonality of the eigenpolarizations ;   I ( M ) varies from
 zero for orthogonal eigenpolarizations to one for degenerate (equal) eigenpolarizations .
 Let  S ̂  1  and  S ̂  2  be normalized polarized Stokes vector eigenpolarizations of a Mueller
 matrix ;  then

 I ( M )  5
 4 S ̂  1  ?  S ̂  2

 2
 5  cos  ( χ  / 2)  (56)

 where  χ   is the angle between the eigenpolarizations on the Poincare sphere measured from
 the center of the sphere as illustrated in Fig .  4 .
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