
RODIS
rigorous optical diffration software

Introduction 1

Introduction

The aim of the software tool "RODIS" ("Rigorous Optical DIffraction Software") is to
solve free space diffraction problems for a wide variety of material parameters and incidence
conditions. This necessitates the use of a rigorous electromagnetic Maxwell solver, and in
view of its efficiency for this class of diffraction problems, the Rigorous Coupled Wave
Analysis was preferred

Chapter 1: Tutorial 2

1 Tutorial

Rodis has a Phython-scripting user interface. Python(http://www.python.org) is a
clean and flexible scripting language. The syntax makes it easy to write and read complex
structures (such as 2D layers). Data can be manupulated in loops that sweep a certain
simulation parameter.

It’s all in a small script...

We’ll give a few examples. Those introduce the general use of the Python language and
the specific use of RODIS-keywords.

1.1 Python

Once Python installed, you can invoke the python interpreter by typing ’python’. The
python prompt ’>>>’ will appear.

C:\>python
>>>

Now you can make variables and manipulate them, e.g:

>>> a = 3
>>> b = 4
>>> a + b
7
>>>

That’s one way to calculate 3 + 4, but not so handy to process lots of data. To avoid
the re-typing work, everything can be written in a file: the python script, and will look like
this:

a = 3
b = 4
print a +b

save this as sumthreefour.py and invoke the script at the command prompt with python
sumthreefour.py.

C:\>python sumthreefour.py

7

C:\>

or choose an interactive mode with

Chapter 1: Tutorial 3

C:\>python -i sumthreefour.py

7

>>>

giving the possebility to work along with the variables

>>> a
7
>>>

That’s it. Now use python to build and calculate gratings.

1.2 Example 1 : a simple 1D grating

We go ahead with the simulation of a 1D grating. Next script shows how to

• setup a RODIS environment

• make the grating device

• calculate it

• ask some results

from rodis import *

rodis data
set_lambda(1.0)
set_N(5)
set_polarisation(TE)

make device
GaAs = Material(3.5)
air = Material(1.0)

front = Slab(GaAs(0.6))
period = Slab(air(0.15) + GaAs(0.3) + air(0.15))
back = Slab(air(0.6))

grating = Stack(front(1.) + period(0.3) + back(1.))

start calculations
grating.calc()

ask data
print grating.diffr_eff().R(-1)
print grating.diffr_eff().T(0)
print grating.field().R(2)

Chapter 1: Tutorial 4

print grating.field().T(3)

fr
o
n
t

b
ac

k

pe
ri
od

The first line, from rodis import *, will insert the RODIS library into ’Python’. From
this moment on, we can use all of the RODIS-commands. The next line is a simple comment,
(all #-lines) so not read by the Python interpreter. Next block of code sets the free space
wavelentgh, the number of orders used during the calculation, and the polarisation.

set_lambda(1.0)
set_N(5)
set_polarisation(TE)

The polarisation will be TM by default, so you can either delete this line or write set_
polarisation(TM) to change it. Now we make the materials that we will use to build the
grating with, using Material(refractive index)

GaAs = Material(3.5)
air = Material(1.0)

Next step is to make some layers. Slab(material1+material2) Since the width of a
layer is the period of the grating all layers have the same width.

front = Slab(GaAs(0.6))
period = Slab(air(0.15) + GaAs(0.3) + air(0.15))
back = Slab(air(0.6))

Obvious, front is a slab with period 0.6, period is a slab with period 0.15 + 0.3 + 0.15
and back has a period of the same size. So we made three slabs. Ok, we just have to stack
these slabs to make the device

grating = Stack(front(1.) + period(0.3) + back(1.))

The first and the last layer always consist of only one material! i.e the ’incidence medium’
or ’reflection medium’ and the ’transmission medium’

grating.calc() will start the calculation of the device. After the calculation is done,
we just simply have to ask the needed data and print it on the screen.

print grating.diffr_eff().R(-1)
print grating.diffr_eff().T(0)
print grating.field().R(2)
print grating.field().T(3)

Chapter 1: Tutorial 5

Since we set the number of modes to 5 (see set_N(5)), we can ask data from -5 to 5

the script will result in this output:

RODIS

0.0871190000258
0.689968431786
(-0.104378951709+0.451485554898j)
(0.0646782627315-0.070856654796j)

1.3 Example 2 : a lossy 1D grating

In next example, we introduce a few new features.

• non-perpendicular incidence of the wave

• lossy materials (complex refractive index)

• slabs with a complicated structure

from rodis import *

rodis data

set_lambda(1.0)
set_N(10)
set_alpha(0.1)
set_delta(0.1)
set_psi(0.9)

make device

Alas = Material(2.9 - 0.1j)
air = Material(1.0)

start = Slab(Alas(1.2))
bigrod = Slab(air(0.15) + Alas(0.9) + air(0.15))
smallrod = Slab(2*(air(0.15) + Alas(0.3) + air(0.15)))
end = Slab(air(1.2))

cratch = Stack(start(1.) + bigrod(0.3) + smallrod(0.3) + end(1.))

calculate

cratch.calc()

print cratch.field().R_TM(1)
print abs(cratch.field().R_TE(2))
print cratch.field().T_TE(3).real

Chapter 1: Tutorial 6

print cratch.field().T_TM(4).imag

We add two variables which describe the angle of incidence of the field: alpha and
delta. As can be seen in the script, both can be set using set_alpha(alpha) and set_

delta(delta).

The use of delta comes with a change in defining the polarisation. We don’t have to set
TM or TE anymore, instead, we have to define psi as angle of polarisation. (set_psi())

Remark that the refractive index of the material Alas is complex. The negative imaginary
part makes the material lossy. A positive imaginary part would provide the material of gain.
Complex numbers are written in Python like a + bj. The output illustrates how to ask the
real, imaginary part and absolute value of a Complex.

Instead of writing air(.15)+ Alas(.3)+ air(.3)+alas(.3)+air(0.15) to make a
slab, you can write 2*(air(.15)+alas(0.3)+air(0.15)). Rodis wil stick materials with
a same index togheter.

1.4 Example 3 : a 2D grating

Now ready for the real world? We’ll build a 2D-grating!

Chapter 1: Tutorial 7

from rodis import *
import math

PI = math.pi

set_alpha(0.0)
set_delta(0.0)
set_psi(PI/4)
set_dzeta(PI/2)
set_lambda(1.0)
set_Nx(3)
set_Ny(3)

#- make materials -#
Air = Material(1.0)
GaAs = Material(3.52)

#- make grating -#

fullA = Slab(Air(3.))
fullG = Slab(GaAs(3.))
someG = Slab(Air(0.5)+ GaAs(2.0) +Air(0.5))
halfG = Slab(Air(1.)+ GaAs(1.) +Air(1.))

bottom = Section(fullG(3.))
first = Section(halfG(1.) + fullG(1.) + halfG(1.))
second = Section(fullA(0.5) + halfG(0.5) + someG(1.) +\

halfG(0.5) + fullA(0.5))
third = Section(fullA(1.) + halfG(1.) + fullA(1.))
top = Section(fullA(3.))

device = Stack(top(3) + third(0.5) + second(0.5) +\
first(0.5) + bottom(3))

device.calc()

print device.diffr_eff().R(0,-1)
print device.diffr_eff().T(2,1)
print device.field().R_TM(0.1)
print device.field().R_TE(0,1)
print device.field().R(0,1)

There is just one new term introduced during the building: Section() will collect some
slabs, making it a 2D planar structure. Those are again put in a Stack to build a real 3D
device.

Chapter 1: Tutorial 8

dzeta is the angle between the X-axis and the Y-axis. In our case this is PI/2. We could
have written PI = 3.1415 , but since we ar not real nerds knowing pi that well we use the
mathematical library (import math) and ask for pi (math.pi).

Now, some words about the incident beam. Since Alpha is zero, the incidence plane is not
defined, resulting in undeterminated delta (so actually we could drop that set delta() line).
A pseudo incidence plane is defined along the x-axis. A psi = 0 will set a TM polarisation,
(H // y-axis) psi = pi/2 will set a TE polarisation (E // y-axis).

1.5 Example 4: loop and write

In this last example, we will calculate the zeroth order reflection of a grating for a number
of distinct polarisations, using a loop. All data will be written to a file. This is how the
script looks like:

from rodis import *
import math

PI = math.pi

rodis data

set_lambda(1.0)
set_N(10)
set_alpha(0.0)
set_delta(PI/4)
set_psi(0.0)

make device

AlAs = Material(2.9 - 0.1j)
air = Material(1.0)

start = Slab(air(3.))
ridge = Slab(air(1.) + AlAs(2.))
end = Slab(AlAs(3.))

grating = Stack(start(1.) +ridge(1.) + end(1.))

writefile

outfile = file("rodis.out",’w’)

for i in range(-10, 11):
set_psi(i*PI/20)
grating.calc()
print >> outfile, i ,"\t", abs(grating.field().R_TM(0))

outfile.close()

Chapter 1: Tutorial 9

Quite straight foreward. The script will scan the whole range(-10,11) i.e. (-10,-9,-
8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10) That way, we scan the grating in
20 steps, starting with psi= -pi/2 and ending with pi/2. The "rodis.out"-file will be saved
in the script’s directory. \t inserts a tab, \n inserts a new line.

That’s it. So far. In next chapter you can learn some more the gratings and specific
rodis-code/terminology.

Chapter 2: Grating 10

2 Grating

In this chapter you will find a clear description about all used terminology.

2.1 the grating

X

Y

period x

period y

STACKincident medium

transmission medium

GRATING

This is a 2D grating. It has a grating period in x-direction, and a grating period in
y-direction. Those are infinitly repeated. The number of layers in z-direction however is
finite, starting with an incidence medium and ending with the transmission medium. A 1D
grating looks the same... but without a y-period.

Now, this 2D anti-tank grating exists of seperated concrete blocks. One cell of that
grid is a stack. A stack is a 3D pile which holds the air (incident medium) and the soil
(transmission medium) and everything in between.

section airsection air

section concretesection concrete

section soilsection soil

The stack excist of distinct sections. Those are 2D structures, with witdh = period x

and length = period y.

section concretesection concrete

slab airslab air

slab concreteslab concrete

slab airslab air

Each section is constructed with 1D slabs. They have a width of period x and are
constructed with materials.

slab concreteslab concrete

material airmaterial air

material concretematerial concrete

material airmaterial air

Chapter 2: Grating 11

A material has no dimension, it only holds a refractive index. That index can be complex,
a positive imaginary part means gain, negative means losses.

airair conreteconrete

Now we start talking about refractive index... concrete is not the most ideal medium of
course, but our financial situation doesn’t allow us costly building projects at the moment,
so we recycled that anti-tank stuff from WWII. Sorry.

2.2 the planes

GRATING PLANE

INCIDENCEPLANE

PRINCIPLE PLANE

X

Y

d

a

This figure should be clear enough to explain the definitions of the planes and angles.
(the yellow arrow is the incident beam, and the bricks are a grating!)

anyway

‘grating plane’
plane parallel to the grating surface

‘principle plane’
plane parallel to the x-axis and perpendicular to the grating plane (used for 1D
gratings)

‘incident plane’
plane perpendicular to the grating plane, containing the incident ray propagat-
ing vector.

‘alpha’ angle wavevector and z-axis

‘delta’ angle wavevector and x-axis

Chapter 2: Grating 12

2.3 polarisation

EE

EEss

EEpp yy

Polarisation angel psi is given by the E-vector of the incident beam in the incident
plane. This angle equals 0 for TM-incidence and pi/2 for TE-polarisation.

If asking for R TM(x,y), the Ep component will be returned whereas R TE(x,y) will
return the Es component. R(x,y) is the real reflection i.e. sqrt(R TM^2 + R TE^2). And
the same is the case for transmission, T(x,y).

2.4 Modes

inc

0

0

1

1 -1

-12

2 -2

x

z

This figure shows how modes are defined. Nothing shocking I hope..

See [set N], page 14

Chapter 3: More 13

3 More

In case you run into troubles, you can look a little closer to the code, interpreat the
warnings, printing out your device at c++ level:

3.1 Warnings

If you deal with warnings, the program won’t stop, but it could be that it works with
other parameters than the one you had in mind. Be happy, ’Errors’ are worse.

polarisation warning: You can only use TE or TM when calling set polarisation()

slab warning: Make sure al slabs have the same width. If put in a stack, the ’period’
of the grating will be the width of the first slab

section warning: Make sure all sections have the same height and width. In a stack,
the grating will use the width and height of the first section.

stack warning: The first and the last layer exist of only one material. If this isn’t the
case, the first material of the layer will be used.

3.2 Show Grating

If you build a grating that is so complex you forgot how it looks like, or you have no
confidence that the interface understand what you really want to build, you can check the
grating on two levels.

On python level itself, by typing the name of the stack, e.g. for the 2D grating in
example3, where "device" is the name of the stack type:

print device

To see the stack which the code uses, (so look at C++ level) type

print device.showgrating()

It’s also possible to have an overview of the whole field and diffraction efficience.

print device.field()
print device.diffr_eff()

Chapter 4: reference guide 14

4 reference guide

set_lambda

set_lambda(Real): sets the wavelengt in air

See [get lambda], page 14

get_lambda

get_lambda(): returns the wavelength.

See [set lambda], page 14

set_N

set_N(): sets the number of orders. Even if you are only interested in the zeroth order,
this setting will have an effect on the calculations and results. So set it high to obtain
correct results, but not to high in order to avoid long calculation times.

See [get N], page 14

get_N

get_N(): returns the number of orders

See [set N], page 14

set_alpha

set_alpha(): sets the incident angle of the incident beam in the principle plane

See [get alpha], page 14 See [principle plane], page 15

get_alpha

get_alpha(): gets the incident angle of the incident beam in the principle plane

See [set alpha], page 14 See [principle plane], page 15

set_delta

set_delta(): sets the incident angle of the incident beam in the incident plane.

See [get delta], page 14 See [incident plane], page 15

get_delta

get_delta(): returns the incident angle of the incident beam in the incident plane.

See [set delta], page 14 See [incident plane], page 15

Chapter 4: reference guide 15

set_psi

set_psi(): sets the polarisation angle. This angle is formed by the E-vector of the
incidence beam in the incidence plane. This angle equals 0 for TM and pi/2 for TE-
polarisation

See [get psi], page 15

get_psi

get_psi(): returns psi

See [set psi], page 15

set_polarisation

set_polarisation(TE) or set_polarisation(TM): sets the polarization. This is only
needed in case of 1D and incidence in the principle plane. Otherwise, use set_psi

See [get polarisation], page 15 See [set psi], page 15

get_polarisation

get_polarisation(): returns the polarization.

See [set polarisation], page 15

principle plane

principle plane: is the plane perpendicular to both the grating plane and the grating
fringes.

See [incident plane], page 15

incident plane

incident plane: is the plane perpendicular to the grating plane, containing the incident
ray propagating vector.

See [principle plane], page 15

Chapter 5: About 16

5 About

RODIS is written as part of the PhD-thesis of Bart Dhoedt ("Theoretical and Exper-
imental Study of Free Space Optical Interconnections Based on Diffractive Lens Arrays"
1995). The 2D gratings were added by Danae Delbeke during her PhD-work ("Design and
fabrication of a highly efficient light-emitting diode: The grating-Assisted Resonant-Cavity
Light-Emitting Diode", 2002). In order to have a more user-friendly access to the c++ files,
Lieven wrote the python-wrapper, with big support from Peter Bienstman, whose camfr
(http://camfr.sourceforge.net/) -syntax was used as a model for the rodis-syntax.

All work is done at the photonics group (http://photonics.intec.ugent.be/) from
the Department of Informationtechnology (INTEC (http://www.intec.ugent.be/)) of
Ghent University, Flanders, Europe.

Index 17

Index

D
diffr eff() . 13

F
field() . 13

G
get_alpha . 14

get_delta . 14

get_lambda . 14

get_N . 14

get_polarisation . 15

get_psi . 15

I
incident medium . 10

incident plane . 15

M
material. 10

materials, defining . 3

O
orders. 12

P
principle plane . 15
python . 2

R
R() . 12
R TE() . 12
R TM() . 12

S
section . 10
set_alpha . 14
set_delta . 14
set_lambda . 14
set_N . 14
set_polarisation . 15
set_psi . 15
showgrating() . 13
slab. 10
stack . 10

T
T() . 12
T TE() . 12
T TM() . 12
transmission medium. 10

W
warning . 13

