Photonics Research Group Home
Ghent University Research Topics
About People Research Publications Education
 IMEC
intern

 

Caphe: Circuit-level time-and frequency domain modeling tool

Research Area: Design and Modeling for Integrated Photonics, Large-scale Photonic Integration

Main Researcher: Martin Fiers

Caphe is a tool for modeling optical circuits, both in frequency and in time domain. The official web-site can be found here


With Caphe we can do steady-state analysis of optical networks. We can use it for

  • optimizing CROWs (coupled resonator optical waveguides),

  • simulating large networks containing AWG and/or rings,

  • investigating the sensitivity of filters to process variations.

Example of optimizing a Coupled Resonator Optical Waveguide in the frequency domain.
Example of optimizing a Coupled Resonator Optical Waveguide in the frequency domain.

In time domain, highly nonlinear components can be modeled with ease.
Some of the applications include:

  • Coupled nonlinear oscillators

  • Example of modeling a ring in time-domain: comparison between rigorous FDTD and Coupled Mode Theory, used in Caphe
    Example of modeling a ring in time-domain: comparison between rigorous FDTD and Coupled Mode Theory, used in Caphe

  • Photonic Reservoir Computing

  • Modeling of microdisks, semiconductor optical amplifiers...


The user can choose between a simple Euler stepper or an advanced adaptive-stepsize routine, to give complete control over the integration. Large networks can be handled thanks to sparse matrices and advanced solvers such as KLU (www.cise.ufl.edu/research/sparse/klu).
The tool is written in C++ for optimal performance. We use a Python front-end for ease of use. Furthermore, Python has a large collection of scientific libraries which are used for visualization, post-processing...


Other people involved:

PhD thesises

Publications

    International Journals

  1. T. Van Vaerenbergh, M. Fiers, Joni Dambre, P. Bienstman, Efficient simulation of optical nonlinear cavity circuits, Optical and Quantum Electronics, 47(6), p. 1471-1476 (2015)  Download this Publication (485KB).
  2. W. Bogaerts, M. Fiers, P. Dumon, Design Challenges in Silicon Photonics, J. Sel. Top. Quantum Electron., 20(4), p.1-8 (2014)  Download this Publication (363KB).
  3. M. Fiers, T. Van Vaerenbergh, F. Wyffels, D. Verstraeten, B. Schrauwen, J. Dambre, P. Bienstman, Nanophotonic reservoir computing with photonic crystal cavities to generate periodic patterns, IEEE Transactions on Neural Networks and Learning Systems, 25(2), p.344 - 355 (2014)  Download this Publication (1.8MB).
  4. K. Alexander, T. Van Vaerenbergh, M. Fiers, P. Mechet, J. Dambre, P. Bienstman, Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response, Optics Express, 21(22), p.26182-26191 (2013)  Download this Publication (1.3MB).
  5. T. Van Vaerenbergh, K. Alexander, J. Dambre, P. Bienstman, Excitation transfer between optically injected microdisk lasers, Optics Express, 21(23), p.28922-28932  (2013)  Download this Publication (1.3MB).
  6. T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, P. Bienstman, Cascadable Excitability in microrings, Optics Express, 20(18), p.20292-20308 (2012)  Download this Publication (3.6MB).
  7. M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. Vande Ginste, B. Schrauwen, J. Dambre, P. Bienstman, Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach, Journal of the Optical Society of America B, 29(5), p.896900 (2012)  Download this Publication (482KB).
      International Conferences

    1. T. Van Vaerenbergh, M. Fiers, J. Dambre, P. Bienstman, An optical delayline based on excitable microrings, IEEE Photonics Conference, United States, p.118-119 (2014)  Download this Publication (447KB).
    2. T. Van Vaerenbergh, K. Alexander, M. Fiers, P. Mechet, J. Dambre, P. Bienstman, Cascadable excitability in optically injected microdisks, Proc. SPIE 9134, Semiconductor Lasers and Laser Dynamics VI, 91341W, Belgium, (2014).
    3. T. Van Vaerenbergh, M. Fiers, J. Dambre, P. Bienstman, Towards integrated optical spiking neural networks: delaying spikes on chip, Laser Dynamics and Nonlinear Photonics, 2013 Sixth "Rio De La Plata" Workshop on (invited), 1, Uruguay, p.9-12 (2013).
    4. T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, K.T Vandoorne, B. Schneider, B. Schrauwen, J. Dambre, P. Bienstman, Characterization of cascadable excitability in a silicon-on-insulator microring, Proceedings of the 2012 Annual Symposium of the IEEE Photonics Society Belenux Chapter, Belgium, p.119-122 (2012)  Download this Publication (471KB).
    5. T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, K.T Vandoorne, B. Schneider, B. Schrauwen, J. Dambre, P. Bienstman, Self-pulsation and excitability mechanism in silicon-on-insulator microrings , 2012 Asia Communications and Photonics Conference (ACP), China, p.ATh4B.5 (2012).
    6. M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, J. Dambre, P. Bienstman, CAPHE: Time-domain and Frequency-domain Modeling of Nonlinear Optical Components, Advanced Photonics Congress, 2012 OSA, United States, p.paper IM2B.3 (2012)  Download this Publication (339KB).
    7. T. Van Vaerenbergh, M. Fiers, K.T Vandoorne, B. Schneider, J. Dambre, P. Bienstman, Towards a photonic spiking neuron: excitability in a silicon-on-insulator microring., 2012 International symposium on Nonlinear Theory and its Applications, Proceedings (NOLTA), Spain, p.767 - 770 (2012)  Download this Publication (1.4MB).
    8. M. Fiers, T. Van Vaerenbergh, P. Dumon, K. Caluwaerts, B. Schrauwen, J. Dambre, P. Bienstman, CAPHE: a circuit-level time-domain and frequency-domain modeling tool for nonlinear optical components., 16th Annual Symposium of the IEEE Photonics Benelux Chapter, (2011)  Download this Publication (569KB).

        Back to overview