Photonics Research Group Home
Ghent University Research Topics
About People Research Publications Education
 IMEC
intern

 

Grating-based based vertical fibre coupler

Research Area: III-V Semiconductor Photonic ICs

Main Researcher: Dirk Taillaert

The small dimensions of photonic crystal or photonic wire waveguides in SOI create some challenging problems. Coupling light efficiently between a single-mode fiber, used in telecommunications, and these waveguides is not a trivial task. The use of tapered fibers can increase the coupling efficiency, but requires very critical alignment.

At the photonics research group, we are working on a photonic crystal or grating based fiber coupler which couples light from a vertical butt-coupled fiber to a planar waveguide. Compared to traditional grating couplers, which use a weak diffraction grating, our structure has a much larger bandwidth and is more compact. The out-of-plane fiber approach doesn't require cleaving or polishing of devices and allows wafer scale testing. Moreover, standard fibers or fiber arrays can be used, no lenses are needed.

coupler concept
coupler concept

We have demonstrated a coupling efficiency of -4.8dB (33% efficiency) and a 1dB bandwidth of 35nm (3dB bandwidth is 65nm) using standard single-mode fiber and SOI waveguides. In our experiments, we measure the fiber to waveguide to fiber insertion loss on a waveguide with a coupler on both ends. From this transmission measurement we can easily determine the efficiency of one coupler.
Compared to edge coupling (with tapered lensed fibers) the coupling efficiency is only slightly higher, but the alignment tolerances are much better. A deviation of 2um in the x or y direction results in only 1dB additional coupling loss. The efficiency can be further improved by using a more optimized grating design and a bottom reflector.

measurement result
measurement result

We have optimized the coupler using numerical simulations. The optimized design has a coupling efficiency > 90% together with a 1-dB bandwidth > 40nm. The structure is shown in the picture below and more details can be found in D. Taillaert, P. Bienstman, R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides ", Optics Letters, vol. 29(23), pp. 2749-2751, Dec. 2004

When using a 1D-grating, the coupler is strongly polarization dependent, it works only for TE-polarization. The solve the polarization problem, we are also working on a 2d grating fibre coupler used as a polarization splitter.
To connect the wide fiber-matched waveguide to a narrow photonic wire, we can use a simple adiabatic taper, but this structure is relatively long. Therefore more compact solutions for this lateral spot-size conversion problem are also being investigated.

Optimized grating coupler design. The waveguide mode is incident from the left and light is coupled out upwards towards the fiber. The fiber itself is not shown in this picture.
Optimized grating coupler design. The waveguide mode is incident from the left and light is coupled out upwards towards the fiber. The fiber itself is not shown in this picture.

Other people involved:

Related Research Projects

Downloads

(Nano)photonics in Silicon(-on-Insulator) (Nano)photonics in Silicon(-on-Insulator)

PhD thesises

Patents

Publications

    International Journals

  1. D. Vermeulen, Y. De Koninck, Y. Li, W. Bogaerts, R. Baets, G. Roelkens, Reflectionless grating couplers for SOI photonic integrated circuits , Optics Express, p.22278-22283 (2012)  Download this Publication (1.1MB).
  2. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, R. Baets, Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits, IEEE Photonics Technology Letters, 19(23), p.1919-1921 (2007)  Download this Publication (509KB).
  3. S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, R. Baets, Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides, Optics Express, 15, p.9639-9644 (2007)  Download this Publication (1MB).
  4. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, R. Baets, Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires, J. Selected Topics in Quantum Electronics, 12(6), p.1394-1401 (2006)  Download this Publication (799KB).
  5. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, R. Baets, Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides, Japanese Journal of Applied Physics (invited), 45(8A), p.6071-6077 (2006)  Download this Publication (426KB).
  6. D. Taillaert, P. Bienstman, R. Baets, Compact efficient broadband grating coupler for silicon-on-insulator waveguides , Optics Letters, 29(23), p.2749-2751 (2004)  Download this Publication (280KB).
  7. W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, R. Baets, SOI Nanophotonic Waveguide Structures Fabricated with Deep UV Lithography , Photonics and Nanostructures: Fundamentals and Applications (invited), 2(2), p.81-86 (2004)  Download this Publication (398KB).
  8. V.S. Volkov, S.L. Bozhevolnyi, D. Taillaert, Near-field imaging of light diffraction out of slab waveguides, Laser Physics Letters, 1(6), p.311-316 (2004).
  9. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, S. Beckx, Basic structures for photonic integrated circuits in Silicon-on-insulator, Optics Express (invited), 12(8), p.1583-1591 (2004)  Download this Publication (5.2MB).
  10. D. Taillaert, W. Bogaerts, P. Bienstman, T.F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, An Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers, IEEE Journal of Quantum Electronics, 38(7), p.949-955 (2002)  Download this Publication (612KB).
    Book / Book Chapter

  1. W. Bogaerts, D. Vermeulen, Off-chip coupling, Handbook of Silicon Photonics (invited), p.97-138 (2013)  Download this Publication (1.4MB).
    International Conferences

  1. R. Baets, W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, SOI Photonic Wire Based Components with Compact and Efficient Fiber Couplers , Optical Fiber Communications (invited), United States, p.OWG3 (2007)  Download this Publication (594KB).
  2. F. Van Laere, W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, Compact Focusing Grating Couplers Between Optical Fibers and Silicon-on-Insulator Photonic Wire Waveguides , Optical Fiber Communications, United States, p.OWG1 (2007)  Download this Publication (556KB).
  3. W. Bogaerts, P. Dumon, J. Wouters, P. Jaenen, S. Beckx, V. Wiaux, D. Van Thourhout, D. Taillaert, B. Luyssaert, R. Baets, Silicon-on-Insulator Nanophotonics, SPIE Optics and Optoelectronics (invited), 5956, Poland, p.5956R-1-15 (2005)  Download this Publication (758KB).
  4. R. Baets, D. Van Thourhout, G. Morthier, W. Bogaerts, L. Vanholme, Silicon-on-insulator based high index contrast waveguide devices: research in europe, 11th Microoptics Conference (MOC) (invited), Japan, p.E2, Session C ( 4 pages) (2005)  Download this Publication (303KB).
  5. F. Van Laere, D. Taillaert, D. Van Thourhout, R. Baets, M.V. Kotlyar, T.F. Krauss, A Compact Fibre-to-Waveguide Coupler Based on Angled Slots, European Conference on Optical Communication (ECOC) 2005, United Kingdom, p.Tu3.6.5 (2005)  Download this Publication (1.1MB).
  6. R. Baets, Photonic Crystal Research in IST, European Conference on Optical Communication (ECOC) 2004 (invited), 5(Symposia), Sweden, p.80-82 (2004)  Download this Publication (75KB).
  7. R. Baets, W. Bogaerts, Nanophotonic waveguides in SOI by means of deep UV lithography, Photonic and Electromagnetic Crystal Structures (PECS-V) (invited), Japan, p.160 (2004)  Download this Publication (234KB).
  8. D. Taillaert, W. Bogaerts, R. Baets, Efficient coupling between submicron SOI-waveguides and single-mode fibers, IEEE/Leos Benelux Annual Symposium 2003, Netherlands, p.289-292 (2003).
  9. W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, R. Baets, Large-scale production techniques for photonic nanostructures, Proc. SPIE (invited), 5225, United States, p.101-112 (2003)  Download this Publication (1.6MB).
  10. R. Baets, P. Bienstman, W. Bogaerts, D. Taillaert, B. Luyssaert, Coupling issues in strongly confined nanophotonic waveguides, ICTON 2003 (invited), Poland, p.191-192 (2003)  Download this Publication (152KB).
  11. D. Taillaert, R. Baets, H. Chong, R.M. De La Rue, P. Borel, L. Frandsen, A compact two-dimensional Grating Coupler used as a polarisation splitter, European Conference on Integrated Optics (ECIO), Czech Republic, p.PD:5-8 (2003)  Download this Publication (1.2MB).
  12. D. Taillaert, W. Bogaerts, P. Bienstman, R. Baets, Out-of-plane fiber coupler for coupling to high-index-contrast waveguides, PECS-IV, United States, p.155 (2002)  Download this Publication (114KB).
  13. D. Taillaert, Out-of-plane fiber coupler for coupling to high-index-contrast waveguides, Workshop 2D photonic crystals, Switzerland, p.I-17 (2002).
  14. R. Baets, Towards nanophotonic integrated circuits: the challenges, Conference on Optoelectronics and Optical Communications (COOC 2002) (invited), 9(1), p.3-4 (2002).
  15. D. Taillaert, W. Bogaerts, P. Bienstman, T.F. Krauss, P. Van Daele, I. Moerman, R. Baets, An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibres, IEEE/LEOS Benelux Chapter, Belgium, p.17-20 (2001).
  16. D. Taillaert, W. Bogaerts, P. Bienstman, T.F. Krauss, I. Moerman, P. Van Daele, R. Baets, A high-efficiency out-of-plane fibre coupler for coupling to high index contrast waveguides, ECOC 01, Netherlands, p.30-31 (2001)  Download this Publication (176KB).
  17. D. Taillaert, W. Bogaerts, P. Bienstman, D. De Zutter, R. Baets, Design of an out-of-plane coupler for efficient butt-coupling from photonic crystal waveguides to single-mode fibres, PECS III, United Kingdom, (2001).

      Back to overview