Abstract
Photonic circuits are an ideal platform for implementing complex interferometers, which perform linear transformations on coherent optical signals. Such linear transformations, which are computationally equivalent to matrix-vector multiplications or a multiply-accumulate operations, are at the core of many signal processing algorithms, neuromorphic computing paradigms, or quantum information processing. These photonic circuits can be made programmable, by electronically reconfiguring the weights and phases in the interferometer network, and this provides opportunities for massive acceleration of certain computational functions in the optical domain. We will discuss the current developments in such programmable photonics, and the technology stack needed to realize fully-functional accelerators or even general-purpose photonic processors. Related Research Topics
Related Projects
|
|