| |
Back to list
Dr. Alessio Lugnan (Postdoctoral Researcher)
This person worked in the group from 2016 till 2023.
Alessio Lugnan received a Master's degree in Experimental Physics from the University of Trento in 2016. He joined the Photonics Research Group (Ghent University / Imec) in 2016 as a PhD student, working on optical solutions for machine learning classification of particles for imaging microflow cytometry and on integrated photonic reservoir computing using ring resonators. He received a PhD in Photonics Engineering in 2021 and is currently working as a postdoctoral researcher in the same group, on neuromorphic computing with silicon photonics and phase change materials.Specific Research Topics
Current PhD Students
PatentsPublications (34)International Journals
-
M. Gouda, A. Lugnan, J. Dambre, G. V. Branden, C. Posch, P. Bienstman,
Improving the classification accuracy in label-free flow cytometry using event-based vision and simple logistic regression, IEEE Journal on Selected Topics in Quantum Electronics, (Optical computing), p.8 doi:10.1109/JSTQE.2023.3244040 (2023) .
-
A. Lugnan, Santiago Garcia-Cuevas Carrillo, C. David Wright, P. Bienstman,
Rigorous dynamic model of a silicon ring resonator with phase change material for a neuromorphic node, Optics Express, 30(14), p.25177-25194 doi:10.1364/OE.459364 (2022) .
-
Santiago Garcia-Cuevas Carrillo, A. Lugnan, Emanuele Gemo, P. Bienstman, Wolfram H. P. Pernice, Harish Bhaskaran, C. David Wright,
System-Level Simulation for Integrated Phase-Change Photonics, Journal of lightwave technology, 39(20), p. 6392 - 6402 doi:10.1109/JLT.2021.3099914 (2021) .
-
A. Lugnan, E.J.C. Gooskens, J. Vatin, J. Dambre, P. Bienstman,
Machine learning issues and opportunities in ultrafast particle classification for label‑free microflow cytometry, Scientific Reports, 10(1), p.1-13 doi:10.1038/s41598-020-77765-w (2020) .
-
A. Lugnan, A. Katumba, F. Laporte, M. Freiberger, S. Sackesyn, C. Ma, E.J.C. Gooskens, J. Dambre, P. Bienstman,
Photonic neuromorphic information processing and reservoir computing, APL Photonics (invited), 5, p.020901 doi:10.1063/1.5129762 (2020) .
-
A. Katumba, M. Freiberger, F. Laporte, A. Lugnan, S. Sackesyn, C. Ma, J. Dambre, P. Bienstman,
Neuromorphic computing based on silicon photonics and reservoir computing, IEEE Journal on Selected Topics in Quantum Electronics (invited), 24(6), p.8300310 (10 pages) doi:10.1109/JSTQE.2018.2821843 (2018).
-
A. Lugnan, J. Dambre, P. Bienstman,
Integrated pillar scatterers for speeding up classification of cell holograms, Optics Express, 25(24), p.30526-30538 doi:10.1364/oe.25.030526 (2017) .
Book / Book Chapter
-
A. Katumba, M. Freiberger, F. Laporte, A. Lugnan, S. Sackesyn, C. Ma, J. Dambre, P. Bienstman,
Integrated on-chip reservoirs, Photonic Reservoir Computing: Optical Recurrent Neural Networks (invited), p.53-82 (2019).
International Conferences
-
A. Lugnan, A. Foradori, S. Biasi, P. Bienstman, L. Pavesi,
Large-scale neural networks with passive silicon photonics for biologically plausible learning, Photonics Europe, France, p.13017-50 (2024) .
-
P. Bienstman, A. Lugnan, S. Aggarwal, F. Brückerhoff-Plückelmann, W. Pernice, H. Bhaskaran, C. Ma, S. Sackesyn, E.J.C. Gooskens, S. Masaad, M. Gouda, R. De Prins,
Optical computing in silicon photonics: self-adapting ring networks and quantum recurrent neural networks, Natural and Physical Computing (NNPC), Germany, p.1 (2023) .
-
S. Masaad, E.J.C. Gooskens, M. Gouda, R. De Prins, F. Marchesin, R. Shi, A. Lugnan, S. Sackesyn, C. Ma, Joni Dambre, P. Bienstman,
Integrated Photonic Reservoir Computing for Telecommunication Applications , Neuromorphic photonics and applications (invited), Greece, (2023).
-
A. Lugnan, S. Garcia-Cuevas Carillo, J. Song, S. Aggarwal, F. Brückerhoff-Plückelmann, W. Pernice, H. Bhaskaran, D. Wright, P. Bienstman,
Silicon ring resonator with phase-change material as a plastic dynamical node for scalable all-optical neural networks with synaptic plasticity, ICTON, Romania, p.4 (2023) .
-
Steven Abreu, M. Gouda, A. Lugnan, P. Bienstman,
Flow cytometry with event-based vision and spiking neuromorphic hardware, IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Canada, doi:10.1109/CVPRW59228.2023.00435 (2023) .
-
A. Lugnan, S. Aggarwal, F. Brückerhoff-Plückelmann, W. Pernice, H. Bhaskharan, P. Bienstman,
Performance enhancement via synaptic plasticity in an integrated photonic recurrent neural network with phase-change materials, CLEO-EQEC Europe, Germany, p.JSIII-3.5 (2023) .
-
M. Gouda, A. Lugnan, J. Dambre, G. V. Branden, C. Posch, P. Bienstman,
Event-based vision for improved classification accuracy in label-free flow cytometry, IEEE Benelux Photonics Chapter - Annual Symposium 2022, Netherlands, p.26-29 (2022) .
-
P. Bienstman, A. Lugnan, C. Ma, S. Sackesyn, E.J.C. Gooskens, S. Masaad, M. Gouda, R. De Prins,
Coherent optical computing in silicon photonics, Coherent Network Computing (CNC), , United States, p.D2.12.00 (2022) .
-
P. Bienstman, J. Dambre, A. Lugnan, S. Sackesyn, C. Ma, E.J.C. Gooskens, M. Gouda, S. Masaad,
Photonic Neuromorphic Computing Using Silicon Chips, Huawei STW (invited), (2021).
-
A. Lugnan, S. Sackesyn, C. Ma, E.J.C. Gooskens, M. Gouda, S. Masaad, J. Dambre, P. Bienstman,
Reservoir computing for high-speed photonic information processing, Photonics in Switching and Computing (invited), p.TuA2.3 (2021) .
-
A. Lugnan, S. Sackesyn, C. Ma, E.J.C. Gooskens, M. Gouda, S. Masaad, Joni Dambre, P. Bienstman,
Photonic reservoir computing for high-speed neuromorphic computing applications, 2021 IEEE Summer Topicals Meeting Series (invited), Mexico, (2021).
-
P. Bienstman, J. Dambre, A. Lugnan, S. Sackesyn, C. Ma, E.J.C. Gooskens, M. Gouda, S. Masaad,
Silicon photonics for brain-inspired neuromorphic information processing, 1st Workshop on Neuromorphic Photonics (invited), (2020) .
-
F. Laporte, A. Katumba, M. Freiberger, A. Lugnan, S. Sackesyn, C. Ma, E.J.C. Gooskens, J. Dambre, P. Bienstman,
Photonic Reservoir Computing, Photonic Integration Week (invited), Spain, (2020).
-
P. Bienstman, J. Dambre, A. Katumba, M. Freiberger, F. Laporte, A. Lugnan, S. Sackesyn, C. Ma, E.J.C. Gooskens,
Non-linear signal equalisation using silicon photonic reservoir computing, ECOC machine learning workshop (invited), Ireland, (2019).
-
P. Bienstman, J. Dambre, A. Katumba, M. Freiberger, F. Laporte, A. Lugnan, S. Sackesyn, C. Ma,
Neuromorphic information processing using silicon photonics, SPIE Optics and Photonics (invited), United States, p.11081-54 doi:10.1117/12.2524707 (2019) .
-
P. Bienstman, J. Dambre, A. Katumba, M. Freiberger, F. Laporte, A. Lugnan, S. Sackesyn, C. Ma, E.J.C. Gooskens,
Silicon photonics reservoir computing at 32 Gbit/s, 5th Workshop on Dynamical Systems and Brain-Inspired Information Processing (invited), Germany, (2019).
-
A. Lugnan, J. Dambre, P. Bienstman,
Numerical investigation of integrated dielectric pillars to simplify machine learning classification of cells, 23rd Annual Symposium of the IEEE Photonics Benelux Chapter, Belgium, (2018) .
-
A. Lugnan, J. Dambre, P. Bienstman,
Integrated dielectric scatterers for speeding up classification of cell diffraction patterns, 2018 20th International Conference on Transparent Optical Networks (ICTON) (invited), Romania, p.We.A6.3, 4pp. doi:10.1109/ICTON.2018.8473611 (2018) .
-
A. Lugnan, J. Dambre, P. Bienstman,
Integrated dielectric scatterers for fast optical classification of biological cells, SPIE Photonics Europe, 10689(07), France, p.1-7 doi:10.1117/12.2306654 (2018) .
-
P. Bienstman, J. Dambre, A. Katumba, M. Freiberger, F. Laporte, A. Lugnan,
Photonic reservoir computing: a brain-inspired approach for information processing, The Optical Fiber Communication Conference (OFC) (invited), United States, p.paper M4F.4 (3 pages) doi:10.1364/OFC.2018.M4F.4 (2018).
-
P. Bienstman, J. Dambre, A. Katumba, M. Freiberger, F. Laporte, A. Lugnan,
Silicon photonics for neuromorphic information processing , SPIE Photonics West (invited), DL 10551, United States, p.paper 10551-19 (7 pages) doi:10.1117/12.2284391 (2018).
-
F. Laporte, A. Lugnan, J. Dambre, P. Bienstman,
Novel photonic reservoir computing architectures, Workshop on Dynamical Systems and Brain-inspired Information Processing, , Germany, (2017) .
-
A. Katumba, F. Laporte, A. Lugnan, J. Dambre, P. Bienstman,
Integrated-photonics implementation of reservoir computing neural networks, Machine learning workshop at ECOC (invited), Sweden, (2017).
-
A. Lugnan, J. Dambre, P. Bienstman,
Integrated pillar scatterers for speeding up classification of cell holograms through a RC-like machine learning approach, Workshop on Dynamical Systems and Brain-inspired Information Processing, Belgium, (2017) .
National Conferences
-
A. Foradori, A. Lugnan, L. Pavesi, P. Bienstman,
Reservoir computing with a silicon microring resonator matrix for image classification, ICOP 2024, Italy, p.1 (2024) .
-
P. Bienstman, J. Dambre, A. Lugnan, S. Sackesyn, C. Ma, E.J.C. Gooskens, M. Gouda, S. Masaad,
Photonic Neuromorphic Computing Using Silicon Chips, BePOM (invited), (2021) .
Click here for a printable publication list. Back to list
|