Photonics Research Group Home
Ghent University Research Topics
About People Research Publications Education
 IMEC
intern

 

Silicon Arrayed Waveguide Gratings (AWG)

Research Area: Design and Modeling for Integrated Photonics, Silicon photonics for telecom, datacom and interconnect

Main Researcher: Shibnath Pathak

The operation principle of a conventional AWG is described as follows. A light beam exiting from a suitable waveguide aperture enters into a first free propagation region (FPR) and diverges. This diverging light beam is then coupled in an array of waveguides and propagates through these waveguides to a second FPR. The optical path length difference between two successive waveguides in the array is constant. Therefore, for this center wavelength, the field distribution at the entrance of the waveguide array will be reproduced at its exit aperture. In a perfect system a perfect image of the object plane can then be formed and the field distribution in the image plane will have the same amplitude and phase as the field distribution of the object plane. Obviously, the imaging is never perfect because one uses a finite number of arrayed waveguides and the FPR has a finite numerical aperture. The phase difference in the arrayed waveguides varies with wavelength because of their length difference and the wavelength-dependence of the propagation constant. This phase delay will induce a tilt in the phase fronts in the FPR and introduce a lateral shift of the image field profile. The spectral response of the AWG will therefore be determined by the overlap of this shifted field profile with the mode profile of the different output waveguide apertures located in the image plane. In most AWGs demonstrated in silicon, the geometry of the aperture at the input (object plane) and output (image plane) is identical: this results in a maximal overlap when the shifted image is perfectly aligned with one of the output apertures (i.e. at a given wavelength).


To simulate the AWG we developed a semi-analytical model integrated with our design software (IPKISS). IPKISS is a modular framework: the components are based on parametric cells, which can be reused, modified and portable between the technologies: the technology informations contains the default design rules and fabrication informations based on the foundry. Our model simulates the transmission matrices (T-matrix) of all parts of the AWG using the most suitable method. In our approach we divided the AWG in three parts: two star-couplers (FPR) and the waveguide array.


Other people involved:

Downloads

Fabrication and Characterization of High-Optical-Quality-Factor Hybrid Polymer Microring Resonators Operating at Very Near Infrared Wavelengths  Fabrication and Characterization of High-Optical-Quality-Factor Hybrid Polymer Microring Resonators Operating at Very Near Infrared Wavelengths

PhD thesises

Publications

    International Journals

  1. M. Muneeb, A. Vasiliev, A. Ruocco, A. Malik, H. Chen, M. Nedeljkovic, J. S. Penades, L. Cerutti, J.B. Rodriguez, G. Mashanovich, M. Smit, E. Tournie, G. Roelkens, III-V-on-silicon integrated micro-spectrometer for the 3 um wavelength range, Optics Express, 24(9), p.9465-9472 (2016).
  2. A. Malik, M. Muneeb, S. Radosavljevic, M. Nedeljkovic, J. Penades, G. Mashanovich, Y. Shimura, G. Lepage, P. Verheyen, W. Vanherle, T. Van Opstal, R Loo, J. Van Campenhout, G. Roelkens, Silicon-based photonic integrated circuits for the mid-infrared, Procedia Engineering (invited), 140, p.144-151 (2016)  Download this Publication (1.1MB).
  3. A. Subramanian, E.M.P. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P.C. Wuytens, D. Martens, F. Leo, W. Xie, U.D. Dave, M. Muneeb, Pol Van Dorpe, Joris Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Zeger Hens, G. Roelkens, R. Baets, Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip , Photonics Research (invited), 5(3), p.B47 (2015)  Download this Publication (1.5MB).
  4. D. Martens, A. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, R. Baets, Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-infrared Wavelengths, Photonics Technology Letters, 27(2), p.137 - 140  (2015)  Download this Publication (1.1MB).
  5. M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E.M.P. Ryckeboer, D. Sanchez, L. Cerutti, J.B. Rodriguez, E. Tournie, W. Bogaerts, M. Smit, G. Roelkens, Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring, Optics Express, 22(22), p.27300-27308 (2014)  Download this Publication (4MB).
  6. S. Pathak, P. Dumon, D. Van Thourhout, W. Bogaerts, Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-On-Insulator, IEEE Photonics Journal, 6(5), p.4900109 (2014)  Download this Publication (992KB).
  7. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, W. Bogaerts, Effect of mask discretization on performance of silicon arrayed waveguide gratings, Photonics Technology Letters, 26(7), p.718-721 (2014)  Download this Publication (919KB).
  8. A. Malik, M. Muneeb, S. Pathak, Y.Shimura, J. Van Campenhout, R.Loo, G. Roelkens, Germanium-on-Silicon Mid-infrared Arrayed Waveguide Grating Multiplexers, IEEE Photonics Technology Letters, 25(18), p.1805-1808 (2013)  Download this Publication (2MB).
  9. S. Pathak, D. Van Thourhout, W. Bogaerts, Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications, Optics Letters, 38(16), p.2961 - 2964 (2013)  Download this Publication (700KB).
  10. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E.M.P. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Mashanovich, G. Roelkens, Demonstration of silicon on insulator mid-infrared spectrometers operating at 3.8um, Optics Express, 21(10), p.11659-11669 (2013)  Download this Publication (2.1MB).
  11. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, Optimized Silicon AWG with Flattened Spectral Response Using an MMI Aperture, Journal of Lightwave Technology, 31(1), p.87-93 (2013)  Download this Publication (1.5MB).
  12. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, Compact SOI-Based Polarization Diversity Wavelength De-multiplexer Circuit Using Two Symmetric AWGs, Optics Express, 20(26), p.B493-B500 (2012)  Download this Publication (5.5MB).
  13. L. Wang, W. Bogaerts, P. Dumon, S. Selvaraja, T. Jie, S. Pathak, X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, G. Morthier, Athermal AWGs in SOI by overlaying a polymer cladding on narrowed arrayed waveguides, Applied Optics, 51(9), p.1251-1256 (2012)  Download this Publication (755KB).
      International Conferences

    1. A. Vasiliev, M. Muneeb, R. Baets, G. Roelkens, High Resolution Silicon-on-Insulator Mid-Infrared Spectrometers operating at 3.3 um, IEEE Photonics Society Summer Topicals 2017, Puerto Rico, p.177 (2017).
    2. Z. Wang, Marianna Pantouvaki, G. Morthier, Clement Merckling, Joris Van Campenhout, D. Van Thourhout, G. Roelkens, Heterogeneous Integration of InP Devices on Silicon, the 28th International Conference on Indium Phosphide and Related Materials (IPRM) (invited), Japan, p.paper ThD1-1 (2016)  Download this Publication (379KB).
    3. A. Vasiliev, M. Muneeb, A. Ruocco, A. Malik, H. Chen, M. Nedeljkovic, J. Soler-Penades, L. Cerutti, J. B. Rodriguez, G. Z. Mashanovich, M. K. Smit, E. Tourniť, G. Roelkens, 3.8 μm Heterogeneously Integrated III-V on Silicon Micro-Spectrometer, 18th European Conference in Integrated Optics 2016 (ECIO), Poland, p.paper ECIO/p-24 (2016)  Download this Publication (309KB).
    4. Z. Wang, A. Malik, B. Tian, M. Muneeb, Clement Merckling, Marianna Pantouvaki, Yosuke Shimura, Roger Loo, Joris Van Campenhout, D. Van Thourhout, G. Roelkens, Near/Mid-Infrared Heterogeneous Si Photonics, The 9th International Conference On Silicon Epitaxy And Heterostructures (invited), (2015)  Download this Publication (3.5MB).
    5. W. Bogaerts, S. Pathak, A. Ruocco, S. Dwivedi, P. De Heyn, P. Dumon, D. Van Thourhout, J. Van Campenhout, P. Absil, Silicon photonics non-resonant wavelength filters: comparison between AWGs, echelle gratings and cascaded Mach-Zehnder filters., Proc. SPIE 9365, Integrated Optics: Devices, Materials, and Technologies XIX (invited), United States, p.93650H (2015)  Download this Publication (4.6MB).
    6. S. Pathak, H. Yu, D. Van Thourhout, W. Bogaerts, A fast 4-channel silicon switch using an AWG with 12 carrier depletion modulators, 11th International Conference on Group IV Photonics (GFP), France, p.237-238 (2014)  Download this Publication (1.2MB).
    7. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, Effect of mask grid on SOI arrayed waveguide grating performance, Group IV Photonics, South Korea, p.WC7 (2013)  Download this Publication (1.2MB).
    8. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, Compact 16x16 channels Routers based on Silicon-On-Insulator AWGs., 16th Annual Symposium of the IEEE Photononics Benelux Chapter, Belgium, (2011)  Download this Publication (302KB).
    9. S. Pathak, E. Lambert, P. Dumon, D. Van Thourhout, W. Bogaerts, Compact SOI-Based AWG With Flattened Spectral Response Using a MMI, 8th International Conference in Group IV Photonics 2011, United Kingdom, p.45-47 (WC2) (2011)  Download this Publication (698KB).
    10. S. Pathak, W. Bogaerts, E. Lambert, P. Dumon, D. Van Thourhout, Integrated Design and Simulation Tools for Silicon Photonic Arrayed Waveguide Gratings., Annual Symposium of the IEEE Photononics Benelux Chapter, Netherlands, p. 41-44 (2010)  Download this Publication (696KB).
        National Conferences

      1. S. Pathak, W. Bogaerts, D. Van Thourhout, Simulation Tools for Silicon Photonic Arrayed Waveguide Gratings., 11st FirW PhD Symposium, Belgium, p.135 (2010)  Download this Publication (148KB).

      Back to overview